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Abstract. Higher-Order Linear Ramified Recurrence (HOLRR) is a
linear (affine) A-calculus — every variable occurs at most once — ex-
tended with a recursive scheme on free algebras. Two simple condi-
tions on type derivations enforce both polytime completeness and a
strong notion of polytime soundness on typeable terms. Completeness
for PTIME holds by embedding Leivant’s ramified recurrence on words
into HOLRR. Soundness is established at all types — and not only for
first order terms. Type connectives are limited to tensor and linear im-
plication. Moreover, typing rules are given as a simple deductive system.

1 Introduction

The main goal of giving machine-independent characterizations of PTIME is to
overcome the drawback of conceiving feasible algorithms by thinking directly in
terms of low-level machine primitives, like those of Turing machines. The research
about this subject has brought forth a wide variety of interesting calculi, that
can be classified under two parameters: their originating background, and their
expressivity — the ability to naturally express higher-order functions.
Concerning the originating background, proposals range from those which are
purely recursion-theoretical to the ones which are purely proof-theoretical.

For example, Bellantoni and Cook’s safe recursion on notation [1] is of the former
kind. Its recursive scheme forbids application of a recursively defined function
to the result of a recursive call. The constraint is expressed directly inside the
syntax of the recursive schemes, by distinguishing two classes of arguments,
namely safe and normal arguments. Another example of a first-order function
algebra capturing PTIME is Leivant’s ramified recurrence on words [2, 3], which
relies on the notion of tier to control the use of arguments in recursive schemes.
On the other side, purely proof-theoretical systems are logical, deductive sys-
tems, usually expressed on a graph language, that of proof-nets. Main examples
of this class are light linear logic (LLL, [4]), light affine logic (LAL, [5,6]), and
soft linear logic (SLL, [7]). Boxes are certain regions inside a proof-net, and a
box may contain other boxes, in a stratified fashion. The computational core is
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cut-elimination, whose complexity is controlled by box stratification: the time
necessary to normalize a proof-net is a polynomial in the size of the proof, the
exponent of the polynomial depending only on the box-nesting depth. This, to-
gether with the fact that usual data types can be coded by fixed-depth proofs,
implies polytime soundness.

Many interesting systems should be classified in-between these two styles. In
these systems, recursion is embedded into typed calculi, and other mechanisms
— usually ramification or linearity — are needed to control the computational
complexity growth. Typical examples of such systems, here dubbed as type-
theoretical, are HOSLR [8,9] and LT [10,11]. In the two systems mentioned,
the syntax of Godel’s system T is modified to accommodate safe recursion, but
a number of additional constraints, a restricted form of linearity in primis, are
needed to guarantee polynomial soundness. Generalizations of ramified recur-
rence to higher-order types are presented in [12-14]. In these systems, however,
the lack of any linearity constraint prevents from getting a polytime bound.
Indeed, at higher types they show either a poly-space or a Kalmar elementary
bound. Another related work is [15], where syntactical restrictions on a sim-
ply typed calculus with constants and recursion allow to restrict the space of
representable functions to relevant complexity classes.

Results. In this paper, we introduce the system of Higher-Order Linear Ramified
Recurrence (HOLRR). It is a type theoretical system smoothly blending both
recursion and proof-theoretic components.

The proof-theoretical core of the system is a linear affine A-calculus: any variable
can be used at most once. Recursion is embedded in the system as a variable
binder, whose syntax is inspired by boxes of linear lambda calculi. The types are
generated by the usual multiplicative connectives (tensor and arrow). Base types
includes denumerably many copies of several free algebras. There is no need for
additional type constructs; in particular, there is no explicit modality.

Our principal aim is to obtain results akin to those of Bellantoni, Niggl and
Schwichtenberg’s LT [10,11], but in a framework with a polynomial bound ex-
pressed as a function of specific parameters of the term. Sect. 5 analytically
compares the two systems. Here, we stress that: (i) no additional syntactic re-
striction on terms is needed, besides those induced by typeability; (ii) the degree
of the polynomial bounding normalization time of a term M depends only on
one parameter of a type derivation for M — its recursion depth.

