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There may, indeed, be other uses of the system than its use as a logic.
A. Church [8]

Logic and theory of computation have been intertwined since their first
days. The formalized notion(s) of effective computation are at first technical
tools for the investigation of first order systems, and only ten years later — in
the hands of John von Neumann — become the blueprints of engineered phys-
ical devices. Generally, however, one tends to forget that in those same years,
in the newly-born proof-theory of Gerhard Gentzen [20] there is an implicit,
powerful notion of computation — an effective, combinatorial procedure for the
simplification of a proof. However, the complexity of the rules for the elimina-
tion of cuts (especially the commutative ones, in the modern jargon) hid the
simplicity and generality of the basic computational notion those rules were
based upon. We had to wait thirty more years before realizing in full glory
that Gentzen’s simplification mechanism and one of the formal systems for
computability (Church’s A-calculus) were indeed one and the same notion.

As far as we know, Haskell Curry is the first to explicitly realize [11] that
the types of some of his basic combinators correspond to axioms of intuition-
istic implicational calculus, and that, more generally, the types assignable to
expressions made up of combinators are exactly the provable formulae of in-
tuitionistic implicational logic. It is William Howard in 1969 to extend this
formulas as types correspondence to the more general proofs as programs iso-
morphism ([27], published in 1980 but widely circulated before). Under this
interpretation, the two dynamics — proof normalization on one hand, and -
reduction on the other — are identified, so that techniques and results from
one area are immediately available to the other.

In this paper, we will discuss the use of the Curry-Howard correspondence
in computational complexity theory, the area of theoretical computer science
concerned with the definition and study of complexity classes and their re-
lations. The standard approach to this discipline is to fix first a machine
model (e.g., Turing machines) equipped with an explicit cost (e.g., number
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of transitions) and define then the (inherent) complexity of a function as the
minimal cost needed to compute it with those machines. More formally, as-
suming Turing machines with unitary cost per transition, one says first that
a TM M works in time A iff for any input z, M (z) terminates in at most
h(|x]) steps, where | | is a suitable notion of size for the input. A function f
has complexity h iff there exists a TM computing f working in time h. At
this point one may define the complexity class of h as the set of all functions
with complexity h. Main examples of such classes are the polynomial functions
(FPTIME), the exponential functions (FEXPTIME), or the Kalmar-elementary
ones (FELEMTIME). In building up this theory, one of the first tasks is to show
that the definition of a complexity class is somehow independent from the
machine model adopted at first. Here comes the notion of reasonable machine
models [38]:

Reasonable machines can simulate each other within a polynomially-
bounded overhead in time and a constant-factor overhead in space.

Complexity classes like FPTIME and the others we mentioned before are clearly
invariant with respect reasonable machine models, and are thus amenable to
general theoretical treatment.

If these classes are so robust, however, there should be characterizations
of them independent from explicit machine models. This is the subject of im-
plicit computational complexity (ICC) whose main aim is the description of
complexity classes based on language restrictions, and not on external mea-
sure conditions or on an explicit machine model. It borrows techniques and
results from mathematical logic (model theory, recursion theory, and proof-
theory) and in doing so it has allowed the incorporation of aspects of com-
putational complexity into areas such as formal methods in software develop-
ment and programming language design. The most developed area of implicit
computational complexity is probably the model-theoretic one — finite model
theory being a very successful way to describe complexity problems. In the
design of programming language tools (e.g., type-systems), however, syntac-
tical techniques prove more useful, and in the last twenty years much work
has been devoted to restricted ways of formulating recursion theory, and to
proof-theoretical techniques to enforce resource bounds on programs.

1 Proofs as Programs

The Curry-Howard correspondence between natural deduction proofs and
lambda-terms is summarized in Fig. 1. Formally, we start by defining A-terms
as:

M=z | e M| MM,

where x ranges over a denumerable set of variables. As usual, A binds variables
in its scope. Formulas (or types) are defined starting from a base type (o) as
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Az=0|A—A.

