Derivational Complexity
is an Invariant Cost Model*

Ugo Dal Lago and Simone Martini

Dipartimento di Scienze dell’Informazione, Universita di Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy
{dallago,martini}@cs.unibo.it

Abstract. We show that in the context of orthogonal term rewrit-
ing systems, derivational complexity is an invariant cost model, both
in innermost and in outermost reduction. This has some interesting
consequences for (asymptotic) complexity analysis, since many existing
methodologies only guarantee bounded derivational complexity.

1 Introduction

Genuine applications of computational complexity to rule-based programming
are few and far between. Notwithstanding the development and diffusion of high-
level programming languages of this kind, most part of the complexity analysis
for them is bound to be done by reference to low level implementations with
an explicit notion of constant-time computation step. Indeed, the basic step of
computation for rule-based programming is not a constant-time operation, being
it resolution, pattern matching, term-rewriting, higher-order beta-reduction, and
so on. Therefore, to bound the actual execution time, one has to look at specific
implementations of these mechanisms—in many cases, to revert to imperative
programming and to an analysis on Turing machines.

In this paper we focus on (orthogonal) term rewriting systems and the prob-
lem of verifying the existence of a bound on the time needed to execute a program
on any input, as a function of the input’s length. Or, to devise sound (and nec-
essarily incomplete) static techniques to infer such bounds. While real execution
time clearly depends on the interpreter, for asymptotic bounds the details on the
underlying interpreter become less crucial. More important, those details should
be less crucial. For a sufficiently robust complexity class & (say, the polynomial-,
or the elementary-time computable functions) proving that a given program may
be executed in time bounded by a function in &2 should be the same whichever
cost model is chosen, provided such a model is invariant [16] — that is, the cost
attributed to the computation by the model differs by at most a polynomial from
the cost of performing an equivalent computation on a Turing machine. And the
simpler the cost model is, the easier is proving the existence of such bounds.

* The authors are partially supported by PRIN project “CONCERTO” and FIRB
grant RBIN04M8S8, “Intern. Inst. for Applicable Math.”



If programs are defined by rewriting, the most natural cost model for com-
putation time is the one induced by rewriting. Time passes whenever rewriting
is performed and, more importantly, the time needed to fire a redex is assumed
to be unitary. Indeed, several recent papers propose methodologies for proving
asymptotic bounds (typically, polynomial bounds) on the derivational complez-
ity of term rewriting systems, where the derivational complexity of a term ¢ is
the number of rewriting steps necessary to reduce t to its normal form.

Is this cost model invariant? Or, which is the relation between the derivational
complexity of a term and the time needed to rewrite it to normal form, observed
on an efficient interpreter? The question is not trivial, even if a positive answer
to the invariance issue seems part of the folklore. Indeed, the literature often
distinguishes between results about computational complexity on the one hand
and results about derivational complexity on the other. And there are examples
of rewriting systems which produce exponentially big terms in a linear number
of steps. For example, the one defined by the following rewrite rules (under
innermost reduction): £(0) — h, f(n+ 1) — g(f(n)), and g(z) — p(x, x).

Aim of this paper is to fill this gap, at least partially. More precisely, we prove
that terms of orthogonal term rewriting systems can be reduced to their normal
form in time polynomially related to their derivational complexity, both when
innermost and outermost reduction is adopted. We prove this by showing that
any such rewriting system can be implemented with (term) graph rewriting. In
this setting, whenever a rewriting causes a duplication of a subterm (because
of a non right-linear variable in a rule), the subgraph corresponding to the du-
plicated term is shared and not duplicated. This achieves two goals. First (and
most important) the size of all the (graphs corresponding to) terms generated
along the reduction of a term ¢ remains under control—it is polynomial in the
size of ¢ and the number of reduction steps leading ¢ to its normal form (see
Section 5). Moreover, the actual cost of manipulating these graphs is bounded
by a polynomial, thus giving also a polynomial relation between the number of
reduction steps and the cost of producing the graph in normal form. Since we
show how graph reduction simulates term rewriting step by step under innermost
reduction, this gives us the desired invariance results in the innermost case.