In particular, we prove a soundness result ¢ la LLL. Under a given strategy, any
term which can be typed satisfying two simple conditions (word-contextuality
and ramification) normalizes in a polynomially bounded time. To be precise, we
will prove that, for any (word-contextual and ramified) type derivation 7 for M,
M normalizes in time O(|M|"), where h depends only on the recursion depth of
7. This means that, whenever the recursion depth of type derivations for terms
encoding input data is bounded, the defining function is polytime — a similar
situation occurring in LLL or LAL.

Completeness for PTIME holds by embedding Leivant’s ramified recurrence on
words into HOLRR.



2 Syntax

A free algebra A is a couple (Ca,Ra) where Cp = {cf, .. .,c‘,}(A)} is a finite set
of constructors and Ra : Co — N maps every constructor to its arity. A free
algebra A = ({cf, ..., ciu }, Ra) is a word algebra if

e R(cl) =0 for one (and only one) i € {1,...,k(A)};

o R(c}) =1forevery j #iin {1,...,k(A)}.

If A = ({c},.. .,c‘,?(A)},RA) is a word algebra, we will assume cj, 4 to be the
distinguished element of Cy whose arity is 0 and ci, ..., cpa—1 Will denote the
elements of Cy whose arity is 1. B = ({c?,c5,c5},Rg) is the word algebra of
binary strings. C = ({cF, 5}, Rc), where Re(cf) = 2 and Re(cS) = 0 is the free
algebra of binary trees.

&/ will be a fixed, finite family {Ay,..., A, } of free algebras, where constructor
sets Cp, ,...,Ca, are assumed to be pairwise disjoint. We will hereby assume
both B and C to be in &7

The language #o of HOLRR terms is defined by the following productions:

Mu=z|c|(M,M)| MM | x.M | let (z,2) « M in M |
{M,.... MPz/M,...,z/M] M| {M,....M)[x/M,...,z/M] M
where ¢ ranges over the constructors for the free algebras in &/. An occurrence
of a term N inside another term M has recursion degree n if it is nested into n
terms in the form {(M,..., M)) inside M. When we write a term as M, we are

implicitly assuming it to be closed (i.e. to contain no free variables).
The language J of HOLRR types is defined by the following productions:

A:=B} | AR A|A— A

where n ranges over N and A ranges over &/. Tensor associates to the left, both
in types and terms (that is, pairs). A € J, define the lifting #(A) € T of A:

#(Bj) = Byt
#(AOB) = #(A)O#(B) with O € {®, —}.

The level L(A) € N of a type A is defined by induction on A:

L(B?) =n
(A ® B) = L(A — B) = max {I(A),L(B)}.

The index set 1(A) C N of A is defined in a similar way:

I(BR) = {n}
[(A® B) = I(A — B) = I(A) UL(B).

The rules in Fig. 1 define the assignment of types in J to terms in . A type
derivation 7 with conclusion I' - M : A will be denoted by = : I' - M : A. If
thereis 7w : I'+ M : A then we will write I' Fyg M : A and mark M as a typeable
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Fig. 1. Type assignment rules

HOLRR term. .#% is the set of HOLRR typeable terms. A type derivation
w:I'F M : Aisin standard form if I' does not contain variables introduced by
rule W.

The recursion depth R(w) of a HOLRR type derivation 7 : I' M : A is defined
by induction on the structure of 7. In particular:

e If 7 is an instance of rules A or I, then R(w) = 0.

e If the last rule used in 7 is EX, then 7 has the following shape

T ... Tm @I—L:Bg
A,@l—«Ml,,Mn))[xl/Nl,,a:m/Nm]LC

and R(7) is 4 + max{R(7y ), ..., R(mm )}
e In all the other cases, 7 can be written as follows

1 cee T

I'-M:A.

We will define R(w) as max{R(my),...,R(mm)}.



Proposition 1. If I' tg M : A and A,z : A g N : B, then [A tg
N{M/z} : B.

Proof. Induction on the structure of the derivation for A,z : A+ N : B. O

For every term t of a free algebra A € & and for every natural number n, there
is an HOLRR type derivation w(t,n) : ¢t : By. This allows to prove:

Proposition 2. If 1 : Ay,...,z, : Ay Fa M : B, then z1 : #(A1),...,%, :
#(An) Fu M : #(B)

The reduction rule — on #, is given in Fig. 2; ~» is the contextual closure
of —. ~* is locally confluent and strongly normalizable, property provable by
embedding the calculus into system T; so, it is Church-Rosser as well.