The system in Fig. 1 defines judgments of the form I' F M : A, where M is a
term, A is a formula, and I" is a set of pairs x : A, where z is a variable and
all the variables in I" are distinct.

Fig. 1. Natural deduction proofs and typed lambda-terms
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If we forget terms, we are left with the usual natural deduction system
for propositional implicational intuitionistic logic. Terms may be seen just as
a convenient, linearized way to write the proofs, instead of the usual two-
dimensional tree-like notation. On the other hand, a computer scientist will
recognise the rules assigning types to functional programs. This correspon-
dence between proofs and programs is completed by observing that the notion
of proof normalization (that is, the elimination of the detours composed of
an introduction immediately followed by an elimination) is the same as the
reduction of the corresponding term (see Fig. 2, where we have adopted for
more clarity the standard two-dimensional notation for proofs); Mz < N]
denotes the substition of NV for the free occurrences of = in M.

Fig. 2. Normalization is beta-reduction
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We may now apply logical methods to the study of computation as term
rewriting, and vice versa. From the point of view of computational complexity,
however, A-calculus is a rather awkward computational model, since it misses
a basic notion of elementary step with bounded cost. Indeed, it is evident
that a step in a Turing machine can be “actually performed” in constant time,
thanks to the finiteness of the states and the symbols. Even for machine models



4 Ugo Dal Lago and Simone Martini

with non-constant time step — like Unbounded Register Machines (URM, see,
e.g., [12]), where in a single step one may store or increment an arbitrary
large natural number — one can usually give a natural and plausible cost
model (for URMs one can assume, for instance, that one step accounts for
the logarithm of the length of the manipulated number). For A-calculus all
these considerations seem to vanish, since beta-reduction is inherently too
complex to be considered as an atomic operation, at least if we stick to explicit
representations of lambda terms. Indeed, in a beta step

(M. M)N — Mz — NJ,

there can be as many as |M| occurrences of x inside M. As a consequence,
M|z <« N] can be as big as |M| x |N|. And this applies to any step dur-
ing a reduction, where the terms N and M have no longer a direct evident
connection with the original term.

As a result, in the literature the actual cost of normalizing a lambda-
term has been studied without any reference to the number of beta steps to
normal form. One of the main results of this field is Statman’s theorem [35],
showing that there is no Kalmar-elementary function of the length of a typed
A-term bounding the work needed to compute its normal form. This result, in a
sense, matches in A-calculus the series of results in proof theory giving bounds
on the size of a mormal proof, as a function of the size of the proof before
normalization (see, e.g., [22]). These results could be summarized by saying
that, in any reasonable logic, if the (natural deduction) proof 7= normalizes to
p, then the size of p can be (hyper-)exponential in the size of 7. But then we
are faced with another problem in the direct application of the Curry-Howard
correspondence to computational complexity. How could we use a tool that, in
any interesting case, has a hyper-exponential complexity? How is it possible
to use it for studying interesting complexity classes, and especially the most
important PTIME?

The solution comes from a different perspective, the natural one from the
programming view-point. We should forget the natural symmetry, present in
A-calculus, between programs (terms) and data (just other terms), and recall
that, in computing, the roles of programs and data are not symmetric. We
are instead interested in the behavior of a single, fixed program as a function
of the size of its data. That is, under the proofs-as-programs isomorphism,
the behavior of a fixed proof (say I' = M : A — B) when composed with all
sensible proofs (that is when “cut” against — applied to — all proofs of the
shape I' = N : A). In explicit terms, we should study the time to normalize
MN, with M in normal form, as a function of |N| only.

We may borrow some terminology from software engineering and distin-
guish two main ways of applying logical notions and techniques to computa-
tional complexity.

1. Implicit computational complexity in-the-large, using logic to study com-
plexity classes. More specifically, given a complexity class C, find a logical
system G such that:
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Fig. 3. Intuitionistic Multiplicative Exponential Linear Logic
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Soundness: for any interesting type A and M : A — A in the system
G, there is a function f4 € C such that for any N : A, the cost of
normalizing M N is bounded by f4(|N]).