In outermost reduction the situation is even better, because in presence of
sharing every graph rewriting step corresponds to at least one term rewriting
step. In graphs, in fact, shared redexes are reduced only once and, moreover,
any redex appearing in an argument which will be later discarded, will not be
reduced at all. Therefore, in presence of sharing outermost reduction becomes a
call-by-need strategy. And hence the invariance result also holds for outermost
reduction.

Again, we believe the central argument and results of this paper may be
classified as folklore (see, for instance, results of similar flavor, but for imperative
programs with data-sharing, in Jones’ computability textbook [10]). But we were
struck by the observation that in the published literature it seems that such
complexity related issues are never made explicit or used.



2 Term Rewriting

We will consider in this paper orthogonal term rewriting systems (TRS, see [5]).
Let 7 be a denumerable set of variables. A term rewriting system is a pair
Z = (XYz,Rz) where:
e Symbols in the signature Xz come with an arity and are usually called
function symbols or simply functions. Moreover:
e Terms in 7 (=) are those built from function symbols and are called closed
terms.
e Terms in V(=,7) are those built from functions symbols and variables in
T and are dubbed terms.
e Rules in Rz are in the form ¢ —= u where both ¢ and u are in V(Z,7).
We here consider orthogonal rewriting systems only, i.e. we assume that no
distinct two rules in R= are overlapping and that every variable appears at
most once in the lhs of any rule in R=.
e Different notions of reduction can be defined on =. The (binary) rewriting
relation — on T (Z) is defined by imposing that ¢ — wu iff there are a rule
v =z w in Rz, a term context (i.e., a term with a hole) C' and a substi-
tution o with ¢ = Cfvo] and u = Clwo]. Two restrictions of this definition
are innermost and outermost reduction. In the innermost rewriting relation
—i on T(Z) we require that vo do not contain another redex. Dually, the
outermost rewriting relation —, on T (Z) is defined by requiring (the specific
occurrence of) vo not to be part of another redex in Clvo].
For any term ¢ in a TRS, |¢| denotes the number of symbol occurrences in ¢,
while |t|¢ denotes the number of occurrences of the symbol f in ¢.

Orthogonal TRSs are confluent but not necessarily strongly confluent [5]. As
a consequence, different reduction sequences may have different lengths. This
does not hold when considering only outermost (or only innermost) reductions:

Proposition 1. Given a term t, every innermost (outermost, respectively) re-
duction sequence leading t to its normal form has the same length.

Proof. Immediate, since by definition there cannot be any nesting of redex while
performing either innermost or outermost reduction. In innermost reduction, if
a redex t is part of another redex w, then only u can be fired, by definition. As
a consequence, both —, and —; are locally confluent. a

As a consequence, it is meaningful to define the outermost derivational complex-
ity of any t, written Time,(t) as the unique n (if any) such that t =7 u, for u a

normal form. Similarly, the innermost derivational complezity of ¢ is the unique
n such that t = u (if any) and is denoted as Time;(t).

3 Graph Rewriting

In this Section, we introduce term graph rewriting, following [4].



Definition 1 (Labelled Graph). Given a signature X, a labelled graph over
XY consists of a directed acyclic graph together with an ordering on the outgoing
edges of each node and a (partial) labelling of nodes with symbols from X such
that the out-degree of each node matches the arity of the corresponding symbols
(and is O if the labelling is undefined). Formally, a labelled graph is a triple
G = (V,a,0) where:

o V is a set of vertices.

o a:V — V* is a (total) ordering function.

o §:V — X is a (partial) labelling function such that the length of a(v) is the

arity of 6(v) if 6(v) is defined and is 0 otherwise.

A labelled graph (V,a,d) is closed iff 6 is a total function.
Consider the signature X' = {f, g, h,p}, where arities of f,g, h,p are 2, 1, 0

and 2, respectively. Examples of labelled graphs over the signature X are the
following ones:

ANV
i i
N Ay
! i

The symbol | denotes vertices where the underlying labelling function is unde-
fined (and, as a consequence, no edge departs from such vertices). Their role is
similar to the one of variables in terms.

If one of the vertices of a labelled graph is selected as the root, we obtain a
term graph:
Definition 2 (Term Graphs). A term graph, is a quadruple G = (V,a,d,r),
where (V,,0) is a labelled graph and r € V is the root of the term graph.
The following are graphic representations of some term graphs. The root is the
only vertex drawn inside a circle.

