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Università di Bologna and INRIA, Bologna, Italy.
Mura Anteo Zamboni, 7
40126 Bologna BO
Italy

Michael Lodi: ORCID iD 0000-0002-3330-3089
email: michael.lodi@unibo.it

Simone Martini: ORCID iD 0000-0002-9834-1940
email: simone.martini@unibo.it
tel: +39 051 2094979
Research partially conducted while on sabbatical leave at the Collegium – Lyon Institute for
Advanced Studies. Partial support from French ANR project PROGRAMme.

Conflict of Interest: The authors declare that they have no conflict of interest.





Computational Thinking,
between Scylla and Charybdis

Abstract

After recalling the evolution of the concept of “computational thinking”, we present
its meaning in the work of Seymour Papert, who used for the first time the expres-
sion in his Mindstorms. For him, the technical aspect of “thinking like a computer
scientist” (which is the main content of Wing’s use of the term) cannot be separated
from the social, and affective dimension of building computational objects in an en-
vironment rich of computational principles and meaningful for the community. We
will argue that only keeping together the technical meaning and the social aspect,
CT will be the formidable actor of change that its proposers envisaged for it.

KEYWORDS: Computational thinking; Constructionism; Computer science; Com-
puter science education; Seymour Papert.

1 Introduction

“Computational thinking” (CT) is one of the buzzwords of the moment, in some
educational contexts. The modern (and long) wave of this expression started, as it
is well known, with a seminal essay by Jeannette Wing (Wing, 2006), who argues
that learning to think like a computer scientist would be a benefit for everyone, in
whatever profession involved. Despite the vagueness of the proposal, Wing’s po-
sition was taken as a trampoline for several initiatives to bring computer science
into all levels of K-12 education; see, e.g., (Guzdial, 2015; International Society
for Technology in Education (ISTE) & Computer Science Teachers Association
(CSTA), 2011), which have produced educational material, definitions, even assess-
ment methods. After much hype about the subject, recently, a more detached, and
objective, critical review of CT has been produced, also framing it in its historical
context (Tedre & Denning, 2016). Under this perspective, CT should be understood
inside the discipline of computing, as the (scientific and cultural) substratum of the
technical competences.

Historically, however, the expression CT was used for the first time by Seymour
Papert in 1980, with a different nuance of meaning, which should not be forgotten.
The analysis of this sense of CT will be the subject of the central section of the paper.
Our thesis is that only keeping together both meanings, CT will be the formidable
actor of change that its proposers envisaged for it.

Before turning to Papert’s CT, however, we summarise some of earlier attempts
to identify the concepts that are peculiar to computer science, and which are now
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covered under the umbrella of CT. We refer to the lucid (Tedre & Denning, 2016)1

for a comprehensive historical account and assessment.

2 Prehistory

The end of the fifties and the early sixties are the years in which the field of com-
puting gradually builds its self-understanding as an autonomous discipline (Tedre,
2014). This process goes hand in hand with the need to specify the traits and con-
cepts distinguishing the new discipline from other sciences, like applied mathemat-
ics, or physics, or engineering. A first, important, process is the linguistic shift of
the programming task (Nofre, Priestley, & Alberts, 2014). In the early days, pro-
gramming was mainly a technological affair (strictly coupled to the technology of
the different computers). The emergence (and the need) of computer-independent
(“universal”, in the terminology of the time) programming languages allowed the
expression of algorithms in a machine neutral way, thus making algorithms and
their properties amenable to a formal study. Programming languages themselves
were treated as object of study — from the formal definition of their syntax (Backus,
1959; Backus et al., 1960), to the gradual emergence of a mathematical theory of
computation (McCarthy, 1960, 1961), and, later, of a mathematical semantics (Naur,
1966; Floyd, 1967). Bruno Latour, with genial insight, explains in this way the rela-
tionship between a new science and its language:

No scientific discipline exists without first inventing a visual and written language which
allows it to break with its confusing past. (Latour, 1986)

The availability of universal programming languages is felt as the opportunity for
computing to evolves from its “obscure” past (made of mathematics, cybernetics,
logic, physics, engineering, linguistics) and consciously presents itself as the sci-
ence of algorithmic problem solving, for which the new languages are developed.
Of course, this “founding language” should not be identified with a specific pro-
gramming language. It is an early recognition that the contemporaneous presence of
different specific languages (at various levels, with various purposes, with various
targets) is an asset of the discipline, and that no language will work for all uses2.

