Applications of focusing to the proof theory of arithmetic

Matteo Manighetti
February 1st, 2021
Inria Saclay \& LIX, École polytechnique, Palaiseau, France
Works in progress with Dale Miller

Introduction

Some programmatic statements:

- Structural proof theory: look into the structure of proofs
- Linear Logic as the logic behind logic
- Insights from linear logic...without linar logic!
- Except for: the second part on MALL (contraction, weakening free)

Sequent calculus

The sequent calculus allows for a finer analysis of proofs
It also accomodates better proof-search
But proof objects themselfes are more confusing:
Most computer scientists refer to this as the natural way

$$
\frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}
$$

Some weaknesses in the sequent calculus

Rules are too low-level

Say I have an axiom
$\forall x \forall y \forall z(p a t h(x, y) \supset \operatorname{path}(y, z) \supset \operatorname{path}(x, z))$
A proof could introduce the first \forall, then do something else...

Rules are too low-level

Say I have an axiom
$\forall x \forall y \forall z(\operatorname{path}(x, y) \supset \operatorname{path}(y, z) \supset \operatorname{path}(x, z))$
A proof could introduce the first \forall, then do something else...
But really, what one would like are proofs that either do

$$
\frac{\Gamma \vdash \Delta, \operatorname{path}(x, y) \quad \Gamma \vdash \Delta, \operatorname{path}(y, z)}{\Gamma \vdash \Delta, \operatorname{path}(x, z)}
$$

(use the axiom to find the required path)

Rules are too low-level

Say I have an axiom
$\forall x \forall y \forall z(\operatorname{path}(x, y) \supset \operatorname{path}(y, z) \supset \operatorname{path}(x, z))$
A proof could introduce the first \forall, then do something else...
But really, what one would like are proofs that either do

$$
\frac{\Gamma \vdash \Delta, \operatorname{path}(x, y) \quad \Gamma \vdash \Delta, \operatorname{path}(y, z)}{\Gamma \vdash \Delta, \operatorname{path}(x, z)}
$$

(use the axiom to find the required path) or

$$
\frac{\Gamma, \operatorname{path}(x, y), \operatorname{path}(y, z), \text { path }(x, z) \vdash \Delta}{\Gamma, \operatorname{path}(x, y), \operatorname{path}(y, z) \vdash \Delta}
$$

(use the axiom to extend the path knowledge base)

Uninteresting permutations

The difference between the two proofs really seems irrelevant

$$
\frac{\Gamma_{1} \vdash B, \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, B \supset C \vdash \forall x . D, \Delta_{1}, \Delta_{2}} \supset-l \quad \frac{\Gamma_{2}, C \vdash[y / x] D, \Delta_{2}}{\Gamma_{2}, C \vdash \forall x . D, \Delta_{2}} \forall-r \frac{\Gamma_{1}, \vdash B, \Delta_{1} \quad \Gamma_{2}, C \vdash[y / x] D, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, B \supset C \vdash[y / x] D, \Delta_{1}, \Delta_{2}} \Gamma_{1}, \Gamma_{2}, B \supset C \vdash-l
$$

Looking for both in a proof-search task is expensive

Ambiguity of cut-elimination

Cut elimination results in...either Ξ_{1} or Ξ_{2}, the other one is lost!

Permutations and contractions

Last observation: structural rules interfere with permutations!

$$
\begin{gathered}
\frac{\Gamma_{1}, r \vdash \Delta_{1}, p \quad \Gamma_{2}, q \vdash \Delta_{2}, s}{\Gamma_{1}, \Gamma_{2}, p \supset q, r \vdash \Delta_{1}, \Delta_{2}, s} \supset \mathrm{~L} \\
\Gamma_{1}, \Gamma_{2}, p \supset q \vdash \Delta_{1}, \Delta_{2}, r \supset s \\
\mathrm{R} \\
\frac{\frac{\Gamma_{1}, r \vdash \Delta_{1}, p}{\Gamma_{1}, r \vdash \Delta_{1}, p, s} \text { } w R \quad \frac{\Gamma_{2}, q \vdash \Delta_{2}, s}{\Gamma_{1}, \vdash, \cdot \Delta_{1}, r \supset s, p} \supset \mathrm{R} \quad \frac{\Gamma_{2}, q, r \Delta_{2}, s}{\Gamma_{2}, q \vdash \Delta_{2}, r \supset s}}{\frac{\Gamma_{1}, \Gamma_{2}, p \supset q \vdash \Delta_{1}, \Delta_{2}, r \supset s, r \supset s}{\Gamma_{1}, \Gamma_{2}, p \supset q \vdash \Delta_{1}, \Delta_{2}, r \supset s}} \supset \mathrm{R} \\
\mathrm{LR}
\end{gathered}
$$

Building a focused sequent calculus

Summing up...