AN
|
/N /N

h 1

'-n<—0q<—@

|

<—0



The notion of a homomorphism between labelled graphs is not only interest-
ing mathematically, but will be crucial in defining rewriting:

Definition 3 (Homomorphisms). A homomorphism between two labelled graphs
G = (Vg,ag,dc) and H = (Vig,am,dy) over the same signature X is a function
@ from Vg to Vi preserving the labelled graph structure. In particular

Sr (¢ (v)) = da(v)
an(p(v)) = ¢*(ac(v))

for any v € dom(d¢g), where p* is the obvious generalization of ¢ to sequences
of vertices. A homomorphism between two term graphs G = (Va, ag,dc,ra) and
H = (Vy,ay,du,ry) is a homomorphism between (Vg, ag, d¢) and (Vi, oy, 0H)
such that o(rg) = rg. Two labelled graphs G and H are isomorphic iff there is
a bijective homomorphism from G to H ; in this case, we write G = H. Similarly
for term graphs.

In the following, we will consider term graphs modulo isomorphism, i.e., G = H
iff G = H. Observe that two isomorphic term graphs have the same graphical
representation.

Definition 4 (Graph Rewrite Rules). A graph rewrite rule over a signature
X is a triple p = (G, r, s) such that:

e G is a labelled graph;

e 1. s are vertices of G, called the left root and the right root of p, respectively.

The following are three examples of graph rewrite rules:
g A
g \ 1 g g
} o
P € 1

/N

g h

Graphically, the left root is the (unique) node inside a circle, while the right root
is the (unique) node inside a square.

Definition 5 (Subgraphs). Given a labelled graph G = (Vg, ag,dq) and any
vertex v € Vg, the subgraph of G rooted at v, denoted G | v, is the term graph
(VG v @GLus 0G 1w, TG o) where
o Vv is the subset of Vo whose elements are vertices which are reachable from
vin G.
® ag, and 0G|, are the appropriate restrictions of ag and dg to Vgyy.



® I'Gly 1S V.

We are finally able to give the notion of a redex, that represents the occur-
rence of the lhs of a rewrite rule in a graph:

Definition 6 (Redexes). Given a labelled graph G, a redex for G is a pair

(p,p), where p is a rewrite rule (H,r,s) and ¢ is a homomorphism between
H|lrandG.

If (H,r,s),y) is a redex in G, we say, with a slight abuse of notation, that
(r) is itself a redex. In most cases, this does not introduce any ambiguity.

Given a term graph G and a redex ((H,r, s), ), the result of firing the redex
is another term graph obtained by successively applying the following three steps
to G:

1. The build phase: create an isomorphic copy of the portion of H | s not
contained in H | r (which may contain arcs originating in H | s and entering
H | r), and add it to G, obtaining J. The underlying ordering and labelling
functions are defined in the natural way.

2. The redirection phase: all edges in J pointing to ¢(r) are replaced by edges
pointing to the copy of s. If ¢(r) is the root of G, then the root of the newly
created graph will be the newly created copy of s. The graph K is obtained.

3. The garbage collection phase: all vertices which are not accessible from the

root of K are removed. The graph I is obtained.

We will write G (%) I (or simply G — I, if this does not cause ambiguity) in

this case.
Similarly to what we did for term rewriting, we can define two restrictions
on — as follows. Let ((H,r,s),¢) be a redex in G. Then it is said to be
e An innermost redex iff for every redex ((J,p,q), ) in G, there is no proper
path from ¢(r) to ¥(p).
e An outermost redex iff for every redex ((J,p,q),v) in G, there is no proper
path from ¥ (p) to o(r).
(H,r,s)

If the redex ((H,r,s),¢) is innermost we also write G "—3;" I or G —; I.

Similarly, for an outermost redex ((H,r,s),y) we write G (Eﬁz) I or simply

G —, 1.
As an example, consider the term graph G and the rewrite rule p = (H,r, s):

A R
7

= <—0m
F<—0
5 <—rh

p

There is a homomorphism ¢ from H | r to G. In particular, ¢ maps r to the
rightmost vertex in G. Applying the build phase and the redirection phase we



get J and K as follows:

‘/)i\\i ‘//\
S

K

-~

1

f

=<
. x
5 <— 0

Finally, applying the garbage collection phase, we get the result of firing the
redex (p, ¢):

®
i
:

/N

Hh

0Q <.