It is in this context that, not later than 1960, Alan Perlis uses the term algorith-
mizing (“quantitative analysis of the way one does things”), classifying it as “part of
the basic thought processes” that “everyone should learn [. . . ] sooner or later” (Katz,
1960). For him “students will have a chance to use computers better [. . . ] by virtue
of understanding them as general tools to be used in reasoning [. . . ] rather than as
devices to solve particular problems”. It is one of the earliest recognition of a spe-
cific, disciplinary approach to problem solving that would be the result of being
exposed to, and having acquired, the competences of that new field, which at that

1 Peter Denning has been writing several critical papers on CT and its hype, see, e.g., (Denning,
2009, 2017; Denning, Tedre, & Yongpradit, 2017).
2 See, for instance, (Gorn, 1963) and its insistence on the role of mechanical languages.
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same time struggled to be recognised as an autonomous scientific discipline3. In
one of the many attempts to describe this new science and its boundaries, George
Forsythe (first Head of Computer Science at Stanford) comments on the educational
value of computer science: “The most valuable acquisitions in a scientific or tech-
nical education are the general-purpose mental tools which remain serviceable for
a lifetime. I rate natural language and mathematics as the most important of these
tools, and computer science as a third” (Forsythe, 1968).

It is especially in the seventies that this line of thought comes to maturity—
Computer Science provides “general thinking tools”, useful for everyone (recall
Perlis’ position). Marvin Minsky in his Turing award lecture (Minsky, 1970) has
a long section (“developed with Seymour Papert4”) on mathematics education. The
thesis is that the computer scientist has the role, the responsibility, and the compe-
tences to “work out and communicate models of the process of education itself.”
The very last statement of the paper is that the computer scientist “is the proprietor
of the concept of procedure, the secret educators have so long been seeking.”

Edsger W. Dijkstra, again in a paper discussing the epistemological status of pro-
gramming in comparison to mathematics (Dijkstra, 1974), observes that program-
ming gives a unique opportunity to master the complexity of a system, which is
handled through a “hierarchical composition,” where “a single technology” (that of
programming languages of different levels of abstraction) encompasses all the lev-
els of the hierarchy. It is this dealing with “mastered complexity” which “gives pro-
gramming as an intellectual activity some of its unique flavors.” The “programmer’s
agility with which he switches back and forth between various semantic levels” is a
sort of “a mental zoom lens”.

Among the many other possible citations and quotes, let us conclude with Donald
Knuth (one of the stars at Stanford, recipient of the Turing award in 1974, at the age
of 36), who is convinced “of the pedagogic value of an algorithmic approach; it aids
in the understanding of concepts of all kinds;” “a student who is properly trained
in computer science is learning something which will implicitly help him cope with
many other subjects” (Knuth, 1974).

The anonymous computational thinking that emerges is the natural sediment of
disciplinary learning of computer science—that which remains behind when all the

3 A struggle that was going to be long. The first Computer Science department of the US was
established in 1962 at Purdue University, where Perlis had served in the computation center from
1951 to 1956. Samuel D. Conte, first Head of that department, will recall in a 1999 Computerworld
magazine interview: “Most scientists thought that using a computer was simply programming —
that it didn’t involve any deep scientific thought and that anyone could learn to program. So why
have a degree? They thought computers were vocational vs. scientific in nature” (quoted in Conte’s
obituary at Purdue University, 2002). Next computer science departments to be established would
be those at the University of North Carolina at Chapel Hill, in 1964, and at Stanford in 1965. Still in
1967, Perlis, Newell and Simon (three Turing award recipients; Simon will also be a Nobel laureate
in Economics) feel the need of a letter to Science (Newell, Perlis, & Simon, 1967) to argue “why
there is such a thing like computer science”. See also Knuth’s reconstruction of the contribution of
George Forsythe to this process (Knuth, 1972).
4 And again, in the introduction: “Papert’s views pervade this essay.”
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technicalities and the definitions of the discipline are long forgotten5. Common be-
lief among many computer scientists, as we have seen, it comes often together with
the (largely undocumented and unproven) claim that the metacognitive skills gained
through programming (or, more generally, through computer science techniques)
transfer6 to other disciplines—from the already quoted (Minsky, 1970) and the re-
lated (Feurzeig, Papert, Bloom, Grant, & Solomon, 1970)7 for mathematics, to the
far reaching (Mayer, Dyck, & Vilberg, 1986) and (Pea & Kurland, 1984), for which
see also the commentary criticism (Salomon, 1984).

