
Applications of focusing to the proof theory of
arithmetic

Matteo Manighetti
February 1st, 2021

Inria Saclay & LIX, École polytechnique, Palaiseau, France
Works in progress with Dale Miller

Introduction

Some programmatic statements:

• Structural proof theory: look into the structure of proofs
• Linear Logic as the logic behind logic
• Insights from linear logic…without linar logic!
• Except for: the second part on MALL (contraction,
weakening free)

1

Sequent calculus

The sequent calculus allows for a finer analysis of proofs

It also accomodates better proof-search

But proof objects themselfes are more confusing:

Most computer scientists refer to this as the natural way

Γ ` A→ B Γ ` A
Γ ` B

2

Some weaknesses in the sequent calculus

2

Rules are too low-level

Say I have an axiom
∀x∀y∀z (path(x, y) ⊃ path(y, z) ⊃ path(x, z))

A proof could introduce the first ∀, then do something else…

But really, what one would like are proofs that either do

Γ ` ∆,path(x, y) Γ ` ∆,path(y, z)
Γ ` ∆,path(x, z)

(use the axiom to find the required path)

or

Γ,path(x, y),path(y, z),path(x, z) ` ∆

Γ,path(x, y),path(y, z) ` ∆

(use the axiom to extend the path knowledge base)

3

Rules are too low-level

Say I have an axiom
∀x∀y∀z (path(x, y) ⊃ path(y, z) ⊃ path(x, z))

A proof could introduce the first ∀, then do something else…

But really, what one would like are proofs that either do

Γ ` ∆,path(x, y) Γ ` ∆,path(y, z)
Γ ` ∆,path(x, z)

(use the axiom to find the required path)

or

Γ,path(x, y),path(y, z),path(x, z) ` ∆

Γ,path(x, y),path(y, z) ` ∆

(use the axiom to extend the path knowledge base)

3

Rules are too low-level

Say I have an axiom
∀x∀y∀z (path(x, y) ⊃ path(y, z) ⊃ path(x, z))

A proof could introduce the first ∀, then do something else…

But really, what one would like are proofs that either do

Γ ` ∆,path(x, y) Γ ` ∆,path(y, z)
Γ ` ∆,path(x, z)

(use the axiom to find the required path)

or

Γ,path(x, y),path(y, z),path(x, z) ` ∆

Γ,path(x, y),path(y, z) ` ∆

(use the axiom to extend the path knowledge base)
3

Uninteresting permutations

The difference between the two proofs really seems irrelevant

Γ1 ` B,∆1

Γ2, C ` [y/x]D,∆2
Γ2, C ` ∀x.D,∆2

∀-r

Γ1, Γ2,B ⊃ C ` ∀x.D,∆1,∆2
⊃-l

Γ1,` B,∆1 Γ2, C ` [y/x]D,∆2

Γ1, Γ2,B ⊃ C ` [y/x]D,∆1,∆2
⊃-l

Γ1, Γ2,B ⊃ C ` ∀x.D,∆1,∆2
∀-r

Looking for both in a proof-search task is expensive

4

Ambiguity of cut-elimination

Ξ1....
` B ;

Ξ1....
` B

` C,B wR

Ξ2....
` B
C ` B wL

` B,B cut

` B ;

Ξ2....
` B

Cut elimination results in…either Ξ1 or Ξ2, the other one is lost!

5

Permutations and contractions

Last observation: structural rules interfere with permutations!

Γ1, r ` ∆1,p Γ2,q ` ∆2, s
Γ1, Γ2,p ⊃ q, r ` ∆1,∆2, s

⊃L

Γ1, Γ2,p ⊃ q ` ∆1,∆2, r ⊃ s ⊃R

Γ1, r ` ∆1,p
Γ1, r ` ∆1,p, s wR

Γ1,` ∆1, r ⊃ s,p ⊃R

Γ2,q ` ∆2, s
Γ2,q, r ` ∆2, s wL

Γ2,q ` ∆2, r ⊃ s ⊃R

Γ1, Γ2,p ⊃ q ` ∆1,∆2, r ⊃ s, r ⊃ s ⊃L

Γ1, Γ2,p ⊃ q ` ∆1,∆2, r ⊃ s cR

6

Building a focused sequent calculus

6

Summing up…

So far we hinted that:

• Invertibles can be easily permuted below non-invertibles
• The converse involves structural rules

Start by: separate invertible and non-invertible rules

Γ ` ∆,A
Γ ` ∆,A ∨ B

Γ,A ` ∆,B
Γ ` ∆,A ⊃ B

Call asynchronous the connectives with an invertible right rule

Can we treat all the asynchronous part before the
synchronous?