Redexes in the form {(M.,,..., M. W[x1/Ni,...,2,/Ny,] t are called recursive
redexes; those in the form {M,,,..., M., }[z1/N1,...,zn/Ny] t are conditional
redezxes; all the others are called linear redezxes.

(Az.M)N — M{N/z}
let (x,y) < (M,N)in L — L{M/z,N/y}

(Mo, ooy Mo N1 /N1, -, 80/ Na) ciltr, - s trien) =
MCi{Nl/xly .. 7Nn/w’n}t_1 ) t'R,(cl)_
(Mey, -, Moy D@1 /Na, ..o, @0 /N £

«MCU ey Mck»[xl/ﬁl) ey x"/m] t'R(cl)

{Mey, ., Moy Bl /N1,y -y 0 [Nn] ity -y triey)) —
M ANi/x1,..., Nofn} t1- - tr(c;)

Fig. 2. Normalization on terms

The following proposition will be useful in the following

Proposition 3. If - M : B, then the (unique) normal form of M is a free
algebra term t. Moreover, t can be obtained from M by successively firing redexes
with null recursion degree.

Proof. By a standard reducibility argument. |

///&}} contains terms that cannot be reduced in polynomial time. To enforce this

property, we introduce the following two conditions on type derivations:

e a type derivation 7 is word-contextual if every occurrence of B; in every
instance of E£ | inside , has form B}, W being a word algebra.

e a type derivation 7 is ramified if every instance of EZ inside 7 satisfies
L(A) > L(C).



In the following section, we will show that these conditions are both crucial to
reach polytime soundness. If # : I' + M : A, where 7 is word-contextual and
ramified, M is said to be word-ramified and we will write 7 : I' Fwr M : A.
The class of all word-ramified HOLRR terms will be denoted as .# Y ®.

3 Polytime Soundness

The goal is to prove polytime soundness for HOLRR in the form of

Theorem 1. There is a sound and complete normalization strategy such that
the time required to mormalize a term M is O(|M|*) where h only depends on
R(w), m: '+ M : A being word-contertual and ramified.

The reduction strategy we use proceeds by firing the rightmost innermost redex
among those with minimum recursion degree, where the firing of a recursive
redex corresponds to a complete unfolding, counted as a single step. Rightmost
innermost minimum recursion degree strategy is the name of such a reduction
strategy, and M — N denotes that M rewrites to N by one of its possible steps.
We will prove Theorem 1 studying normalization by way of interaction graphs,
which are graphs corresponding to HOLRR type derivations. Notice that we
will not use interaction graphs as a virtual machine computing normal forms —
they are merely a tool facilitating the study of HOLRR. dynamics.

Let % be the set

{W,I.,E,Iy,Eg, P,C}U | ) | {I.}U{ES, ER, PY, PR}
Acal ceCy

Elements of .Z,; either are typing rule names or lie in { P, C, PY, PR} — they are
premises (P), conclusions (C) or limit conditionals (P¢) and recursions (PF).
An interaction graph is a quadruple (V, E, a, 8) such that

o (V,E) is a directed graph;

e 0:V o Ly

e 3:FE— Jy

9. is the set of all interaction graphs. We will now introduce a class ¥ of
interaction graphs corresponding to HOLRR type derivations. f{f} is defined
inductively, mimicking the process of type derivation building. First, the inter-
action graphs in figure 3(a) lie in ¢%. Moreover, suppose Gy, ..., Ga)ytn € Yo
and they have form as in Fig. 3(b); then all the interaction graphs depicted in
Fig. 4 lie in 5, provided the constraints listed next to each graph are satisfied.
To every HOLRR type derivation 7w : I' -+ M : A corresponds an interaction
graph G(m) € ¢X. Moreover, every instance of rules I_,, E_,, Ig, Eg, I, EC,, EE,
in 7 corresponds to a vertex in G(w) having the same label. In particular, if v

corresponds to an instance F ¢: Bf —o ... — B} of rule I, then 6(v) is the
integer m, and, if this occurrence of ¢ has recursion degree m, then v(v) is m.