However, the impact of this process on actual reform of education or, more gener-
ally, on the cultural debate was modest. Computers and computer science were still
mainly confined in scientific and engineering milieux, and in large corporations. A
situation which did not change much when this anonymous thinking received for
the first time its current name.

3 Papert’s Computational Thinking, in context

Seymour Papert seems to be the first to use in print the expression “computational
thinking” (Papert, 1980, p. 182). Contrary to Wing’s use in 2006, however, this sin-
gle occurrence of CT in Mindstorms is by no means an attempt to a definition: “Their
[of people using computers for providing mathematically rich activities] visions of
how to integrate computational thinking into everyday life was insufficiently devel-
oped.” It is used en passant, after many other “computational” something8. What
is central to Mindstorms is not “thinking”—it is rather “constructing”, by computa-
tional means, concrete versions of abstract mathematical concepts; or, it is building
personal mental models to understand the world—computational “environments”
(“metaphors”, “ideas”, etc.) are one of the most effective and economic ways to ob-
tain such models in an autonomous manner. The appeal of the computer is that it
provides a concrete reference for the abstract concepts to be understood.

A naive reading of Mindstorms may give the impression that it backs the idea
of the transfer of (meta-)skills from CT to other disciplines. This seems explicitly
stated already in (Minsky, 1970), where Minsky emphasizes his shared view with
Papert: “our conjecture [is] that the ideas of procedures and debugging will turn out
to be unique in their transferability.”

5 We refrain from a historical reconstruction of this folklore expression, often said of “culture”. It
appears in print at least in 1908, in Gaetano Salvemini’s “Cos’è la cultura”.
6 For a discussion about “transfer of skills”, see section 6.
7 However, we will discuss (Feurzeig et al., 1970) in details in the next section.
8 The adjective “computational” is used 39 times in the book (CT is used only once). Among the
expressions used more than once throughout the book we find: c. ideas (p. 17, 121, 145, 155); c.
culture (p. 5, 100, 170, 174); c. metaphor (p. 105, 154, 169, 171, 187); c. model (p. 106, 164, 169);
c. environment (p. 182 twice, 212);
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On this count, however, it is useful to read (Feurzeig et al., 1970)9, written in
the same year of Minsky’s lecture, where Papert and colleagues made claims on
how “appropriate teaching with a suitable programming language can contribute to
mathematics education”. Let us review some of them.

The first claim seems indeed to support the idea of CT transferring to gen-
eral skills, as already noted by (Tedre & Denning, 2016): “programming facilitates
the acquisition of rigorous thinking and expression.” However, this concept is ex-
plained further in the article—the peculiarities of computer programming make it
a privileged tool for learning problem solving with an experimental approach10. In
fact, children have to impose on themselves rigor and precision in instructing the
computer—being explicit and precise is not imposed (incomprehensibly) by an en-
forcement of the teacher, but naturally emerges from the need of being understood
by an automated executor with a limited instruction set, which is unable to perform
any “human” inference. Briefly: the computer creates an intrinsic motivation to learn
by trial, error and debug.

A next claim is that, again, “programming provides highly motivated models” for
the so called heuristic concepts (e.g. “formulate plan”, “separate the difficulties”,
“find a related problem”, “contrast between global planning and formal details of
a solution”, “sub-goals and sub-problems”, “debugging as a definite, constructive,
plannable activity”, and so on). Note again the emphasis on the fact that program-
ming provides high motivations for learning these concepts. Moreover, note also that
many of these ideas are included in modern CT definitions, often as CT “practices”
or “approaches” (e.g. those from CSTA, Google, CAS, ScratchEd (International
Society for Technology in Education (ISTE) & Computer Science Teachers As-
sociation (CSTA), 2011; Google, 2017; CAS, 2014; Brennan & Resnick, 2012)).
In (Bender, 2017), the author even states that “heuristics” is the name given by Pa-
pert to what today we call CT.

