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Introduction

Some programmatic statements:

• Structural proof theory: look into the structure of proofs
• Linear Logic as the logic behind logic
• Insights from linear logic…without linar logic!
• Except for: the second part on MALL (contraction,
weakening free)
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Sequent calculus

The sequent calculus allows for a finer analysis of proofs

It also accomodates better proof-search

But proof objects themselfes are more confusing:

Most computer scientists refer to this as the natural way

Γ ` A→ B Γ ` A
Γ ` B
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Some weaknesses in the sequent calculus
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Rules are too low-level

Say I have an axiom
∀x∀y∀z (path(x, y) ⊃ path(y, z) ⊃ path(x, z))

A proof could introduce the first ∀, then do something else…

But really, what one would like are proofs that either do

Γ ` ∆,path(x, y) Γ ` ∆,path(y, z)
Γ ` ∆,path(x, z)

(use the axiom to find the required path)

or

Γ,path(x, y),path(y, z),path(x, z) ` ∆

Γ,path(x, y),path(y, z) ` ∆

(use the axiom to extend the path knowledge base)
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Uninteresting permutations

The difference between the two proofs really seems irrelevant

Γ1 ` B,∆1

Γ2, C ` [y/x]D,∆2
Γ2, C ` ∀x.D,∆2

∀-r

Γ1, Γ2,B ⊃ C ` ∀x.D,∆1,∆2
⊃-l

Γ1,` B,∆1 Γ2, C ` [y/x]D,∆2

Γ1, Γ2,B ⊃ C ` [y/x]D,∆1,∆2
⊃-l

Γ1, Γ2,B ⊃ C ` ∀x.D,∆1,∆2
∀-r

Looking for both in a proof-search task is expensive
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Ambiguity of cut-elimination

Ξ1....
` B ;

Ξ1....
` B

` C,B wR

Ξ2....
` B
C ` B wL

` B,B cut

` B ;

Ξ2....
` B

Cut elimination results in…either Ξ1 or Ξ2, the other one is lost!
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Permutations and contractions

Last observation: structural rules interfere with permutations!

Γ1, r ` ∆1,p Γ2,q ` ∆2, s
Γ1, Γ2,p ⊃ q, r ` ∆1,∆2, s

⊃L

Γ1, Γ2,p ⊃ q ` ∆1,∆2, r ⊃ s ⊃R

Γ1, r ` ∆1,p
Γ1, r ` ∆1,p, s wR

Γ1,` ∆1, r ⊃ s,p ⊃R

Γ2,q ` ∆2, s
Γ2,q, r ` ∆2, s wL

Γ2,q ` ∆2, r ⊃ s ⊃R

Γ1, Γ2,p ⊃ q ` ∆1,∆2, r ⊃ s, r ⊃ s ⊃L

Γ1, Γ2,p ⊃ q ` ∆1,∆2, r ⊃ s cR
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Building a focused sequent calculus
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Summing up…

So far we hinted that:

• Invertibles can be easily permuted below non-invertibles
• The converse involves structural rules

Start by: separate invertible and non-invertible rules

Γ ` ∆,A
Γ ` ∆,A ∨ B

Γ,A ` ∆,B
Γ ` ∆,A ⊃ B

Call asynchronous the connectives with an invertible right rule

Can we treat all the asynchronous part before the
synchronous?
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One more bit

Why don’t we use the rule

Γ ` ∆,A,B
Γ ` ∆,A ∨ B

Then ∨ would become synchronous!

We treat these as two different connectives: ∨+ and ∨−

The same happens to ∧− and ∧+. Call +/- the polarity

⊃, ∀ are negative; ∃ positive

This is reminescent of linear logic: ⊕,` ⊗,&
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Atoms and polarity

It remains to fix the interaction with the initial and cut rules

Extend the notion of polarity to atoms!

Intutively:

• A positive atom justifies forward reasoning:
use it to conclude something new

• A negative atom is a justification for backward reasoning:
when proving something, conclude if you already know it

9



Designing a focused calculus

Simplification: negation normal form; single sided

Structural
`Γ ⇑ P,∆
`P, Γ ⇑∆

store
`P ⇓ P,∆
` · ⇑P,∆ decide

`N ⇑∆

`N ⇓∆
release`p ⇓ p⊥,∆

init

Synchronous

`A1, A2, Γ ⇓∆

`A1 ∧+ A2, Γ ⇓∆

`Ai, Γ ⇓∆

`A1 ∨+ A2, Γ ⇓∆

`[t/x]A, Γ ⇓∆

`∃x.A, Γ ⇓∆ `t+ ⇓∆

Asynchronous

`A1, Γ ⇑∆ `A2, Γ ⇑∆

`A1 ∧− A2, Γ ⇑∆

`A1, A2, Γ ⇑∆

`A1 ∨− A2, Γ ⇑∆

`[y/x]A, Γ ⇑∆

`∀x.A, Γ ⇑∆ `t−, Γ ⇑∆

P is a positive formula; p positive atom; N negative formula

• Decompose negatives, storing encountered positives
• Then, decide on a positive and focus: contraction is here!
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Properties of LKF

If we remove all polarities and arrows: it’s just sequents!