Lemma 1. There are two constants n, m € Q such that, for everyw : ' M : A
in standard form, we have n|M| < |V| < m|M|, where G(x) = (V, E, a, B).
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Fig. 3. Some interaction graphs.

Inside a given graph, we call traps those subgraphs corresponding to normal form

derivations 7 (¢,n) : - t : B (where W is a word algebra) and ending on the last

E_, (for instance, Fig. 5 shows the trap corresponding to m(cc5cEcS,0). We are

here interested in certain paths inside interaction graphs: given an interaction

graph G = (V, E,a, ), an n-typed path of G is a sequence ¥ = v1,...,v, € VT

such that the two following conditions hold:

e for every i € {1,...,m — 1}, either (v;,v;41) € E and n € I(B(v;,vi41)) or
(Vig1,v;) € E and n € I(B(viy1,v;)), and

e forevery i € {1,...,m — 1}, if v; is part of a trap, then v;41,. .., v, must all
be part of the same trap.

Intuitively, when a typed path enters a trap, it cannot exit it.

Suppose v is a vertex of G, ¢ is a positive integer and 1 is a nonnegative integer.

Then the weight Wy o (v) of v is defined by cases:

1 zf a(v) = I. ANd(v) >4
W¢,¢(U) =17 v) (Y+1)¥ @) lf a(v) f I
PUCICESY) if a(w)=I.Adé(wv) <y

The weight W,y () of a n-typed path U = vi,...,0m is X ety 01 Wo,u (V)
where every vertex counts once even if it occurs many times in ¥. The n-weight
W2 s(G) of an interaction graph G is just the maximum among Wy, (v) over
all n-typed paths v inside G. The weight of an interaction graph is parametric
on ¢ and 1. The following result, however, holds for every ¢ and .

Lemma 2. Let wpy : I' E M : A and suppose wpr contains a subderivation in
the form w(t,n). Then W', (G(mam)) > |¢|.

Remark 1. Basic observations are worth doing to understand the proof of propo-
sition 4 below. The goal is to understand how W7 ,(G(7n)) and W7, (G(mar))
relate each other, when mps : I'Fwr M : A, and oy : I'Fwr N : A, and M
rewrites to V.

Rewriting on terms, as in Fig. 2, is matched by certain transformations on the
corresponding graphs, described in Fig. 6. The graph transformations take into
account the modifications on the graphs, but for the erasure of sub-terms, which
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Fig. 4. Inductive cases
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is the computational effect of weakening. When describing the modifications on
the graphs induced by the firing of a redex, it is always understood that after any
transformation as in Fig. 6, one should also perform all those transformations
which correspond to the deletion of a sub-term as caused by a substitution for
a weakened variable. These transformations can always be written as the one in
Fig. 7, where G only depends on the term being deleted. We remark once again



Fig. 7. The graph transformation induced by the substitution for a weakened variable.

that we use graphs as a mere tool for the study of the complexity of reduction,
and not as a kind of computational device implementing reduction.



As a first case, assume M yields N by firing a linear redex. Then, G(mps) trans-
forms to G(wn) by one between the rules in Fig. 6(a) or Fig. 6(b). Then, G(wn)
has less vertices than G(mas) and for every n-typed path ¥ in G(wn), there is a
corresponding n-typed path @ in G(mar), with Wy 4, (T) < Wy 4 (W).

Assume, instead, to fire a conditional redex, namely {M,,, ..., M., }{z1/N1,...,
T [/Nm] t. At the graph level we need to focus on the transformation in Fig. 6(c),
where K will contain at most k nodes, all labeled with E_,, while ¢,...,%; all
are sub-terms of ¢t. Again, G(wy) has less vertices than G(wys) and for every
n-typed path 7 in G(7y), there is a corresponding n-typed path w in G(mwr),
with Wy 4 (T) < Wy 4 (W).