Finally, (Feurzeig et al., 1970) confirm that the purpose of their experiment is
to use programming as a foundation for teaching mathematics, rather than teaching
programming as a topic on its own (however recognising the importance of this
second aim).

In summary, it is not the programming skills which count, or the “algorithmizing”
concepts acquired through programming. A reading of Mindstorms which takes into
account the entire book, and not single, isolated quotations makes clear that the
focus is on the use of computers as formidable tools for “addressing what Piaget
and many others see as the obstacle which is overcome in the passage from child
to adult thinking.” “Knowledge that was accessible only through formal processes
can now be approached concretely. And the real magic comes from the fact that
this knowledge includes those elements one needs to become a formal thinker.” Any

9 (Feurzeig et al., 1970) was written ten years before (Papert, 1980). It reports on the first fif-
teen months of using the LOGO programming language in teaching mathematics to three classes:
second, third and seventh grade.
10 Authors recognize that is theoretically possible to teach programming as an abstract mathe-
matical concepts, without using computers, but this will cause the loss of the essential aspect of
hands-on learning.
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rendering of Papert’s position as a mere transfer of meta-skills would thus be a
gross misunderstanding. The outcome that Papert and his group envisage is not the
result of a generic exposure to computational concepts and education. In (Papert,
2000), he explains: “In Mindstorms I made the claim that [. . . ] the ability to program
would allow a student to learn and use powerful forms of [. . . ] ideas. It did not
occur to me that anyone could possibly take my statement to mean that learning to
program would in itself have consequences for how children learn and think. [. . . ]
Papers were written on ‘the effects of programming (or of Logo or of the computer)’
as if we were talking about the effects of a medical treatment.” The modality of
interaction with the computational media is as (and probably more) important than
its contents.

It is now high time to come back to the quotation about CT, and to read it in its
context:

I have no doubt that in the next few years we shall see the formation of some computational
environments that deserve to be called “samba schools for computation.” There have already
been attempts in this direction [. . . , but] they have failed to make it because they were
too primitive. [. . . ] Their visions of how to integrate computational thinking into everyday
life was insufficiently developed. But there will be more tries, and more and more. And
eventually, somewhere, all the pieces will come together and it will “catch.” [. . . ] They
will be manifestations of a social movement of people interested in personal computation,
interested in their own children, and interested in education. (Papert, 1980, p. 182).

To understand this surprising reference to Brazilian “samba schools” we need to
elaborate on Papert’s learning theory. For Jean Piaget (who inspires Papert’s edu-
cational view) the way we acquire knowledge determines how much it is valid for
us. He encourages the “use of active methods which give broad scope to the spon-
taneous research of the child or adolescent and require that every new truth to be
learned be rediscovered or at least reconstructed by the student, and not simply im-
parted to him” (Piaget, 1973, p. 15). Piaget’s constructivism11 will be transformed
by Papert into his own learning theory, constructionism. It shares with construc-
tivism the idea of active building of knowledge through experience; it adds that
learning is especially effective when the learner is involved in the active construction
of objects meaningful to her. To construct these objects, she needs building materi-
als (concrete or abstract)12. Piaget distinguishes between “concrete” and “formal”
thinking, the first already present at the age of first grade and consolidated after-
words, the second which does not appear until, say, age 12. Papert argues that “the
computer can concretize (and personalize) the formal”, thus allowing “to shift the
boundary separating concrete and formal.” For him, anything can be easily under-
stood, if it can be assimilated to the collection of mental models already present
in the learner’s mind. This is why one needs “objects to think with”, the building
bricks of the personal (construction of) knowledge. In the choice of these materials,

11 A set of psychological and learning theories sharing the idea that knowledge is actively con-
structed or reconstructed by learners rather than being transmitted to them.
12 Papert, for example, states that as a child he was obsessed with gears. He always used mental
models about how gears work as a tool to understand the world, and even complex mathematical
concepts like differential equations.
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however, there is not only a cognitive aspect—for the constructionist, at play there
is always a fundamental affective component. Papert himself says he was in love
with gears.

Every student will be obsessed by something different, and here comes the power
of computers, their protean ability to simulate and execute every other model, so
that they may bring to everyone the building materials she loves most. Finally, the
environment where the learning happens is also fundamental. Computers can create
a world where, for instance, you “speak mathematical language” (Papert called it
Mathland)—like you learn a foreign language by living in a foreign country, you
learn deep mathematical concepts by experimenting, and having concrete, practical
experiences in Mathland.