Completeness: for any function F computable in complexity C, there
is a proof Mg (in system G) “representing’ F.

2. Implicit computational complexity in-the-small, using logic to study single
machine-free models of computation. More specifically, in the context we
just described, giving natural cost models for A-calculus reduction, show-
ing that it is indeed a reasonable model (that is, polynomially related to
Turing machines).

2 ICC in the Large

Finding a system characterizing interesting complexity classes is far from ob-
vious, all standard logics having a too high complexity of reduction. The
breakthrough came with Girard’s light linear logic [25]. Linear logic [21] put
under scrutiny the structural rules (especially contraction, responsible for ar-
bitrary duplication of subproofs during cut-elimination) and their role during
normalization. Intuitionistic logic, however, may be embedded in linear logic,
and therefore the latter cannot be used as a limited complexity formal system.
One has to weaken linear logic, limiting the use of contraction.

Second order multiplicative linear logic is summarized in Fig. 3, as a se-
quent calculus. Rule (Contr.) is the culprit for exponential blow-up, but since
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it may only be applied to !-marked formulas, the rules for (!) are our main
source of concern. If we look at the logic from an axiomatic point of view,
one of the fundamental properties of the logic is the law !A = A®!A (A= B
is short for A — B and B — A), which is obtained from rules (Contr.),
(Weak.) and (!). Other important laws are of course derivable (! acts much
the same as O in modal logic S4), namely !A — A (from (¢), “dereliction”) and
1A —llA (from (9), “digging”). The interplay between these rules is the main
source for complexity of normalization (and for the expressivity of the logic,
of course). Girard’s insight was to weaken the operator !, still maintaining
enough expressivity to code interesting functions.

If we drop (€) and (8), we get Elementary linear logic (ELL), which is
sound and complete (in the meaning explained above) for Kalmar-elementary
functions, a complexity class still too big for computer science. To get just
the polynomial functions we must drastically restrict (!) to have at most one
formula to the left of . But now the system would be too weak (far from
complete from polytime, that is) and to fix this Girard adds another modality
(8), to compensate for the loss of a full (!)-rule. The system is best formulated
in an affine form (i.e., full weakening is allowed), following [2]. The relevant
rules for Light affine logic (LAL) are summarized in Fig. 4 (they replace rules
(Weak.), (Contr.), (1), (¢), and (J) of Fig. 3; in (§), n,m > 0; in (lu), A can
be absent).

Fig. 4. Light affine logic, LAL
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With this key idea, one obtains indeed a sound and complete system for
polytime. The following theorem expresses the soundness result, the most
delicate and interesting one. We observe, first, that there is natural way to
code in the logic, as a type, interesting data types; the theorem may be stated
with respect to "BS™, the type coding binary strings.

Theorem 1. Let Fra;, M : "BS™ — "BS™. For any Fra, W : "BS™, we
can compute the normal form of MW in time proportional to (d+1)|MW|??,
where d depends only on M.

Observe that, when M is fixed and in normal form, the theorem says that
M is a program with complexity O(|W|?¢), that is, polynomial in its input.
Care should be taken, however, on the correct reading of the normalization
result. In order the theorem to hold as stated, we cannot simply reduce MW
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as a lambda-term (because even terms typable in LAL could have esponentially
long normal forms, though “computable” in polynomial time [6]). Proof-nets
(the intended notation for proofs in linear logic) should be used instead.

Once discovered, the technology has been applied, mutatis mutandis, to
several other formal systems. In addition to LLL and LAL, we have EAL
(for elementary time), SLL (for polynomial time [29]), sTAp (for logarithmic
space [19]), etc. Moreover, we now have also systems where, contrary to LAL,
the soundness for polynomial time holds for lambda-calculus reduction, like
DLAL [6] and other similar systems. As a result, the general framework of light
logics is now full of different systems, and of variants of those systems. It is
urgent to get gemeral, unifying results to compare the systems and improve
on them.