Finally, assume to fire a recursive redex. By proposition 3, it must be in the form

(Meyyooy Mo Wx1/81,- - Tm/Sm] t, where t,51,..., sy, are free-algebra terms.
At the graph level, the transformation behaves as in Fig. 6(d), where:
e For every i € {1,...,1}, there is a constructor ¢ € Ca such that c(t] ...t},)

is a sub-term of ¢;

K,K,,...,K; contain nodes v such that a(v) = E_;

[t| bounds both ! and the number of vertices in K;

For every i € {1,...,1}, the number of vertices in K; is bounded by k;;

E,y,...,E; all are in the foorm D — ... — D.
If p > n, then ngw(g(m\z)) < W;;’w(g(ﬂM)): for every p-typed path U inside
G(mn), there is a corresponding p-typed path @ inside G(mar), where Wy, 4 (7) <
W4, (w). Assume now that p < n. Certainly, any p-typed path v inside G(7wn)
can be mimicked by a p-typed path w inside G(mpr) in such a way that a con-
structor vertex in w corresponds to every constructor vertex appearing in v.
This correspondence, however, is not injective. Whenever u is a vertex appear-
ing in w and belonging to G(M,,), T can contain distinct wui,...,u; (where
j < 1), all of them being “copies” of u. On the other hand, all the equations
y(u1) = ... =(u;) = v(u) — 1 hold. Notice that, by our definition of a p-typed
path, if u belongs to the trap G(s;), then U can only contain one copy of u.

The remarks here above lead to the following, crucial, result:

Proposition 4. There is a function f : N — N such that, for every word-
contextual and ramified wpy : I'H M 2 A, if M —* N and t is a free algebra
term appearing in N, then |t| = O(|M|fR(Ta))),

Proof. Let G(nym) = (V,E,a,B). We will prove that, for every n,m € N, if
M —™ N, then

WV IR (G(TN) S WY R(ran) (G (1)) (1)
WlVl,R(wM)(g(ﬂ'M)) < {'V'(R(FM)+1)R("M)_"”+1 otherwise (2)

First of all, let us consider the case n = 0. N equals M, so (1) is trivially verified.
Suppose T = vy, ..., v, be an m-typed path inside G(mar). If m < R(w) then, by



definition, W|V|,R(7rM) (@) <|VI]. If m > R(wr), then

Wiy imy) () < V[V [REa0) Rl T
< [VRma)®R(man) +1)7 (7007 41
< [V|®REHDR(man)+1)7 207

= V| RO ra =

As a consequence, (2) holds.

Suppose now that n > 0 and that the thesis holds for n —1. By remarks 1 and by
the induction hypothesis, we only have to show that (1) is preserved by recursion
unfolding — in other cases, path weights cannot increase. If m > R(mps), then
even recursion unfolding do not increase the weight of m-typed paths. If m <
R(mar), let W be an m-typed path in G(mn) and let T the m-typed path in G(mps)
that corresponds to w. As discussed previously, for every vertex u appearing in

U, w may contain several distinct vertices uy,...,u;, all corresponding to u. By
lemma 2, j < W‘TST];(WM) (G(mr)) and by the induction hypothesis

j j
D Wiy R () = Y [V )R mem

i=1 i=1

J
= Z |V|(W(u)*l)(R(er)ﬂ)R("M)—m
i=1
(R(mar)+1)R (a0 =m (v(u)—1)(R(mar)+1)F(Tar)—m
< (vl ) (v )

R(mpr)—m
= |V [ WREIFD T g ey (W)

This, by lemma 1, concludes the proof. O

Proposition 5. There is a function g : N — N such that, if rpg : T'H M : A
is word-contextual and ramified, the number of recursive redexes fired during
normalization is O(|M|9(R(m)),

Proof. A recursive redex with recursion degree m can be copied O(| M |™f R(mm)))
times during normalization, as can be proved from proposition 4 by induction
on m. Now, notice that m < R(was). As a consequence, the function g(n) =
nf(n) + 1 is a suitable bound. O

Summing up, proposition 4 gives a bound on the size of free algebra terms
appearing inside reducts of a given (word-ramified) term M. This is proved by
showing that (for every n € N) the n-weight of the underlying interaction graph
does not increase during normalization. This result, by itself, does not prove
anything on the complexity of normalization. Proposition 5, however, exploits
it by bounding the total number of recursive redexes fired during normalization
of M. So, the proof of Theorem 1 can follow. From proposition 5, the number
of recursive redexes the normalization fires is O(|M |¢®R(™2))) where g : N = N



does not depend on | M|. By proposition 4, the time to unfold a recursive redex is
itself O(|M|F®(m1)) where f : N — N does not depend on |M|. Finally, notice
that, by firing a linear or conditional redex, the underlying interaction graph
shrinks. This concludes the proof.