Mindstorms is particularly critical towards traditional school systems. Computers
and programming will make old schools obsolete and useless, because learning will
happen in constructivist environments, which would resemble traditional Brazilian
samba schools, so fundamental for the preparation of the Rio Carnival. They are
not schools in the traditional western meaning; they are rather clubs ranging from
hundreds to thousands of people, from children to their grandparents, from novices
to professionals. Members of each school gather every weekend to dance and to
meet with friends. All of them dance: the novice learns, the expert teaches, but also
practices for harder moves. There is a great social cohesion, a great sense of belong-
ing, a strong idea of having a “common purpose.” Although learning is spontaneous
and natural, it is also deliberate—results of a year of work are spectacular, profes-
sional level representations, with references to traditions and with strong political
undertones. All of this is present in Papert’s reference to “samba schools of com-
putations”: environments where children and grown-ups may learn (by doing) the
principles of computation, and use them to learn other disciplines, in a computa-
tional perspective. Their learning method will be radically different from what is
common in traditional schools. No knowledge is transmitted, and pupils will learn
because are immersed in an environment whose activities are both rich of computa-
tional principles and meaningful for the community.

That Papert’s prediction about the revolution in the school system did not mate-
rialize, it is a plain truism, and his ideas in Mindstorms have been misunderstood
and oversimplified. In retrospect, (Papert, 2000) reminds about the subtitle of the
book (“Children, Computers, and Powerful Ideas”), acknowledging that both en-
thusiasts and detractors focused on the first two elements, forgetting the third, the
most important one. Children are able to learn powerful ideas about the world (e.g.,
mathematical concepts like the idea of “zero”, or “probabilistic thinking”), but these
ideas have been disempowered by schools, which teach mathematics only through
application of formulas, or by proposing problems situated in “fake” contexts that
fail to be meaningful for pupils. The real thesis of Papert’s CT, is not that “learning
to program will in itself have consequences on how children learn and think”, but
that ability to program a computer can help re-empowering pupils13, and bring to
them powerful ideas about mathematics, physics, probability (which are the fields

13 This is also made clear in the “Introduction to the second edition” of Mindstorms (1993), which
critiques the critiques of the first edition based on a supposed claim that “‘doing Logo’ or ‘working
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touched upon in Mindstorms). In (Papert, 2000), finally, it is recognized that the
change that was hoped for schools in the 1980s will eventually happen because of
the increasing dissonance between school and society, and the increasing availabil-
ity of technologies and ideas needed for the change to happen. We will return on
this in Section 5.

The expression “computational thinking” will return many times in Papert’s
last14 talk (Papert, 2006), a few months after the publications of Wing’s paper.
The starting point is that the school system is dominated by graphocentrism, be-
cause it uses obsolete technologies — pencil and paper15. This reduces knowledge
“to the kind of knowledge that can be written down: propositions” — a “propo-
sitional thinking” which is good for testing and grading students. LOGO was the
first step beyond this paradigm, introducing “procedural thinking”: knowledge as
instructions, expressed through a programming language. But Papert acknowledges
that this is only a first step towards computational thinking. One of the main aspect
of CT is what he calls “object oriented thinking”, not referring to the programming
paradigm, but defining it as the “making and understanding of computational ob-
jects”. These computational objects16 may of course be used to teach programming,
or standard geometry, but their intended role is another: they are objects you can
“get to know [. . . ] more like the way you get to know a person”. Again: these are
objects to think with, in a cognitive and in an affective sense. The great contribu-
tion of CT should be making “key, big ideas” of mathematics accessible to children,
thus allowing to “turn learning upside down”: in history, people started using and
developing math for concrete aims, and doing so they “developed something called
mathematical thinking”, and only gradually this became the field of formal, pure
mathematics. But nowadays in school this process is reversed: we wait to teach
mathematical big ideas when pupils are ready to learn the abstractions needed to
manage the formal part. With computers, they can start from the applications and
gradually go up to abstractions.