I

Given two graph rewrite rules p = (H,r,s) and o = (J,p, q), p and o are said
to be overlapping iff there is a term graph G and two homomorphism ¢ and ¥
such that (p,¢) and (o,v) are both redexes in G with z = p(v) = ¥ (w), where
v is labelled and reachable from r, while w is labelled and reachable from s.

Definition 7. An orthogonal graph rewriting system (GRS) over a signature X
consists of a set of non-overlapping graph rewrite rules G on X.

We now want to give some confluence results for GRSs. Let us first focus on
outermost rewriting. Intuitively, outermost rewriting is the most efficient way
of performing reduction in presence of sharing, since computation is performed
only if its result does not risk to be erased. First, we need the following auxiliary
lemma:

Lemma 1. Suppose G —, H and G — J, where H # J. Then either J —, H
or there is K such that H — K and J —, K.

Proof. Let v and w be the two redexes in G giving rise to G —, H and G — J,
respectively. Similarly, let p and o be the two involved rewrite rules. Clearly,
there cannot be any (non-trivial) path from w to v, by definition of outermost
rewriting. Now, the two rewriting steps are independent from each other (because
of the non-overlapping condition). There are now two cases. Either w is erased
when performing G —, H, or it is not erased. In the first case, w must be
“contained” in v, and therefore, we may apply p to J, obtaining H. If w has not
been erased, one can clearly apply p to J and ¢ to H, obtaining a fourth graph
K. O



The observation we just made can be easily turned into a more general result
on reduction sequences of arbitrary length:

Proposition 2. Suppose that G =7 H and G —™ J. Then there are K and
k,1 € N such that H =% J, J =L K andn+k <m+1.

Proof. An easy induction on n + m. O

Proposition 2 tells us that if we perform n outermost steps and m generic steps

from G, we can close the diagram in such a way that the number of steps in the

first branch is smaller or equal to the number of steps in the second branch.
With innermost reduction, the situation is exactly dual:

Lemma 2. Suppose G — H and G —; J, where H # J. Then either J — H or
there is K such that H —; K and J — K.

Proposition 3. Suppose that G =" H and G =™ J. Then there are K and
k,l € N such thatH—>ik J, J=oPK andn+k<m4+1.

In presence of sharing, therefore, outermost reduction is the best one can do,
while innermost reduction is the worst strategy, since we may reduce redexes in
subgraphs that will be later discarded. As a by-product, we get confluence:

Theorem 1. Suppose that G =3 H, G =™ J and G —>ik' K, where H, J and
K are normal forms. Then H=J =K andn <m < k.

Proof. From G — H, G —™ J and Proposition 2, it follows that n < m and
that H = J. From G —™ J, G —* K and Proposition 3, it follows that m < k.
O

4 From Term Rewriting to Graph Rewriting

Any term ¢ over the signature X can be turned into a graph G in the obvious
way: G will be a tree and vertices in G will be in one-to-one correspondence with
symbol occurrences in t. Conversely, any term graph G over Y can be turned
into a term ¢ over X (remember: we only consider acyclic graphs here).
Similarly, any term rewrite rule t — w over the signature X’ can be translated
into a graph rewrite rule (G, r, s) as follows:
e Take the graphs representing ¢ and u. They are trees, in fact.
e From the union of these two trees, share those nodes representing the same
variable in ¢ and u. This is G.
e Take r to be the root of ¢ in G and s to be the root of v in G.
As an example, consider the rewrite rule

f(g(z),y) — e(f(y, f(y, 2))).



Its translation as a graph rewrite rule is the following:

A

1l =f
L

An arbitrary term rewriting system can be turned into a graph rewriting
system:

Definition 8. Given a term rewriting system R over X, the corresponding term
graph rewriting system G is defined as the class of graph rewrite rules correspond-
ing to those in R. Given a term t, [t]g will be the corresponding graph, while the
term graph G corresponds to the term (G)x .

Let us now consider graph rewrite rules corresponding to rewrite rules in R.
It is easy to realize that the following invariant is preserved while performing
innermost rewriting in [R]g: whenever any vertex v can be reached by two
distinct paths starting at the root (i.e., v is shared), v cannot be a redex, i.e.,
there cannot be a redex ((G,r, s), ¢) such that ¢(r) = v. A term graph satisfying
this invariant is said to be redex-unshared.