4 Polytime Completeness

This property holds by representing predicative sorting into HOLRR. Pred-
icative sorting, introduced below, reformulates ramified recurrence (or predica-
tive recursion) on words [2]; given a word algebra W, predicative recursion is a
function algebra generating all, and only, the polynomial functions in the form
W - W. Predicative sorting on W follows:

1.

The function fczl(w) : WO — W that returns c}?EW) can be predicatively sorted
by € = n, for every n € N, ¢ being the empty sequence;

. For every i € {1,...,k(W) — 1}, the function fiw : W — W defined by

f.#(t) = ¢V t can be predicatively sorted by (n) — n for every n € N;

. For every n € N and 1 < ¢ < n, the projection 7> : W* — W can be

predicatively sorted by (m1, ..., m,) = m for every m,my,...,m, € N, with
m; = m;

LI f o WP — W can be predicatively sorted by (mg,...,m,) — m and

1y, 9n 2 WP — W are such that g; can be predicatively sorted by (r1,...,
rp) — My, then the function h : WP — W defined by the equation

h(tl,...,tp) = f(gl(tl,...,tp),...,gn(tl,...,tp)))

can be predicatively sorted by (ri,...,rp) = m;

. Suppose for every i € {1,...,k(W) — 1} there is a function f; : W*tl — W

that can be predicatively sorted by (I,my,...,m,) — m and that fyw :
W"* — W can be predicatively sorted by (myq,...,m,) — m. Then the func-
tion h : W™ — W defined by

BV bty .. tn) = filtyty, . tn,)
h(c\}?EW)’tl"“ﬂtn) = fk(W)(tlg,tn)

can be predicatively sorted by (I,m1,...,m,) = m.

. Suppose for every i € {1,..., k(W) — 1} there is a function f; : W**? — W

that can be predicatively sorted by (I,mi,...,mn,m) = m and that fyw) :
W"* — W can be predicatively sorted by (m1,...,m,) = m. Then a function
h: W™ — W can be defined recursively:

Wl oty tn) = filk b, ooty At by s )
h(C?E\W);tly-..;tn) = fk(VV)(tla7tn)

If | > m, then h can be predicatively sorted by (I,my,...,m,) = m.

By the definition here above, if f : W* — W can be predicatively sorted, then
it is definable by predicative recursion.



Remark 2. If f can be predicatively sorted by (mq,...,m,) = m and m; < m,
then f is independent from its i-th argument (see [8]). We will suppose that, in
rule 3, mq,...,m, > m. This ensures that, if f can be predicatively sorted by
(ma,...,my) = m, thenmy,...,m, > m, simplifying the proof of completeness,
without loss of generality.

Theorem 2 (Completeness). Assume f: W* — W be predicatively sorted by
(ma,...,myp) = m. There is a closed term My that represents f, whose type can
be Bé%,@ ---®B‘f£, —o BY,, where 1,11,...,1, € N and, for every i € {1,...,n},
either m; =m and l; =1, or m; > m and l; > 1.

The proof uses the definition of the terms:

Coerc : Byy — By
Duplicate : B}, — Bl ® B,
V(M):Bj®---® By ® Bl — Bl

such that:
Coerc(t) ~* ¢

(
Duplicate(t) ~* (¢,t)
V(M) (t1,. ..ty t) ~* M(t1, ... tp t,1)

where t : B, t; : B3 (j € {1,...,p}), M: B4 ®---® B @ B}, ® Bl — B,

n € N and m, ! < n. In particular:

o Coerc is \z.{\y.ci'y, - -, Ayl 4y _1Ys Cpay ) @5

e Duplicate is Az.(Mi, ..., Myw))) =, where, for every i € {1,..., k(W) — 1},
M; is My. let (z,w) < y in (¢]'z,¢}'w) and My is (C}XW)’C}XW));

o V(M) is

Ay. let (y1,...,yn,w) < yin {L,...,L,PY[z1/y1,. s Zn/Yn,2/W] c\fvc\,vfzm

where L = Az A\y.M(z1,...,Ty,2,y) and P = z.