4 Wing and CS for all

The twenty-six years between Mindstorms and (Wing, 2006) are those of the dra-
matic rise of the digital society, and of computational science. On one side we
see the availability of digital tools to everybody, through the World Wide Web as
the single infrastructure through which all different technologies are deployed. On
the scientific side, computational tools are no longer the product of only computer

with computers’ would cause change in how children think. [. . . ] Logo does not itself produce good
learning any more than paint produces good art.”
14 The very next day, Papert was struck by a motorbike and received a serious brain damage.
15 The evocative image Papert proposes is that of an alien anthropologist visiting Earth and un-
derstanding that all knowledge workers adopted computers as their main work tool — all except
students.
16 The implicit reference is, of course, to LOGO’s turtles.
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scientists—most scientific disciplines become “computational”, stably adding sim-
ulation as a third component of science, after theory and experiment (Winsberg,
2010). Wing’s paper was then published at the right moment, for selling CT to a
larger audience than computer enthusiasts. From simple “algorithmizing”, in Wing’s
hands CT becomes a large umbrella for thought processes and techniques covering
also natural information-processing, as synthesized in the Aho-Cuny-Snyder-Wing
definition: “The thought processes involved in formulating problems and their solu-
tions so that the solutions are represented in a form that can be effectively carried out
by an information-processing agent.”17 Wing’s CT lays in the path well-marked by
the early computer scientists (cfr. Section 2), extracting from computer science a list
of thinking patterns (“mental tools that reflect the breadth of the field of computer
science”), which include efficiency, approximation, recursion, using abstraction and
decomposition in problem solving, or exploiting “reduction, embedding, transfor-
mation, or simulation” to reformulate a difficult problem. In particular, Wing is
careful in stating that “computer science is not computer programming. Thinking
like a computer scientist means more than being able to program a computer” (pag.
35). As (Tedre & Denning, 2016) says, “Wing’s formulation struck a resonant cord,”
and around that manifesto several interests coalesced into a movement to bring CT
into all levels of K-12 education; see, e.g., (Guzdial, 2015) and (International Soci-
ety for Technology in Education (ISTE) & Computer Science Teachers Association
(CSTA), 2011). At the same time, several well-grounded criticism has been raised
(see, for instance, (Mannila et al., 2014) for a balanced review) for ambiguity of
definition, non substantiated claims regarding the transfer of meta-cognitive skills
from CT to other disciplines, even arrogance. The problems stem when, instead of
understanding CT as a cover for the scientific core of computer science, it is viewed
instead as a new discipline, which should be taught and evaluated as such (Armoni,
2016), (Lodi, Martini, & Nardelli, 2017).

Despite the many misconceptions (Denning et al., 2017), the CT movement has
been instrumental for the inclusion of (some flavor of) computer science in gen-
eral education (CS for all: “For everyone, everywhere” (Wing, 2006), page 34).
In Great Britain18, in USA19, in France20, the governing bodies of public educa-
tion have issued instructions for the teaching of computer science in all schools.
Most of them have an explicit reference to CT, but never as a discipline indepen-
dent from computer science as a whole. On the same vein, see also the recent joint
proposal of ACM Europe and Informatics Europe for an “Informatics for all” initia-
tive (Caspersen, Gal-Ezer, McGettrick, & Nardelli, 2018), which adopts a two-tier
strategy. A first tier takes the form of informatics as a specialisation, i.e. a funda-

17 This widely quoted definition is referred to only in unpublished work, for instance Wing’s
http://www.cs.cmu.edu/ CompThink/resources/TheLinkWing.pdf. See also (Aho, 2011), which
stresses in particular the role played in this definition by the information processing agent.
18 https://www.gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
19 http://www.nsf.gov/csforall
20 http://www.academie-sciences.fr/pdf/rapport/rads 0513.pdf
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mental and independent school subject. The second tier would be the integration of
informatics with other school subjects.

Still, we also see many, well-published initiatives where CT is identified (more or
less explicitly) with “coding” (that is, the last phase of the programming process)21,
an equation that “keeps spreading into the jargon of CS educational research, of CS
curricular development (at all levels), of stakeholders such as politicians who deter-
mine or affect educational policies, school principals, and school advisors, among
others” (Armoni, 2016). That computer science (and hence CT) is much broader
than “coding” (indeed much broader than “programming”) is something that com-
puter scientists and educators have known for decades (Tedre, 2014)—accepting
now the identification would be a significant step back.