As already mentioned, soundness and completeness are the key results to
be obtained when trying to characterize complexity classes by way of logical
systems. Completeness is always of an extensional nature: one proves that
any function in the complexity class under consideration can be represented
by a proof in the logical system, without taking care of the intensional as-
pect of the proof itself. Since the same function can be represented by many,
distinct proofs (in particular those corresponding to unnatural algorithms,
in computer science terminology), proving completeness does not say much
about the usefulness of the considered system as a programming language.
On the other hand, soundness is a key property: any representable function
is in a complexity class. This is often proved by showing that any proof in
the logical system can be normalized with a bounded amount of resources.
This way, soundness proofs give insights on the reasons why normalization is
a relatively easy computational process. As a consequence, soundness proofs
are interesting on their own:

e The intensional expressive power of two or more apparently unrelated sys-
tems can be compared through their soundness proofs. This requires the
soundness proofs to be phrased in the same framework.

e The possibility of extending sound systems with new rules and features
can be made easier if their soundness proofs are designed to be adaptable
to extensions in the underlying syntax.

Unfortunately, soundness has been traditionally proved with ad hoc tech-
niques which cannot be easily generalized. Different systems has been proved
sound with very different methodologies. As an example, Lafont’s SLL has been
proved to be polytime sound by a simple mathematical argument, while As-
perti’s LAL requires a complicated argument, in particular if strong soundness
is needed [36].

In the last years, much effort has been put in the task of finding powerful,
simple and unifying semantic framework for implicit computational complex-
ity. In the rest of the section we will give an account of some of these frame-
works, with particular emphasis on authors’ contribution. What we would
like to convey are not the technicalities, of course, but the flexibility of the
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approaches — simple modifications to a general framework allow for the seman-
tical description (and sometimes also for syntactical results, like soundness)
of a wide spectrum of formal systems.

2.1 Context Semantics

Context semantics [26] is a powerful framework for the analysis of proof and
program dynamics. It can be considered as a model of Girard’s geometry of
interaction [24, 23] where the underlying algebra consists of contexts. As such,
it is a dynamic, interactive semantical framework, with many similarities to
game semantics [3]. In these semantic frameworks, one manages to identify
those proofs interacting in the same way with the environment (i.e., that
cannot be distiguished, through normalization, no matter the context in which
they are used in a larger proof; technically: observationally equivalent proofs)
by proving that the semantic objects which interpret them are the same. In
some cases, one can prove that the converse implication holds — this property
is called full-abstraction in the literature. Context semantics and geometry
of interaction have been used to prove the correctness of optimal reduction
algorithms [26] and in the design of sequential and parallel interpreters for
the A-calculus [31, 33].

Notice that whenever a proof 7 is obtained from another proof p by cut-
elimination (or normalization), m and p have the same interactive behaviour
and, as a consequence, cannot be distinguished in the semantics. This im-
plies that the “complexity” of normalizing a proof m cannot be read out of
the interpretation of 7 itself, in any standard semantical approach. What is
appealing in context semantics is that its formulation, differently from the
majority of other approaches, allows for easy modifications of the semantics
of m (without altering the basic mathematical concepts needed), in such a way
that the interpretation of m somehow “reflects” the computational difficulty
of normalizing it. A first example of this flexibility of the context semantics, is
the well known fact that strongly normalizing proofs are exactly the ones hav-
ing finitely many so-called regular paths in the geometry of interaction [18].
As a second example, a class of proofs which are not just strongly normaliz-
ing but normalizable in elementary time can still be captured in the geometry
of interaction framework, as suggested by Baillot and Pedicini [5]. Until re-
cently it was not known, however, whether this correspondence scales down
to smaller complexity classes, such as the one of polynomial time computable
functions. The usual measure based on the length of regular paths cannot be
used, since there are proofs which can be normalized in polynomial time but
whose regular paths have exponential length [18].