So far we hinted that:

- Invertibles can be easily permuted below non-invertibles
- The converse involves structural rules

Summing up...

So far we hinted that:

- Invertibles can be easily permuted below non-invertibles
- The converse involves structural rules

Start by: separate invertible and non-invertible rules

$$
\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} \quad \frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta, A \supset B}
$$

Call asynchronous the connectives with an invertible right rule
Can we treat all the asynchronous part before the synchronous?

One more bit

Why don't we use the rule

$$
\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B}
$$

Then \vee would become synchronous!

One more bit

Why don't we use the rule

$$
\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B}
$$

Then \vee would become synchronous!
We treat these as two different connectives: V^{+}and V^{-}

One more bit

Why don't we use the rule

$$
\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B}
$$

Then \vee would become synchronous!
We treat these as two different connectives: V^{+}and V^{-}
The same happens to \wedge^{-}and \wedge^{+}. Call $+/$- the polarity

One more bit

Why don't we use the rule

$$
\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B}
$$

Then \vee would become synchronous!
We treat these as two different connectives: V^{+}and V^{-}
The same happens to \wedge^{-}and \wedge^{+}. Call $+/$- the polarity
\supset, \forall are negative; \exists positive
This is reminescent of linear logic: $\oplus, \mathcal{P} \otimes, \&$

Atoms and polarity

It remains to fix the interaction with the initial and cut rules
Extend the notion of polarity to atoms!
Intuitively:

- A positive atom justifies forward reasoning: use it to conclude something new
- A negative atom is a justification for backward reasoning: when proving something, conclude if you already know it

Designing a focused calculus

Simplification: negation normal form; single sided
Structural

$$
\frac{\vdash \Gamma \Uparrow P, \Delta}{\vdash P, \Gamma \Uparrow \Delta} \text { store } \frac{\vdash P \Downarrow P, \Delta}{\vdash \cdot \Uparrow P, \Delta} \text { decide } \frac{\vdash N \Uparrow \Delta}{\vdash N \Downarrow \Delta} \text { release } \overline{\vdash p \Downarrow P^{\perp}, \Delta} \text { init }
$$

Synchronous

$$
\frac{\vdash A_{1}, A_{2}, \Gamma \Downarrow \Delta}{\vdash A_{1} \wedge^{+} A_{2}, \Gamma \Downarrow \Delta} \quad \frac{\vdash A_{i}, \Gamma \Downarrow \Delta}{\vdash A_{1} \vee^{+} A_{2}, \Gamma \Downarrow \Delta} \quad \frac{\vdash[t / x] A, \Gamma \Downarrow \Delta}{\vdash \exists x \cdot A, \Gamma \Downarrow \Delta} \frac{}{\vdash t^{+} \Downarrow \Delta}
$$

Asynchronous

$$
\frac{\vdash A_{1}, \Gamma \Uparrow \Delta \quad \vdash A_{2}, \Gamma \Uparrow \Delta}{\vdash A_{1} \wedge^{-} A_{2}, \Gamma \Uparrow \Delta} \frac{\vdash A_{1}, A_{2}, \Gamma \Uparrow \Delta}{\vdash A_{1} \vee^{-} A_{2}, \Gamma \Uparrow \Delta} \frac{\vdash[y / x] A, \Gamma \Uparrow \Delta}{\vdash \forall x \cdot A, \Gamma \Uparrow \Delta} \stackrel{\vdash t^{-}, \Gamma \Uparrow \Delta}{\vdash}
$$

P is a positive formula; p positive atom; N negative formula

- Decompose negatives, storing encountered positives
- Then, decide on a positive and focus: contraction is here!

Properties of LKF

If we remove all polarities and arrows: it's just sequents!

Theorem

The focused sequent calculus LKF is sound and complete for classical logic

Successful applications to

- Computation as deduction
- Designing formats for proof communication
- Also, computation as proof normalization

Metatheoretic applications

We can find information about the constructive content of classical proofs

Consider $\exists x \exists y \ldots$, ... A quantifier-free
If we choose all connectives to be negative, an LKF proof must

- Introduce terms for x, y...in a single synchronous phase
- Either conclude immediately, or introduce another tuple of terms

This sketches of a proof of Herbrand's theorem

Treating induction

Induction in a focused calculus

We treat induction by adding connectives for least and greatest fixpoints:

- Focusing is best understood as a discipline of connective decomposition
- Emphasis on dualities: here, least/greatest

And we enrich our logic by treating equality by unification:
Let B be a predicate operator: $0 \rightarrow 0$ in Church-style
Then by μB we denote the least fixpoint of B

Natural numbers

For example, the usual definition of numbers

$$
\text { nat }:=\mu \lambda n a t . \lambda x .(x=0 \vee \exists y . x=S y \wedge \text { naty })
$$