5 The digital discontinuity

The school curriculum, in any country, have a big inertia — it changes very slowly,
and radical reforms are rare. They happen only when a significant fracture is ex-
perimented between the curriculum itself and the society it is supposed to repre-
sent. This is what started to happen at the beginning of the twenty-first century:
the digitalisation of everyone’s life, the substitution of information for the capital
as the driving force of industrial innovation, the contraction of the perceived dis-
tances due to the availability of direct sources of information, started to become
so prominent—and evident to everybody—that a request for school to cope with
innovation became inevitable. In (Fadel, Bialik, & Trilling, 2015) this is identified
as “the perfect learning storm”, caused by four converging forces: knowledge work
(“steady supply of well-trained workers, using brainpower and digital tools to ap-
ply well-honed knowledge skills to their daily work”); thinking tools (the necessity
to use–and not be overwhelmed by–the digital tools for thinking, learning, com-
municating, collaborating, and working); digital lifestyles (the naturalness of use
of digital, mobile, ubiquitous tools requires that also learning become interactive,
personalized, collaborative, creative, and innovative); learning research (develop-
ments in learning technology allow “to personalize learning to meet each student’s
learning abilities and disabilities, learning styles and preferences, and unique profile
of talents and competence.”) Moreover, Pierre Bourdieu’s notion of “cultural cap-
ital” (Bourdier, 1977) applies easily here: if school wants to maintain its role as a
driver of social mobility, it has to change its approach, so that the digital resources
that every student nowadays has, could become a capital for everybody, and not
only for those children and young people who come from homes where that culture
is present and that capital is already exploited (see also (Merchant, 2007)).

It is in this context that Wing’s peroration about CT made its triumphant march.
The need to respond to the societal changes was matched by an educational offer,

21 Mentioning just a few of them: Code.org and its Hour of Code, the EU Code Week, the
ECDL Foundation and its Computing and Digital Literacy document, CodeAvengers, CodeMon-
key, CodeCombat, etc.



Computational Thinking 11

which was broad (and undefined) enough to appeal both at those wanting a formal
presence of computer science in the curriculum, and at those who would instead
go for mere “digital literacy”, or simply “coding.” The fact that CT was not oper-
ationally (or epistemologically) defined, only helped in its diffusion. It is now well
ingrained in the school system, up to be present in several comprehensive reform
proposals. Of these, let us only cite (Ananiadou & Claro, 2009), an influent working
paper of the OECD, which lead the way to the planned inclusion of CT in the PISA
2021 study22, as part of mathematics.

6 Teaching computer science

Despite the ambiguities surrounding CT, the momentum it gave to teaching CS to all
students is something that cannot be undervalued. Following (Lewis, 2017), we dis-
cuss in this section, in the light of our previous arguments, some of the immediate,
and long term benefits that are claimed for this “CS for all.”

First, an old, and much used, claim is that Programming can teach students to
think logically. The same has been said for decades for the teaching of Latin, or
ancient Greek. It may be true, but not because an automatic competence transfer
happens (on the contrary, research in education shows that transfer is difficult, es-
pecially between distant domains (Ambrose, Bridges, DiPietro, Lovett, & Norman,
2010)), but because “engaging in intellectually demanding tasks is important for
student’s cognitive development” (Lewis, 2017). After Papert’s proposals, during
the 80s some research about cognitive effects of programming has been conducted,
leading to mixed results (Scherer, 2016). Papert himself acknowledges that what
he calls the “Latinesque” justification for teaching something is not sufficient: one
should always test if there are other ways to achieve the same goals (Papert, 2006).
It should be clear from the previous sections, however, that he thought computers
and programming have some peculiar characteristics that make them particularly
useful for the training in logical thinking.

Second, a specific claim regards the use of CS techniques in STEM education:
Programming helps student learn Science and Math. While, again, it is unlikely
that learning to program will directly transfer in better learning of other STEM
disciplines (Lewis, 2017), studies from the 80s (for a review, see (Guzdial, 2015, pp.
41-49)) show that students can learn better some scientific concepts with the help
of specifically designed programming environments (LOGO being the originating
one). By contrast, some (but not all) of these studies found that students learned

22 The Programme for International Student Assessment (PISA) is a triennial international world-
wide survey by the Organisation for Economic Co-operation and Development (OECD) for the
evaluation of educational systems through the measure of the performance on mathematics, sci-
ence, and reading of students in their 15th year. Mathematics is the major domain assessed in the
edition 2021, as it was in 2003 and 2012. At the moment the present paper is written, a preliminary
document with reference to CT is available: “PISA 2021 Mathematics Framework”, Directorate
for Education and Skills, 6 April 2018, document EDU/PISA/GB(2018)4.
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only those basic concepts of CS/Programming that were needed to interact with the
learning environments23.