Redex-unsharedness holds for term graphs coming from terms and is pre-
served by innermost graph rewriting:

Lemma 3. For every closed term t, [tlg is redez-unshared. Moreover, if G is
closed and redex-unshared and G —; I, then I is redex-unshared.

Proof. The fact [t]g is redex-unshared for every t follows from the way the []g
map is defined: it does not introduce any sharing. Now, suppose G is redex-
unshared and
et
where (H,r,s) corresponds to a term rewriting rule ¢ — w. The term graph
J obtained from G by the build phase is itself redex-unshared: it is obtained
from G by adding some new nodes, namely an isomorphic copy of the portion
of H | s not contained in H | r. Notice that J is redex-unshared in a stronger
sense: any vertex which can be reached from the newly created copy of s by
two distinct paths cannot be a redex. This is a consequence of (H,r,s) being
a graph rewrite rule corresponding to a term rewriting rule ¢ — u, where the
only shared vertices are those where the labelling function is undefined. The
redirection phase preserves itself redex-unsharedness, because only one pointer
is redirected (the vertex is labelled by a function symbol) and the destination
of this redirection is a vertex (the newly created copy of s) which had no edge
incident to it. Clearly, the garbage collection phase preserve redex-unsharedness.
O

1

Lemma 4. A closed term graph G in G is a normal form iff (G)r is a normal
form.



Proof. Clearly, if a closed term graph G is in normal form, then (G)z is a term
in normal form, because each redex in G translates to a redex in (G)r. On the
other hand, if (G)x is in normal form, then G must be normal itself: each redex
in (G)r translates back to a redex in G. O

Reduction on graphs correctly simulates reduction on terms:

Lemma 5. If G — I, then (G)r —" (I)g. Moreover, if G — I and G s
redex-unshared, then (G)r — (I)r.

Proof. The fact each reduction step starting in G' can be mimicked by n reduction
steps in (G)x is known from the literature. If G is redex-unshared, then n = 1,
because no redex in a redex-unshared term graph can be shared. O

As an example, consider the term rewrite rule f(h,h) — h and the following
term graph, which is not redex-unshared and correspond to f(f(h,h), f(h, h)):

(®)
f
h h
The term graph rewrites in one step to the following one

®

)

h
while the term f(f(h, h), f(h,h)) rewrites to f(h, h) in two steps.

Lemma 6. Ift = u, u is in normal form and (G)r =t, then there is m <n
such that G =0 I, where (I'r = u.

Proof. An easy consequence of Lemma 5 and Proposition 1. a

Theorem 2 (Outermost Graph-Reducibility). For every orthogonal term
rewriting system R over X and for every term t over X, the following two
conditions are equivalent:

1. t =7 u, where u is in normal form;

2. [tlg =0 G, where G is in normal form and (G)r = u.

Moreover, m < n.

Proof. Suppose t =y u, where v is in normal form. Then, by applying Lemma 6,
we obtain a normal form G such that [t|g —=7" G, where m < n and (G)r = u.
Now, suppose [t]g =7 G where (G)zr = u and G is in normal form. By applying
n times Lemma 5, we obtain that ([t]g)r —" (G)r = u where m < n. But
([t]lg)r =t and u is a normal form by Lemma 4, since G is normal. O



The innermost case can be treated in a similar way:

Lemma 7. If t =" u, u is in normal form and (G)r =t and G is redex-
unshared, then G = I, where (I'r = u.

Proof. An easy consequence of Lemma 5 and Proposition 1. ad

Theorem 3 (Innermost Graph Reducibility). For every orthogonal term
rewriting system R over X and for every term t over X, the following two
conditions are equivalent:

1. t =7 u, where u is in normal form;

2. [tlg = G, where G is in normal form and (G)r = u.

5 Consequences for Complexity Analysis

Theorems 2 and 3 tell us that term graph rewriting faithfully simulates term
rewriting, with both outermost and innermost rewriting. In the outermost case,
graph rewriting may perform better than term rewriting, because redex can be
shared and one graph rewriting step may correspond to more than one term
rewriting step. In innermost reduction, on the other hand, every graph step
corresponds to exactly one term rewriting step.