Said otherwise,
Define nat by nat 0 ; nat $S \mathrm{~N}:=$ nat N
But also Ackermann's function:
$\mu \lambda a c k \lambda m \lambda n \lambda$.
$m=0 \wedge a=s n \vee$
($\exists \mathrm{p} \cdot \mathrm{m}=\mathrm{sp} \wedge n=0 \wedge \operatorname{ackp(s0)a)~}$
$\vee(\exists p \exists q \exists b \cdot m=s p \wedge n=s q \wedge a c k m q b \wedge a c k p b a)$

Induction

The induction rule:

$$
\frac{\Gamma, P \bar{t} \vdash \Delta \quad B P \bar{x} \vdash P \bar{x}}{\Gamma, \mu B \bar{t} \vdash \Delta}
$$

Informally: to conclude Δ from \bar{t} being in the least fixpoint of B, pick a pre-fixpoint S

In the case of nat, we get

$$
\frac{\Gamma, P n \vdash \Delta \quad n=0 \vee \exists y . n=S y \wedge P y \vdash P n}{\Gamma, \text { nat } n \vdash \Delta}
$$

Focusing and inductive definitions

D. Baelde showed that there is a focused proof system for $\mu M A L L$: no weakening, no contraction, and no exponentials!

Positive and negatives are no more provably equivalent

Focusing and inductive definitions

D. Baelde showed that there is a focused proof system for $\mu M A L L$: no weakening, no contraction, and no exponentials!

Positive and negatives are no more provably equivalent
Induction is treated during asynchrony:

$$
\frac{\vdash \Gamma,(P \bar{t})^{\perp} \Uparrow \Delta \quad \vdash(B P, \bar{y})^{\perp}, P, \bar{y} \Uparrow \cdot}{\vdash \Gamma,(\mu B \bar{t})^{\perp} \Uparrow \Delta} \quad \frac{\vdash \Gamma \Uparrow(\mu B \bar{t})^{\perp}, \Delta}{\vdash \Gamma,(\mu B \bar{t})^{\perp} \Uparrow \Delta}
$$

Either do induction immediately, or store the fixpoint forever

Positive fixpoints

Theorem

Contraction and weakening are admissible in μ MALL for any purely positive formula

Many (most?) interesting inductive definitions as purely positive.

Remember the naturals:

$$
\text { nat }:=\mu \lambda \text { nat. } \lambda x \cdot\left(x=0 \vee^{+} \exists y \cdot x=S y \wedge^{+} \text {naty }\right)
$$

Then, within the focused calculus the rule directly becomes

$$
\frac{\vdash \Gamma,(P \bar{t})^{\perp} \Uparrow \Delta \frac{\vdash P 0 \Uparrow \vdash(P y)^{\perp}, P(S y) \Uparrow}{\vdash\left(x=0 \vee^{+} \exists y \cdot x=S y \wedge^{+} P y\right)^{\perp}, P x \Uparrow}}{\vdash \Gamma,(\text { natn })^{\perp} \Uparrow \Delta}
$$

Some properties of focused μ MALL

Remember that we are in a classical system!
The disjunctive property holds for \vee^{+}, as usual.
A strong property for V^{-}:

Theorem

If $A_{1}, \ldots A_{n}$ are purely positive and $\vdash A_{1}, \ldots A_{n}$ is provable in $\mu M A L L$, then n is 1

Cut-elimination for the focused calculus gives us

Theorem (Witness extraction)

Let A be purely positive and \equiv a proof of $\forall \bar{x} \exists y A \bar{x} y$.
Then any proof of $\exists y$ A $\bar{t} y$ containing a cut against \equiv contains a witness for y

Expressiveness of $\mu \mathrm{MALL}$

There are several applications of μ MALL in CS
But what fragment of arithmetic does it capture?
An empirical limit: write Ackermann's function as a fixpoint
In order to prove $\forall x \forall y$.nat $x \multimap$ nat $y \multimap \exists z a c k x y z$ we need

- Either contraction on formulas with implication
- Or induction with open contexts (Alves \& Mackie)

Targeting $/ \Sigma_{1}$

Theorem

Let Θ be a set of purely positive formulas. The following rule is admissible in μ MALL

$$
\frac{\vdash \Gamma,(P \bar{t})^{\perp} \Uparrow \Delta \quad \vdash(B P \bar{y})^{\perp}, P \bar{y}, \Theta \Uparrow}{\vdash \Gamma,(\mu B \bar{\tau})^{\perp} \Uparrow \Delta, \Theta}
$$

This induction rule seems enough to capture $I \Sigma_{1}$

Theorem

Primitive recursive functions can be expressed as purely positive formulas. Their totality is provable with the above induction rule.

Current questions:

- Formalize the correspondence between $I \Sigma_{1}$ and purely positive
- Posssibly extend the hierarchy?
- Prove the completeness of the focused proof system for full classical logic

Thank you