The solution to the above problem is relatively simple: not every (regular)
path should be taken into account, but only those having something to do
with duplication. This way, one can define the weight W, of any proof as the
total number of paths in this restricted jclass. On one hand, we may prove
that W, is an upper bound to the computational difficulty of normalizing 7:
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Theorem 2. There is a polynomial p : N> — N such that for every proof ,
7 normalizes in at most p(Wy,|w|) steps and the size of any reduct p of 7 is
at most p(Whr, |m|).

On the other hand, W, can be proved to be a lower bound to the complexity
of normalizing 7:

Theorem 3. For every proof w there is another proof p such that ™ normalizes
in n steps to p and Wr > n+ |p|.

The two results above highlight a strong correspondence between W, and
some crucial quantitative attributes of 7, i.e. the (maximal) number of steps
to normal form for 7 and the (maximal) size of reducts of . Perhaps the
most interesting application of this correspondence are new, simple proofs
of soundness for elementary, light and soft linear logic. After all, W, can
be defined for any (multiplicative and exponential) proof 7, while proving
bounds on W, when some of the rules are forbidden (as in the cited logical
systems) turns out to be very simple. Details about the results sketched in
this paragraph can be found in [14].

The same technique can be applied to similar, but different, systems. A
first example consists in linear lambda calculi with higher-order recursion [13].
There, a parameter influencing the complexity of any term M is the (maximal)
size of ground subterms of reducts of M, called the algebraic potential size of
M. Context semantics is powerful enough to induce bounds on the algebraic
potential size of terms, in the same vein as in Theorem 2. Another example
is optimal reduction [1], where context semantics allows to transfer known
complexity results from global reduction, where proofs are normalized in the
usual way, to local reduction, where a slightly different syntax for proofs allows
a completely local notion of reduction [4], itself necessary to get optimality
for lambda calculus.

2.2 Realizability Semantics

Kleene’s realizability and its variations have been used for various purposes
in modern logic (see [37] for an introduction). In particular, realizability has
been used in connection with complexity-constrained computation in several
places. The most prominent one is Cook and Urquhart’s work [9], where terms
of a language called PV* are used to realize formulas of bounded arithmetic.
There, realizability is used to show polytime soundness of a logic (for a slightly
different notion of soundness than the one considered here). Realizers in [9]
are typed and very closely related to the logic that is being realized. This
implies that any modification to the underlying logical system would require
changing as well the language of realizers.

On the other hand, one can use untyped realizers and interpret formulas
as partial equivalence relations on those, this way going towards a unifying
framework. This has been done by Crossley et al. [10], in the same spirit as
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Kreisel’s untyped realizability model HEO [28]. The proof that the untyped
realizers (in this case of formulas of bounded arithmetic) can indeed be nor-
malized in bounded time, has to be performed “externally” (that is, it is not
obtained directly from the model). In other words, proving soundess of a logic
has been reduced to proving soundness of a certain class of realizers.

Recently, a realizability framework has been introduced by one of the au-
thors, as a joint work with Martin Hofmann [15]. The framework is designed
as a refinement of the existing ones. In standard realizability, formulas are
usually interpreted as sets of pairs (¢, f), where ¢ (a realizer, e.g., a lambda
term) realizes f (a denotational object, e.g., a function); in our approach for-
mulas are interpreted as sets of triples (a, t, f), where t realizes f as usual but,
moreover, t is majorized by « (itself an element of an algebraic structure called
a resource monoid). The notions of majorization and of resource monoid are
relatively simple and designed to guarantee that whenever (o, t, f) € A — B
and (8,u,g) € A, t computes a realizer for f(g) in time bounded by F(« + ()
when applied to u (F is a function from majorizers to natural numbers which
is part of the definition of the underlying resource monoid). Proving that
F is bounded (e.g., by something like a polynomial) is usually easy, once a
resource monoid is fixed. Therefore, by choosing a proper resource monoid,
“intensional” soundness can be obtained as a corollary of “extensional” sound-
ness while giving meaning to a logic. Notice, however, that this way we do
not prove anything about the time needed to normalize proofs, but we rather
prove something about realizers corresponding to the interepreted proofs.

