Applications of focusing to the proof theory of arithmetic

Matteo Manighetti

February 1st, 2021

Inria Saclay & LIX, École polytechnique, Palaiseau, France Works in progress with Dale Miller Some programmatic statements:

- Structural proof theory: look into the structure of proofs
- Linear Logic as the logic behind logic
- Insights from linear logic...without linar logic!
- Except for: the second part on MALL (contraction, weakening free)

- The sequent calculus allows for a finer analysis of proofs
- It also accomodates better proof-search
- But proof objects themselfes are more confusing:
- Most computer scientists refer to this as the natural way

$$\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

Some weaknesses in the sequent calculus

Say I have an axiom $\forall x \forall y \forall z (path(x, y) \supset path(y, z) \supset path(x, z))$

A proof could introduce the first \forall , then do something else...

Say I have an axiom $\forall x \forall y \forall z (path(x, y) \supset path(y, z) \supset path(x, z))$

A proof could introduce the first \forall , then do something else...

But really, what one would like are proofs that either do

$$\frac{\Gamma \vdash \Delta, path(x, y) \quad \Gamma \vdash \Delta, path(y, z)}{\Gamma \vdash \Delta, path(x, z)}$$

(use the axiom to find the required path)

Say I have an axiom $\forall x \forall y \forall z (path(x, y) \supset path(y, z) \supset path(x, z))$

A proof could introduce the first \forall , then do something else...

But really, what one would like are proofs that either do

$$\frac{\Gamma \vdash \Delta, path(x, y) \quad \Gamma \vdash \Delta, path(y, z)}{\Gamma \vdash \Delta, path(x, z)}$$

(use the axiom to find the required path)

or

$$\frac{\Gamma, path(x, y), path(y, z), path(x, z) \vdash \Delta}{\Gamma, path(x, y), path(y, z) \vdash \Delta}$$

(use the axiom to extend the *path* knowledge base)

The difference between the two proofs really seems irrelevant

$$\frac{\Gamma_{1} \vdash B, \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, B \supset C \vdash \forall x.D, \Delta_{1}, \Delta_{2}} \xrightarrow{\forall -r} \frac{\Gamma_{1}, \vdash B, \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, B \supset C \vdash \forall x.D, \Delta_{1}, \Delta_{2}} \xrightarrow{\forall -r} \frac{\Gamma_{1}, \vdash B, \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, B \supset C \vdash [y/x]D, \Delta_{1}, \Delta_{2}} \xrightarrow{\supset -l} \frac{\Gamma_{1}, \Gamma_{2}, B \supset C \vdash [y/x]D, \Delta_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, B \supset C \vdash \forall x.D, \Delta_{1}, \Delta_{2}} \xrightarrow{\forall -r}$$

Looking for both in a proof-search task is expensive

Ambiguity of cut-elimination

Cut elimination results in...either Ξ_1 or Ξ_2 , the other one is lost!

Last observation: structural rules interfere with permutations!

$$\frac{\Gamma_{1}, r \vdash \Delta_{1}, p \quad \Gamma_{2}, q \vdash \Delta_{2}, s}{\Gamma_{1}, \Gamma_{2}, p \supset q, r \vdash \Delta_{1}, \Delta_{2}, s} \supset L$$

$$\Gamma_{1}, \Gamma_{2}, p \supset q \vdash \Delta_{1}, \Delta_{2}, r \supset s} \supset R$$

Building a focused sequent calculus

So far we hinted that:

- Invertibles can be easily permuted below non-invertibles
- The converse involves structural rules

So far we hinted that:

- Invertibles can be easily permuted below non-invertibles
- The converse involves structural rules

Start by: separate invertible and non-invertible rules

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B} \quad \frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta, A \supset B}$$

Call asynchronous the connectives with an invertible right rule Can we treat all the asynchronous part before the synchronous? One more bit

Why don't we use the rule

 $\frac{\Gamma\vdash\Delta,A,B}{\Gamma\vdash\Delta,A\vee B}$

Then \lor would become synchronous!

Why don't we use the rule

 $\frac{\Gamma\vdash\Delta,A,B}{\Gamma\vdash\Delta,A\vee B}$

Then \lor would become synchronous!