7

Summing up…

So far we hinted that:

• Invertibles can be easily permuted below non-invertibles
• The converse involves structural rules

Start by: separate invertible and non-invertible rules

Γ ` ∆,A
Γ ` ∆,A ∨ B

Γ,A ` ∆,B
Γ ` ∆,A ⊃ B

Call asynchronous the connectives with an invertible right rule

Can we treat all the asynchronous part before the
synchronous?

7

One more bit

Why don’t we use the rule

Γ ` ∆,A,B
Γ ` ∆,A ∨ B

Then ∨ would become synchronous!

We treat these as two different connectives: ∨+ and ∨−

The same happens to ∧− and ∧+. Call +/- the polarity

⊃, ∀ are negative; ∃ positive

This is reminescent of linear logic: ⊕,` ⊗,&

8

One more bit

Why don’t we use the rule

Γ ` ∆,A,B
Γ ` ∆,A ∨ B

Then ∨ would become synchronous!

We treat these as two different connectives: ∨+ and ∨−

The same happens to ∧− and ∧+. Call +/- the polarity

⊃, ∀ are negative; ∃ positive

This is reminescent of linear logic: ⊕,` ⊗,&

8

One more bit

Why don’t we use the rule

Γ ` ∆,A,B
Γ ` ∆,A ∨ B

Then ∨ would become synchronous!

We treat these as two different connectives: ∨+ and ∨−

The same happens to ∧− and ∧+. Call +/- the polarity

⊃, ∀ are negative; ∃ positive

This is reminescent of linear logic: ⊕,` ⊗,&

8

One more bit

Why don’t we use the rule

Γ ` ∆,A,B
Γ ` ∆,A ∨ B

Then ∨ would become synchronous!

We treat these as two different connectives: ∨+ and ∨−

The same happens to ∧− and ∧+. Call +/- the polarity

⊃, ∀ are negative; ∃ positive

This is reminescent of linear logic: ⊕,` ⊗,&

8

Atoms and polarity

It remains to fix the interaction with the initial and cut rules

Extend the notion of polarity to atoms!

Intutively:

• A positive atom justifies forward reasoning:
use it to conclude something new

• A negative atom is a justification for backward reasoning:
when proving something, conclude if you already know it

9

Designing a focused calculus

Simplification: negation normal form; single sided

Structural
`Γ ⇑ P,∆
`P, Γ ⇑∆

store
`P ⇓ P,∆
` · ⇑P,∆ decide

`N ⇑∆

`N ⇓∆
release`p ⇓ p⊥,∆

init

Synchronous

`A1, A2, Γ ⇓∆

`A1 ∧+ A2, Γ ⇓∆

`Ai, Γ ⇓∆

`A1 ∨+ A2, Γ ⇓∆

`[t/x]A, Γ ⇓∆

`∃x.A, Γ ⇓∆ `t+ ⇓∆

Asynchronous

`A1, Γ ⇑∆ `A2, Γ ⇑∆

`A1 ∧− A2, Γ ⇑∆

`A1, A2, Γ ⇑∆

`A1 ∨− A2, Γ ⇑∆

`[y/x]A, Γ ⇑∆

`∀x.A, Γ ⇑∆ `t−, Γ ⇑∆

P is a positive formula; p positive atom; N negative formula

• Decompose negatives, storing encountered positives
• Then, decide on a positive and focus: contraction is here!

10

Properties of LKF

If we remove all polarities and arrows: it’s just sequents!

Theorem
The focused sequent calculus LKF is sound and complete for
classical logic

Successful applications to

• Computation as deduction
• Designing formats for proof communication
• Also, computation as proof normalization

11

Metatheoretic applications

We can find information about the constructive content of
classical proofs

Consider ∃x∃y . . .A, A quantifier-free

If we choose all connectives to be negative, an LKF proof must

• Introduce terms for x,y…in a single synchronous phase
• Either conclude immediately, or introduce another tuple
of terms

This sketches of a proof of Herbrand’s theorem

12

Treating induction

12

Induction in a focused calculus

We treat induction by adding connectives for least and
greatest fixpoints:

• Focusing is best understood as a discipline of connective
decomposition

• Emphasis on dualities: here, least/greatest

And we enrich our logic by treating equality by unification:

Let B be a predicate operator: o→ o in Church-style

Then by µB we denote the least fixpoint of B

13

Natural numbers

For example, the usual definition of numbers

nat := µλnat.λx.(x = 0 ∨ ∃y.x = Sy ∧ naty)

Said otherwise,

Define nat by nat 0; nat S N := nat N

But also Ackermann’s function:

µλackλmλnλa.
m = 0 ∧ a = sn∨
(∃p.m = s p ∧ n = 0 ∧ ack p(s0)a)
∨ (∃p∃q∃b.m = s p ∧ n = s q ∧ ackmqb ∧ ack pba)

14

Induction

The induction rule:

Γ,Pt̄ ` ∆ BPx̄ ` Px̄
Γ, µBt̄ ` ∆

Informally: to conclude ∆ from t̄ being in the least fixpoint of
B, pick a pre-fixpoint S

In the case of nat, we get

Γ,Pn ` ∆ n = 0 ∨ ∃y.n = Sy ∧ Py ` Pn
Γ,nat n ` ∆

15

Focusing and inductive definitions

D. Baelde showed that there is a focused proof system for
µMALL: no weakening, no contraction, and no exponentials!

Positive and negatives are no more provably equivalent

Induction is treated during asynchrony:

`Γ, (P t̄)⊥ ⇑∆ `(BP, ȳ)⊥,P, ȳ ⇑ ·
`Γ, (µB t̄)⊥ ⇑∆

`Γ ⇑ (µB t̄)⊥,∆
`Γ, (µB t̄)⊥ ⇑∆

Either do induction immediately, or store the fixpoint forever

16

Focusing and inductive definitions

D. Baelde showed that there is a focused proof system for
µMALL: no weakening, no contraction, and no exponentials!

Positive and negatives are no more provably equivalent

Induction is treated during asynchrony:

`Γ, (P t̄)⊥ ⇑∆ `(BP, ȳ)⊥,P, ȳ ⇑ ·
`Γ, (µB t̄)⊥ ⇑∆

`Γ ⇑ (µB t̄)⊥,∆
`Γ, (µB t̄)⊥ ⇑∆

Either do induction immediately, or store the fixpoint forever

16

Positive fixpoints

Theorem
Contraction and weakening are admissible in µMALL for any
purely positive formula

Many (most?) interesting inductive definitions as purely
positive.

Remember the naturals:

nat := µλnat.λx.(x = 0 ∨+ ∃y.x = Sy ∧+ naty)

Then, within the focused calculus the rule directly becomes

`Γ, (P t̄)⊥ ⇑∆

`P0⇑ `(Py)⊥,P(Sy)⇑
`(x = 0 ∨+ ∃y.x = Sy ∧+ Py)⊥,Px⇑
`Γ, (nat n)⊥ ⇑∆

17

Some properties of focused µMALL

Remember that we are in a classical system!

The disjunctive property holds for ∨+, as usual.

A strong property for ∨−:

Theorem
If A1, . . .An are purely positive and ` A1, . . .An is provable in
µMALL, then n is 1

Cut-elimination for the focused calculus gives us

Theorem (Witness extraction)
Let A be purely positive and Ξ a proof of ∀x̄∃yA x̄y.

Then any proof of ∃y At̄y containing a cut against Ξ contains
a witness for y

18

Expressiveness of µMALL

There are several applications of µMALL in CS

But what fragment of arithmetic does it capture?

An empirical limit: write Ackermann’s function as a fixpoint

In order to prove ∀x∀y.nat x (nat y (∃z ack x y z we need

• Either contraction on formulas with implication
• Or induction with open contexts (Alves & Mackie)

19

Targeting IΣ1

Theorem
Let Θ be a set of purely positive formulas. The following rule
is admissible in µMALL

`Γ, (P t̄)⊥ ⇑∆ `(BP ȳ)⊥,P ȳ,Θ⇑
`Γ, (µB t̄)⊥ ⇑∆,Θ

This induction rule seems enough to capture IΣ1

Theorem
Primitive recursive functions can be expressed as purely
positive formulas. Their totality is provable with the above
induction rule.

20

Current questions:

• Formalize the correspondence between IΣ1 and purely
positive

• Posssibly extend the hierarchy?
• Prove the completeness of the focused proof system for
full classical logic

21

Thank you

21

	Introduction