Once a resource monoid M has been fixed, one can present the above
construction as a category £ (M): objects are length spaces (i.e., the ternary
relations described above) while morphisms are realized and majorized func-
tions between them. Noticeably, £ (M) is symmetric monoidal closed for ev-
ery M. This means that any category £ (M) is a model of (second order)
multiplicative linear logic, and that one must only guarantee that the ezpo-
nential structure can be justified when interpreting systems like LAL or SLL
in such a category. This has been done indeed [15], obtaining as a byproduct
new proofs of soundness for LAL, SAL (the affine version of sSLL) and EAL. No-
ticeably, even systems going beyond the realm of linear logic (e.g., Hofmann’s
LFPL) can be proved sound.

2.3 Other Frameworks

In the last two sections, we focused on semantic frameworks where relevant,
quantitative properties of the interpreted proof can be “read out” from the
underlying semantic object. This way, semantics can be effectively used as a
tool when proving soundness.

Semantics, however, has also a more traditional role (in ICC, as in any
other domain), somehow orthogonal to the goals we had so far. A mathemat-
ical model of a formal system is, by its very essence, a different description
of the syntax, expressed with new concepts, and embedding the syntactical
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objects in the structures the model is built upon. The more simple, non-
syntactical, and mathematically elegant a model is, the more it is interesting
and able to give us a fresh look on our formal system. Also in this sense,
therefore, semantics is much welcomed in ICC.

Once a mathematical object .Z is proved to be a fully complete model
of a logical system, itself sound and complete with respect to a complexity
class €, the model .#Z can be understood as a new, presumably simpler, pre-
sentation of €. Here, we are not interested in inferring intensional properties
of proofs from .# — indeed, not much about the intensional expressive power
of a logic can be inferred from any fully complete model for it. We would
like, instead, to get global insight on the structure (and properties) of €. As
pointed out by Girard [25] denotational models of light logics could thus help
in shedding some light on the nature of polytime from an extensional point of
view, maybe allowing to attack one of the many open problems in computa-
tional complexity. In the rest of this section, we briefly recall three proposals
designed around these lines.

First, one should mention Baillot’s stratified coherent spaces [7], a refine-
ment on Girard’s coherent spaces in which semantic stratification mimicks
the absence of digging and dereliction in ELL. Indeed the two principles men-
tioned are not valid in stratified coherent spaces. By a further enrichment, one
can obtain a model for LLL through stratified measured coherence spaces. In
all these cases, however, full completeness does not hold, due to the inherent
incompleteness of coherent spaces (already at the level of linear logic).

If one forgets about coherence in coherent spaces, what is left is relational
semantics, maybe the simplest model of linear logic. Again, one can define a
restricted notion of this model, this time through obsessional cliques [30]. Of
course, the obtained model is not fully complete with respect to any of the
known light logics. However, one can prove relative completeness for ELL: the
clique interpreting a MELL proof 7 is obsessional (in a certain technical sense)
if and only if w is an ELL proof. A similar result holds for SLL.

The only example of a semantic object which is fully complete with respect
to a light logic is the model based on Murawski and Ong’s discreet games [32].
They can be constructed as appropriate restrictions on usual game structures,
already known to be fully complete with respect to MELL.