Theorem
The focused sequent calculus LKF is sound and complete for
classical logic

Successful applications to

• Computation as deduction
• Designing formats for proof communication
• Also, computation as proof normalization
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Metatheoretic applications

We can find information about the constructive content of
classical proofs

Consider ∃x∃y . . .A, A quantifier-free

If we choose all connectives to be negative, an LKF proof must

• Introduce terms for x,y…in a single synchronous phase
• Either conclude immediately, or introduce another tuple
of terms

This sketches of a proof of Herbrand’s theorem
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Treating induction
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Induction in a focused calculus

We treat induction by adding connectives for least and
greatest fixpoints:

• Focusing is best understood as a discipline of connective
decomposition

• Emphasis on dualities: here, least/greatest

And we enrich our logic by treating equality by unification:

Let B be a predicate operator: o→ o in Church-style

Then by µB we denote the least fixpoint of B
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Natural numbers

For example, the usual definition of numbers

nat := µλnat.λx.(x = 0 ∨ ∃y.x = Sy ∧ naty)

Said otherwise,

Define nat by nat 0; nat S N := nat N

But also Ackermann’s function:

µλackλmλnλa.
m = 0 ∧ a = sn∨
(∃p.m = s p ∧ n = 0 ∧ ack p(s0)a)
∨ (∃p∃q∃b.m = s p ∧ n = s q ∧ ackmqb ∧ ack pba)
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Induction

The induction rule:

Γ,Pt̄ ` ∆ BPx̄ ` Px̄
Γ, µBt̄ ` ∆

Informally: to conclude ∆ from t̄ being in the least fixpoint of
B, pick a pre-fixpoint S

In the case of nat, we get

Γ,Pn ` ∆ n = 0 ∨ ∃y.n = Sy ∧ Py ` Pn
Γ,nat n ` ∆
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Focusing and inductive definitions

D. Baelde showed that there is a focused proof system for
µMALL: no weakening, no contraction, and no exponentials!

Positive and negatives are no more provably equivalent

Induction is treated during asynchrony:

`Γ, (P t̄)⊥ ⇑∆ `(BP, ȳ)⊥,P, ȳ ⇑ ·
`Γ, (µB t̄)⊥ ⇑∆

`Γ ⇑ (µB t̄)⊥,∆
`Γ, (µB t̄)⊥ ⇑∆

Either do induction immediately, or store the fixpoint forever
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Positive fixpoints

Theorem
Contraction and weakening are admissible in µMALL for any
purely positive formula

Many (most?) interesting inductive definitions as purely
positive.

Remember the naturals:

nat := µλnat.λx.(x = 0 ∨+ ∃y.x = Sy ∧+ naty)

Then, within the focused calculus the rule directly becomes

`Γ, (P t̄)⊥ ⇑∆

`P0⇑ `(Py)⊥,P(Sy)⇑
`(x = 0 ∨+ ∃y.x = Sy ∧+ Py)⊥,Px⇑
`Γ, (nat n)⊥ ⇑∆
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Some properties of focused µMALL

Remember that we are in a classical system!

The disjunctive property holds for ∨+, as usual.

A strong property for ∨−:

Theorem
If A1, . . .An are purely positive and ` A1, . . .An is provable in
µMALL, then n is 1

Cut-elimination for the focused calculus gives us

Theorem (Witness extraction)
Let A be purely positive and Ξ a proof of ∀x̄∃yA x̄y.

Then any proof of ∃y At̄y containing a cut against Ξ contains
a witness for y
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Expressiveness of µMALL

There are several applications of µMALL in CS

But what fragment of arithmetic does it capture?

An empirical limit: write Ackermann’s function as a fixpoint

In order to prove ∀x∀y.nat x ( nat y ( ∃z ack x y z we need

• Either contraction on formulas with implication
• Or induction with open contexts (Alves & Mackie)
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Targeting IΣ1

Theorem
Let Θ be a set of purely positive formulas. The following rule
is admissible in µMALL

`Γ, (P t̄)⊥ ⇑∆ `(BP ȳ)⊥,P ȳ,Θ⇑
`Γ, (µB t̄)⊥ ⇑∆,Θ

This induction rule seems enough to capture IΣ1

Theorem
Primitive recursive functions can be expressed as purely
positive formulas. Their totality is provable with the above
induction rule.
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Current questions:

• Formalize the correspondence between IΣ1 and purely
positive

• Posssibly extend the hierarchy?
• Prove the completeness of the focused proof system for
full classical logic
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Thank you
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