We treat these as two different connectives: \vee^+ and \vee^-

Why don't we use the rule

 $\frac{\Gamma\vdash\Delta,A,B}{\Gamma\vdash\Delta,A\vee B}$

Then \lor would become synchronous!

We treat these as two different connectives: \vee^+ and \vee^-

The same happens to \wedge^- and \wedge^+ . Call +/- the polarity

Why don't we use the rule

 $\frac{\Gamma\vdash\Delta,A,B}{\Gamma\vdash\Delta,A\vee B}$

Then \lor would become synchronous!

We treat these as two different connectives: \vee^+ and \vee^-

The same happens to \wedge^- and \wedge^+ . Call +/- the polarity

 \supset , \forall are negative; \exists positive

This is reminescent of linear logic: \oplus , $\mathfrak{P} \otimes$, &

It remains to fix the interaction with the initial and cut rules Extend the notion of polarity to atoms! Intutively:

- A positive atom justifies forward reasoning: use it to conclude something new
- A negative atom is a justification for backward reasoning: when proving something, conclude if you already know it

Designing a focused calculus

Simplification: negation normal form; single sided

Structural

$$\frac{\vdash \Gamma \Uparrow P, \Delta}{\vdash P, \Gamma \Uparrow \Delta} \text{ store } \frac{\vdash P \Downarrow P, \Delta}{\vdash \cdot \Uparrow P, \Delta} \text{ decide } \frac{\vdash N \Uparrow \Delta}{\vdash N \Downarrow \Delta} \text{ release}_{\vdash P \Downarrow p^{\perp}, \Delta} \text{ init}$$

Synchronous

$$\frac{\vdash A_1, A_2, \Gamma \Downarrow \Delta}{\vdash A_1, \wedge^+ A_2, \Gamma \Downarrow \Delta} \quad \frac{\vdash A_i, \Gamma \Downarrow \Delta}{\vdash A_1 \vee^+ A_2, \Gamma \Downarrow \Delta} \quad \frac{\vdash [t/x]A, \Gamma \Downarrow \Delta}{\vdash \exists x.A, \Gamma \Downarrow \Delta} \quad \frac{\vdash t^+ \Downarrow \Delta}{\vdash t^+ \Downarrow \Delta}$$

Asynchronous

$$\frac{\vdash A_1, \Gamma \Uparrow \Delta}{\vdash A_1 \land \neg A_2, \Gamma \Uparrow \Delta} \quad \frac{\vdash A_1, A_2, \Gamma \Uparrow \Delta}{\vdash A_1 \lor \neg A_2, \Gamma \Uparrow \Delta} \quad \frac{\vdash [y/x]A, \Gamma \Uparrow \Delta}{\vdash \forall x.A, \Gamma \Uparrow \Delta} \quad \frac{\vdash t^-, \Gamma \Uparrow \Delta}{\vdash t^-, \Gamma \Uparrow \Delta}$$

P is a positive formula; p positive atom; N negative formula

- Decompose negatives, storing encountered positives
- Then, decide on a positive and focus: contraction is here!

If we remove all polarities and arrows: it's just sequents!

Theorem

The focused sequent calculus LKF is sound and complete for classical logic

Successful applications to

- \cdot Computation as deduction
- Designing formats for proof communication
- Also, computation as proof normalization

We can find information about the constructive content of classical proofs

Consider $\exists x \exists y \dots A$, A quantifier-free

If we choose all connectives to be negative, an LKF proof must

- Introduce terms for *x*,*y*...in a single synchronous phase
- Either conclude immediately, or introduce another tuple of terms

This sketches of a proof of Herbrand's theorem

Treating induction

We treat induction by adding connectives for least and greatest fixpoints:

- Focusing is best understood as a discipline of connective decomposition
- Emphasis on dualities: here, least/greatest

And we enrich our logic by treating equality by unification: Let *B* be a predicate operator: $o \rightarrow o$ in Church-style Then by μB we denote the least fixpoint of *B* For example, the usual definition of numbers

$$nat := \mu \lambda nat. \lambda x. (x = 0 \lor \exists y. x = Sy \land naty)$$

Said otherwise,

Define nat by nat 0; nat S N := nat N

But also Ackermann's function:

 $\mu \lambda ack \lambda m \lambda n \lambda a.$ $m = 0 \land a = sn \lor$ $(\exists p.m = s p \land n = 0 \land ack p(s0)a)$ $\lor (\exists p \exists q \exists b.m = s p \land n = s q \land ack mqb \land ack pba)$ The induction rule:

 $\frac{\Gamma, P\bar{t} \vdash \Delta \quad BP\bar{x} \vdash P\bar{x}}{\Gamma, \mu B\bar{t} \vdash \Delta}$

Informally: to conclude Δ from \overline{t} being in the least fixpoint of *B*, pick a pre-fixpoint *S*

In the case of *nat*, we get

$$\frac{\Gamma, Pn \vdash \Delta \quad n = 0 \lor \exists y.n = Sy \land Py \vdash Pn}{\Gamma, nat n \vdash \Delta}$$

D. Baelde showed that there is a focused proof system for μ MALL: no weakening, no contraction, and no exponentials! Positive and negatives are no more provably equivalent D. Baelde showed that there is a focused proof system for μ MALL: no weakening, no contraction, and no exponentials! Positive and negatives are no more provably equivalent Induction is treated during asynchrony:

$$\frac{\vdash \Gamma, (P\bar{t})^{\perp} \Uparrow \Delta \vdash (BP, \bar{y})^{\perp}, P, \bar{y} \Uparrow \cdot}{\vdash \Gamma, (\mu B \bar{t})^{\perp} \Uparrow \Delta} \qquad \frac{\vdash \Gamma \Uparrow (\mu B \bar{t})^{\perp}, \Delta}{\vdash \Gamma, (\mu B \bar{t})^{\perp} \Uparrow \Delta}$$

Either do induction immediately, or store the fixpoint forever

Positive fixpoints

Theorem

Contraction and weakening are admissible in μMALL for any purely positive formula

Many (most?) interesting inductive definitions as purely positive.

Remember the naturals:

$$nat := \mu \lambda nat. \lambda x. (x = 0 \lor^+ \exists y. x = Sy \land^+ naty)$$

Then, within the focused calculus the rule directly becomes

$$\frac{\vdash P0\Uparrow \vdash (Py)^{\perp}, P(Sy)\Uparrow}{\vdash (x = 0 \lor^{+} \exists y.x = Sy \land^{+} Py)^{\perp}, Px\Uparrow}$$
$$\frac{\vdash \Gamma, (nat n)^{\perp} \Uparrow \Delta}{\vdash \Gamma, (nat n)^{\perp} \Uparrow \Delta}$$

Remember that we are in a classical system!

The disjunctive property holds for \vee^+ , as usual.

A strong property for \vee^- :

Theorem

If $A_1, \ldots A_n$ are purely positive and $\vdash A_1, \ldots A_n$ is provable in μ MALL, then n is 1

Cut-elimination for the focused calculus gives us

Theorem (Witness extraction)

Let A be purely positive and Ξ a proof of $\forall \overline{x} \exists y A \overline{x} y$.

Then any proof of $\exists y \ A \overline{t} y$ containing a cut against Ξ contains a witness for y

There are several applications of μ MALL in CS But what fragment of arithmetic does it capture? An empirical limit: write Ackermann's function as a fixpoint In order to prove $\forall x \forall y.nat x \multimap nat y \multimap \exists z \ ack x y z$ we need

- Either contraction on formulas with implication
- Or induction with open contexts (Alves & Mackie)

Theorem

Let Θ be a set of purely positive formulas. The following rule is admissible in μMALL

$$\frac{\vdash \Gamma, (P\bar{t})^{\perp} \Uparrow \Delta \vdash (BP\bar{y})^{\perp}, P\bar{y}, \Theta \Uparrow}{\vdash \Gamma, (\mu B\bar{t})^{\perp} \Uparrow \Delta, \Theta}$$

This induction rule seems enough to capture $I\Sigma_1$

Theorem

Primitive recursive functions can be expressed as purely positive formulas. Their totality is provable with the above induction rule.

Current questions:

- Formalize the correspondence between $\ensuremath{I}\Sigma_1$ and purely positive
- Posssibly extend the hierarchy?
- Prove the completeness of the focused proof system for full classical logic

Thank you