But how much does it cost to perform reduction in a graph rewriting system
G corresponding to a term rewriting system R 7 Let us analyze more closely the
combinatorics of graph rewriting, fixing our attention to outermost rewriting for
the moment:

e Consider a closed term ¢ and a term graph G such that [t]g =% G.

e Every graph rewriting step makes the underlying graph bigger by at most the
size of the rhs of a rewrite rule. So, if [t]g =% G —, H, then the difference
|H| — |G| cannot be too big: at most a constant k depending on R but
independent of t. As a consequence, if [t]g = G then |G| < nk + |t|. Here,
we exploit in an essential way the possibility of sharing subterms.

e Whenever [t]g =2 G, computing a graph H such that G — H takes polyno-
mial time in |G|, which is itself polynomially bounded by n and |¢|.

Exactly the same reasoning can be applied to innermost reduction. Hence:

Theorem 4. For every orthogonal term rewriting system R, there is a poly-
nomial p : N> — N such that for every term t the normal form of [tlg can be
computed in time at most p(|t], Timeo(t)) when performing outermost graph re-
duction and in time p(|t|, Time;(t)) when performing innermost graph reduction.

We close this section by observing explicitly that the normal form of [t]g
is not a direct representation of the normal form of ¢. It may contain many
shared subterms, that have to be “unshared” if one wants to print the normal
form of t. As a limit example consider the system we already mentioned in the
introduction: f(0) =¢, f(n+1) = g(f(n)), and g(z) = d(z,z). Here f(n) will
normalize in O(n) steps with innermost reduction, but the normal form as a
term is of size O(2"), being the complete binary tree of height n. We believe



this has to be considered a feature of our cost model, allowing to distinguish
the time (and space) needed for the computation from the one necessary for the
communication of the result.

Despite the succinct representation of data via term graphs, equality of terms
is efficiently computed on graph representatives. We state this as a proposition,
being of interest in its own.

Proposition 4. Given two term graphs G and H, it is decidable in time poly-
nomial in |G| + |H| whether (G)r = (H)r .

Proof. We can give a naive procedure working in quadratic time as follows.
More efficient algorithms are available, for instance Paige and Tarjan’s one for
bisimulation, which runs in time O(|E|log|V]), where E and V are the sets of
edges and vertices, respectively, of the graphs.

The decision procedure will fill a m X n matrix, with m and n the number of
nodes of G and H, respectively, using dynamic programming. Any element will
contain a boolean value 1 or 0. Start by filling all the elements (vg,vy) where
v is a sink of G and vy is a sink of H (a sink is a node labeled with a function
symbol of arity 0). Fill it with 1 if they are the same function symbol; with 0
otherwise. Now proceed along the inverse of the topological order (that is, go to
the nodes pointing to the ones you just considered), and fill any such element
(wg,wy) with 1, if they are the same function symbol and all the pairs (vg, vy )
— with vg i-th successor of wg and vy i-th successor of wy — are marked with
1. Otherwise, fill (wg,wp) with 0. At the end return 1 iff (rg,ry) is marked
with 1 where rg and rpy are the root of G and H, respectively. ad

6 Context and Related Work

Graph-reducibility of any orthogonal term rewriting system is well known [14].
However, this classical result does not mention anything about the relation be-
tween the complexity of term rewriting and the one of graph-rewriting. Quan-
titative analysis of the involved simulations is outside the scope of the classical
results on the subject.

Asymptotic complexity analysis in the context of term rewriting systems
has received a lot of attention in the last ten years [?,7,3,9]. In some cases
time complexity results are a consequence of an argument taking into account
both the number of reduction steps and some other parameter (e.g., the size of
intermediate terms [?]), so to bound the actual cost of the computation with an
ad hoc combination of these two dimensions. In other cases [3, 9], results about
the derivational complexity of TRS are kept distinct from other results about
actual computation time. This body of research has been the main motivation
for our work.