3 ICC in the Small

Giving a reasonable cost model for A-calculus grounded on natural notions is
a non trivial challenge. From the logical point of view, the most interesting
parameter is the number of S-reductions, but, as we briefly discussed in Sect. 1,
it is difficult to give general arguments proving that this simple approach gives
rise to a reasonable model. As usual, the problem stems from duplication; in
a single step (Az.M)N — M|z «— N], the term N may be duplicated as
many times as the number of occurrences of x in M. While in general this
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precludes to use the number of beta steps as the main ingredient in a cost
model, there are restrictions of the reduction for which something can be done.
In particular, we will concentrate on pure untyped A-calculus endowed with
weak (that is, we never reduce under an abstraction) call-by-value reduction.
The following definitions are standard.

Definition 1. e Terms are defined as usual: M :=x | \e. M | MM | where
x ranges over a denumerable set. A denotes the set of all lambda terms.
Values are defined as V =z | Az.M .

Weak call-by-value reduction is denoted by —,, and is obtained by closing
call-by-value reduction under any applicative context:

M —, N M —, N
MNM)V -, M[x —~V] ML—,NL LM —,LN.

Here M ranges over terms, while V' ranges over values. We denote with
— the reflexive and transitive closure of —,,.

e The length |M| of M s defined as follows, by induction on M: |z| = 1,
|[Az.M|=|M|+1 and |[MN|=|M|+ |N|+ 1.

Weak call-by-value reduction enjoys many nice properties. In particular, the
one-step diamond property holds and, as a consequence, the number of beta-
steps to normal form (if any) is invariant on the reduction order [16]. These
properties enable the definition of interesting cost models for this calculus.
We will discuss two different points of view.

First, we consider the case in which A-terms are represented explicitly.
Then, we will discuss the situation where we are allowed to choose more
compact (and therefore efficient) representations.

3.1 Explicit Representation

With explicit representation, a term M is represented by...itself (that is,
with a data structure of size |M|). In particular, from the representation of a
term in normal form, the term is immediately available (a situation which will
change for implicit representations). In this case, we define the difference cost
of a single step of f-reduction M —, N as max{1,|N|— |M|}. The following
definition and results are from [16].

Definition 2 (Difference cost model). If M — N, where N is a normal
form, then Timey(M) is defined as |M| plus the sum of the difference costs of
the individual steps of the sequence M — N. If M diverges, then Timey(M)
18 infinite.

In view of the invariance of the number of beta-steps to normal form, this is a
good definition. As an example, consider the term n 2, where n = Az.\y.z"y
is the Church numeral for n. It reduces to normal form in one step, because we
do not reduce under the abstraction. To force reduction, consider £ =n 2 =,
where x is a (free) variable; E reduces to
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F=Mn. Mn_1... Oy2.Oyr.2%y1)%52)2 .. ) 2yn

in ©(n) beta steps. However, Timey(E) = ©(2"), since at any step the size
of the term is duplicated. Indeed, the size of F' is exponential in n.

We are left to state that this cost model makes weak call by value re-
duction a reasonable machine. That is, (i) we can simulate Turing machine
computations with S-reduction, and (ii) we can implement B-reduction over
Turing machines, in both cases with a polynomial overhead on the cost with
Turing machines.

Theorem 4. If f : X* — X* is computed by a Turing machine M in time g,
then there are a A-term Ny; and a suitable encoding "7 : X* — A such that
Npy/"v™ normalizes to ™ f(v)? and Timeg(Na"v7) = O(g(|v])).

Theorem 5. We can construct a (nine tapes) Turing machine R computing
the normal form of any term M in O((Timeq(M))*) steps.

3.2 Compact Representation

If we are allowed to use more efficient representations, we can get more par-
simonious cost models. In particular, under certain conditions, we can in fact
choose the number of §-steps to normal form as a reasonable cost model.