5 Comparison with Previous Work

There are a number of type systems with the same goal as HOLRR [10, 11, 16,
9]. The most similar is certainly LT, introduced in [10] and later refined in [11].
HOLRR and LT are designed from different starting points. LT is basically a
restriction of Godel system T, extending the ideas of safe recursion [1] to the
higher-order. HOLRR, on the other hand, is obtained by endowing linear affine
lambda calculus with constants, conditionals and recursions, somehow being
inspired by Leivant’s ramified recurrence on words.

Linearity is a key ingredient to control the complexity of normalization, in pres-
ence of higher-order recursion. The terms of LT are not strictly linear: free
variables of ground types can appear more than once. On the other side, any



variable of HOLRR occurs at most once in a typeable term, and recursion pre-
serves this constraint. The strict linearity of HOLRR fits precisely with the
introduction of linear arrows, when discharging an assumption.

Ramification and safety are other tools to get rid of exponential growth. LT
models safety by distinguishing among complete and incomplete variables and
by using two families of arrows and products, with careful constraints on their
interplay. HOLRR ramification has the same flavor as in the original work on
ramified recurrence on words [2, 3], without any major change.

HOLRR accommodates generic free algebras in a uniform way, with just one re-
cursion scheme. LT is only about word algebras: the introduction of tree algebras
would require to extend the linear discipline to ground variables [9].

In both cases, the system is polytime complete. However, polytime soundness
is formulated and proved in two different ways. In LT, any term M with free
variables x1, .. ., z, is equipped with a polynomial Pys(y1,...,yy) in such a way
that the time to normalize M{N1/y1,...,Np/yn} is O(Par(|N1|, - -, |Ny|)); this
result, however, relies on a number of assumptions: all the terms involved must
have linear type, Ny,..., N, must all be closed and cannot contain complete
free variables of higher type, all free variables of M{Njy /y1,..., N,/y,} have to
be linear and incomplete. This means that there is no evident relation between
the structure of M and the degree of Py;. On the contrary, the time needed
to compute the normal form of every word-contextual term M of HOLRR is
O(|M|"), h only depending on the recursion depth of a type derivation for M.
In particular, the recursion depth of any type derivation for any term of any free
algebra is null. We claim that our soundness theorem is deeper and more general
than the one on LT.

6 Relaxing Conditions on Type Derivations

If we drop word-contextuality and ramification, we immediately get outside
PTIME. For example, if we allow L(4) to be equal to L(C) in rule E£ | we can
build a term M with - M : B — B§ such that

ME .  EE EEEE B EE
Tterating M, we easily obtain an exponential behavior. Assume now that, in
rule EE | By,..., B, are arbitrary types, namely that type derivations are not

word-contextual. The term Az.Ay.\z.z(yz) encoding function composition can
be given type (B3 — BS) — (BY — BY) — (BY — BY); using the obvious
generalization of V, we obtain a term N with type (B3 — BJ) — (B} — BY)
encoding self application. Again, iterating N yields an exponential blow up. The
same problem occurs by starting from cf with type B — B2 — B2.

7 Conclusions

We provide a higher-order system that embeds, quite naturally, Leivant’s rami-
fied recurrence on words.



A final remark about soundness follows. If wps : I' + M : A is a word-contextual
ramified derivation, we obtain a bound O(|M|f(®(m1)))  for some suitable f.
Now, the exponent does depend on M. But suppose npr : ' M : A — B
and 7y : A F N : A to be word-contextual and ramified. The type deriva-
tion mpy 1 ILA R MN @ B is word-contextual and ramified, and R(mpn) =
max{R(mys), R(my)}. Taking M as a program, the time to compute M on ar-
gument N is O(|M N|f(R(mmn)) — 3 polynomial on |N| whenever inputs to
M have bounded recursion depth. This includes all the cases where inputs are
closed normal forms of a base type. Future work addresses the characterization
of higher-order types whose normal forms all have the same recursion depth.
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