In a recent paper [7] we proved a close correspondence between orthogonal
constructor term rewriting systems and weak call-by-value A-calculus. In par-
ticular the two systems can simulate each other with a linear overhead, taking
as cost model for both systems the number of reduction steps to normal form,



that is the most natural one. This should not confuse the reader who knows that
“optimal A-reduction is not elementary recursive” [2, 1], meaning that there are
terms whose normalization requires on a Turing machine a time hyperexponen-
tial in the number of optimal beta-reductions (which are a sophisticated form of
graph-rewritings with partial sharing). For these results to hold is essential to
take full beta-reduction, where we are allowed to reduce a redex also inside a
A-abstraction.

Graph rewriting has been considered in this paper as a technical tool to
obtain our main result. An interesting research line would be to situate graph
rewriting — and its complexity theory — in the context of those other machine
models with a dynamically changing configuration structure, like Knuth’s “link-
ing automata” [11], Schénage’s storage modification machines [15], and especially
their common moral ancestor — Kolmogorov and Uspensky’s machines [12, 8].
This would be particularly interesting in the study of classes like linear time
and real time. Indeed, while the class of polynomial functions is very robust and
coincide on all these different models (and on Turing machines, of course), these
automata seem to give a better understanding of the lower complexity classes.
After some preliminary investigation, the authors are convinced that the task
of relating term graph rewriting and pointer machines from a complexity point
of view is not trivial. For example, garbage collection is a non-local operation
that is implicitly performed as part of any term graph rewriting step, while
in pointer machines only the “programmer” is responsible for such (potentially
costly) operations.

Acknowledgments

We owe to Guillaume Bonfante the observation that our results, previously for-
mulated for constructor orthogonal rewriting systems, hold indeed for any or-
thogonal system, as it is now stated in the paper.

References

1. A. Asperti, P. Coppola, and S. Martini. (Optimal) duplication is not elementary
recursive. Inf. Comput., 193(1):21-56, 2004.

2. A Asperti and H. G. Mairson. Parallel beta reduction is not elementary recursive.
Inf. Comput., 170(1):49-80, 2001.

3. Martin Avanzini and Georg Moser. Complexity analysis by rewriting. In FLOPS,
pages 130-146, 2008.

4. H. Barendregt, M. Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer, and M. Sleep.
Term graph rewriting. In J. de Bakker, A. Nijman, and P. Treleaven, editors,
Volume II: Parallel Languages on PARLE: Parallel Architectures and Languages
Europe, pages 141-158. Springer-Verlag, 1986.

5. Erik Barendsen. Term graph rewriting. In Terese (M. Bezem, J.W. Klop, and
R. de Vrijer), editors, Term Rewriting Systems, chapter 13, pages 712-743. Cam-
bridge Univ. Press, 2003.



10.

11.

12.

13.

14.

15.
16.

Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen. Quasi-
interpretations and small space bounds. In Term Rewriting and Applications,
volume 3467 of LNCS, pages 150—164. Springer, 2005.

Ugo Dal Lago and Simone Martini. On constructor rewriting systems and the
lambda calculus. In ICALP, volume 5556 of LNCS, pages 163—174. Springer, 2009.
Yuri Gurevich. On Kolmogorov machines and related issues. Bulletin of the Eu-
ropean Association for Theoretical Computer Science, 35:71-82, 1988.

Nao Hirokawa and Georg Moser. Automated complexity analysis based on the
dependency pair method. In IJCAR, pages 364—379, 2008.

Neil D. Jones. Computability and Complezity from a Programming Perspective.
MIT Press, 1997.

Donald Knuth. The Art of Computer Programming, Vol. 1. Prentice Hall, 1973.
Pages 462-463.

A.N. Kolmogorov and V. Uspensky. On the definition of algorithm. Uspekhi Mat.
Naut, 13(4):3-28, 1958. In Russian. English translation in AMS Translations, series
2, vol. 21(1963), 217-245.

Jean-Yves Marion and Jean-Yves Moyen. Efficient first order functional pro-
gram interpreter with time bound certifications. In Logic for Programming and
Automated Reasoning, Tth International Conference, Proceedings, volume 1955 of
LNCS, pages 25-42. Springer, 2000.

Detlef Plump. Graph-reducible term rewriting systems. In Graph-Grammars and
Their Application to Computer Science, pages 622-636, 1990.

A. Schonage. Storage modification machines. SIAM J. Comput., 9:490-508, 1980.
Peter van Emde Boas. Machine models and simulation. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complezity (A), pages 1-66. MIT
Press, 1990.