One the most appealing representations for A-terms is the graph-based
one, known at least since Wadsworth’s thesis [39]. A term is represented first
with its syntax tree, linking then the nodes representing bound variables to the
A-node binding them. The crucial idea, at this point, is to perform reduction
without textual substitution, and updating — as much as possible — the arcs of
the graph (i.e., performing update of pointers in the implementation). When
we have a redex (Az.M)N — M|z < N], just erase the A and the application
nodes of the redex and link the arcs representing x (from the graph of M) to
the root of the graph representing N. If there is more than one occurrence of
x, N is not duplicated, but simply “shared” by all the arcs represented the
different z’s. The problem is that, sooner or later, some portion of a redex
has to be actually duplicated (see [1], pages 14-15). The cost of normaliza-
tion, thus, has to take into account the size of the duplicated part, which
has no relation, in general, with the size of the original term (or with other
sensible parameters). In other words, we would be back at the cost model of
Sect. 3.1, taking into account the size of the intermediate terms. However,
in case of weak (call-by-value and call-by-name) reduction we can drastically
improve on Sect. 3.1 and show that the number of S-reduction steps is indeed
a polynomially invariant cost model. The crucial observation is that, for these
reductions, there exist ways to represent A-terms in which subterms can be
efficiently shared. Moreover, for this representation, any subterm needing to
be duplicated during the reduction is a subterm of the original term. This has
been obtained first by Sands, Gustavsson, and Moran [34], by a fine analysis
of a A-calculus implementation based on a stack machine.
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We may give a more formal treatment [17], by exploiting techniques as
defunctionalization and graph-rewriting. By using defunctionalization, we first
encode a A-term M into a term [M]g in a (first-order) constructor term rewrite
system, where any A-abstraction is represented by an atomic constructor.

Theorem 6. Weak (call-by-value and call-by-name) B-reduction can be sim-
ulated step by step by first-order rewriting.

At this point we are left to show that first-order rewriting can be implemented
so efficiently that the number of reduction steps can be taken as the actual cost
of the reduction (up to a fixed polynomial). Without going into technical de-
tails, we may define a further encoding [-]e that, applied to a first order term,
returns a graph. Our original term M would then be translated into [[M]s]e,
composing the two encodings. We prove, further, that graph-rewriting simu-
lates step by step constructor rewriting. We can eventually exploit the crucial
observation about the first-order encoding of a A-term: during the reduction
of [M]g we always manipulate subterms of the original term M.

Definition 3 (Unitary cost model). For any A-term M, Time,(M) is
defined as the number of 3-steps to normal form, under weak reduction. If M
diverges, then Time, (M) is infinite.

Some simple combinatorics allows to prove the following theorem.

Theorem 7. There is a polynomial p : N> — N such that for every lambda
term M, the normal form of [M]s|e (under weak reduction) can be computed
in time at most p(|M|, Time,(M)).

It is worth observing that [[N]s]e is in general very different from N, the
former being a compact graph representation of the latter. Additional “read-
back” work must in general be performed to obtain from [[N]g]e its explicit,
sequentialized form N. To factor out this time from our cost model should be
considered a feature of the model. Indeed, we cannot do miracles. Consider
again the term E = n 2 z, introduced earlier. Under weak call by value
reduction this term reduces to normal form in ©(n) beta steps, but there is
an exponential gap between this quantity and the time just needed to write
the normal form, which is of length ©(2").

4 Conclusions

Proof-theoretical implicit computational complexity is a young research area
which has given in the last ten years a fresh look to a number of different
subjects. In this short paper we tried to give a (very) personal overview of
some of its main achievements and of its techniques. Still, we have to admit
it is a very fragmented area. Too many systems, too few general results. We
have suggested some semantical paths, but it is not sufficient.
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An important problem we do not know how to attack is intensional ex-
pressiveness. We mentioned several complete systems for certain complexity
classes. Completeness is an extensional notion — for any function in a com-
plexity class, there is a term (proof, program) in our complete system. For
the systems we mentioned, the term guaranteed to exists is seldom the most
intuitive one, from a programming point of view. Moreover, there are a lot of
natural algorithms (terms, proofs, programs) which do have the right com-
plexity, but which are not expressible in our systems (they are not typable,
or get the wrong type). Filling the gap between extensional completeness and
the miserable intensional expressiveness of these systems is probably the most
interesting challenge of the field.
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