Much more interesting is that Programming provides emotional value, agency
and motivation. Indeed, in the constructionist spirit, programming can be “a medium
for creation, communication and creative expression” (Lewis, 2017). Kafai and
Burke (Kafai & Burke, 2014) show examples of students using programming and
“making” to create, and then to connect with others while sharing their creations.
Of course, programming is not the only medium useful for this; however, the fact
that through programming we can simulate (and make concrete) many physical or
abstract processes, gives it a particular educational role. Moreover, the availability
of mobile devices and the ease of connection and sharing through the Internet, make
programming a privileged, central tool for such kind of “samba schools.”

Now that we live in an “ubiquitous computing” world, we cannot forget that
Learning CS helps student understand the world, act and grow as digital citizens.
If schools do not provide intellectual instruments to be active digital citizens (e.g.
to take informed decisions about privacy and security), to access digital jobs, to be
informed towards higher study of computer science or engineering, this will perpet-
uate discriminations, letting student decide their future only on the basis of stereo-
types24. Remembering that no transfer is automatic, it is important to explicitly link
the concepts from CS to the “computational world” that the students will found
outside school.

7 Between Scylla and Charybdis

The proposed inclusion of CT in the PISA 2021 study may be seen as the crowning
success of “Wing’s computational thinking”—it made it into one of the longest-
running and accepted international tests of the performance of students across dis-
ciplines. It may be read, however, also as a normalizing move of the establish-
ment towards “Papert’s computational thinking”: instead of “turning learning upside
down”, the computational objects are integrated into the standard practice of tradi-
tional education, thus neutralizing their revolutionary potential. If CT wants to be
a cornerstone of education for the next decades, it must navigate carefully between
Scylla and Charybdis.

On one side, it must resist to the illusion that “coding” (as representative of any
simplistic approach to the acquisition of the basic of computer science) could be
a shortcut to the acquisition of that “algorithmizing” that early computer scientists
viewed as one of the main contributions of their discipline to general culture. During

23 Similar results were obtained by Sharon Carver (see (Guzdial, 2017)) when trying to teach
problem solving in real life situations through programming: it worked for problem solving, but
the students did not learn much programming.
24 Recall also the discussion about the “digital capital” of Section 5.
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its evolution, computer science developed its own big ideas25 that should become
part of all school curricula, to close the digital discontinuity we are facing today.

On the other hand, CT must preserve the innovation potential of the samba
schools of computation, without being marginalized into special educational ini-
tiatives. We are now aware of the huge potential that comes from making learning
constructive and meaningful for students—it re-empowers powerful, big ideas (of
mathematics, physics and potentially any other discipline) that have been disem-
powered by school. Indeed, solving problems using computers and computer sci-
ence principles forces to think logically/systematically/procedurally, not because of
an external imposition, but in virtue of the computers’ intrinsic nature. Moreover,
constructing computational artifacts gives the opportunity to have computational
objects to identify with, and to “concretely” manipulate them, to explore and build
with them. And this has to happen in all “standard” schools, because it is there that
it is necessary, where the transformation of digital resources into a cultural capital
is an imperative for social inclusion.

Teaching computer science should then focus on the “big ideas”, rather than on
the technical details. These details are of course needed, but only if instrumental
for conveying the deep concepts, and always in the context of “deliberate” learn-
ing, where also the repetitive technical training assumes its meaning. At the same
time we should not forget that introducing a new formal discipline in school can
disempower its powerful ideas, transforming them in mere transmission, applica-
tion, repetition and assessment. CS should be the furthest discipline to undergo such
process of disempowerment, because of its intrinsic characteristics that make it a
perfect tool to convey a radical change in learning.

Only if CT will be savvy enough to preserve also its affective dimension as a
“samba school,” it will contribute to the empowering of all students, in particular the
young and the disadvantaged, and to the bottom-up reconstruction of its concepts,
also those of citizenship and participation.
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