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We present the conception and analysis of a situation dealing with the principles of public-key
cryptography and aiming at exploring informatics and mathematical concepts and methods. We
rely on the Theory of Didactical Situations to design a situation (based on an unplugged activity)
about  public-key  cryptography using  graphs.  After  the  preliminary  analysis  of  the  content,  we
conceived  a  didactical  situation  and  developed  its  a  priori  analysis.  The  description  of  the
associated solving strategies illustrates the interplay between mathematics and informatics, and the
role of algorithms and algorithmic thinking.
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Introduction

Mathematics  and  Informatics  have  “strong  links  and  a  common  history”,  they  have  common
backgrounds  (e.g.  logic),  concepts  (e.g.  graphs,  functions),  and  “fields  developing  at  their
interface”,  and  “a  very  similar  relation  to  other  sciences  through  modelling  and  simulation”
(Modeste, 2016, pp. 243-244). They are two autonomous and distinct disciplines, but their frontier
is blurry, with mutual contributions. From an educational perspective, we consider it important to
foster interdisciplinary teaching to make students aware of threads that both disciplines share.

In the context of the IDENTITIES Project (https://identitiesproject.eu/), about interdisciplinarity in
STEM education and pre-service teacher training, we have chosen to explore possibilities offered
by cryptography. Our choice was motivated by the epistemological reason that cryptography is a
deeply interconnected field between informatics and mathematics, involving many concepts from
the two disciplines, but also “boundary objects” (Akkerman and Bakker, 2011) belonging to both.

We hypothesize  that  the  research  methodology  offered  by  the  Theory  of  Didactical  Situations
(Brousseau  &  Warfield,  2020)  is relevant  to  design  didactical  situations  at  the  interface  of
mathematics and informatics.

Our main research question is “How cryptography can foster mathematics-informatics interactions
and algorithms, and what kind of learning activity can it generates?”.

For exploring this question, we developed a didactical situation based on an activity on public-key
cryptography as a central part of a module for pre-service teacher training. We present here the
didactical situation that, in our view, can be adapted for various audiences: in-service teachers, high
school students, undergraduates, PhD students, both from informatics or mathematics background.
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After introducing the Theory of Didactical Situations, we will present the didactical situation, and
its a priori analysis, which shows how the situation and its organization foster interactions between
mathematics and informatics, and the role of algorithms and algorithmic thinking.

Theory of Didactical Situations

The Theory of Didactical Situations (TDS) offers conceptual tools for the design of teaching and
learning  Situations.  Students’  learning  is  seen  as  the  result  of  interactions  in  a  system  of
relationships between students, a teacher and a milieu. The TDS core-conceptual tools that we will
use in this paper are the following: the concepts of  milieu and of  adidacticity, and the notion of
didactic variables (Brousseau & Warfield, 2020). The milieu of a situation is composed of the set of
material objects, the available knowledge, and interactions with teacher and students. In a didactical
situation, students rely on their available knowledge to engage in actions to solve the problem at
stake. During this activity, the milieu provides retroactions. Adidacticity characterizes the phases in
which  students  are  able  to  interpret  autonomously  the  retroactions  of  the  milieu.  A didactical
variable is a variable of a situation for which changing the value may impede the solving strategies
(validity,  complexity)  and  their  hierarchy,  and  on  which  the  teacher  can  act  according  to  his
objectives. Identifying the didactical variables and their effects is the core of the a priori analysis.

Presentation of the didactical situation 

Our didactical  situation aims both at  teaching the “core idea” (Lodi  et  al.,  2022) of public-key
cryptography and making participants interact with mathematical and informatics objects. We based
on a public-key cryptography problem (Fellows, 1994) which uses a cryptosystem leveraging on the
computationally hard problem of finding a perfect dominating set on a graph.

Elements of preliminary analysis

While the importance of teaching cryptography has been recognized in both graduate and K-12
curricula (Joint Task Force on Cybersecurity Education, 2018; CSTA, 2017), often, it is treated as
just one of the many topics of cybersecurity or with a too technical and instrumental focus rather
than on its  core ideas (for recent reviews, see Švábenský et  al.  (2020) and Lodi et al.  (2022)).
Research shows,  however,  that  hands-on,  cooperative,  and inquiry-based activities  can improve
students’  self-efficacy  and  problem-solving  skills  (Konak,  2018).  Some  authors  proposed
unplugged  activities  for  students  to  experience  cryptographic  algorithms,  protocols  and  attacks
(e.g., Bell et al., 2003; Konak, 2014).  Moreover, communicating in secret and trying to decrypt
messages without knowing the key is not only engaging and motivating for students (Lindmeier and
Mühling,  2020),  it  has  also,  from a  didactical  perspective,  a  strong  potential  for  adidacticity,
allowing self-directed learning through autonomous engagement with the task (e.g., when you can
easily verify if you have well decrypted a message or if your (de)crypting programs run correctly).

A public-key cryptosystem using perfect dominating sets on graphs

An  encryption scheme allows for confidential communication between two parties over a public
channel. A plaintext message is transformed into a ciphertext (i.e., an encrypted message) using an
encryption algorithm, the security of which is dependent on one or more keys. There are two types
of  cryptosystems:  symmetric (or  secret-key)  and  asymmetric (or  public-key).  In  a  symmetric



cryptosystem,  the  same  key  is  used  for  both  encryption  and  decryption.  In  an  asymmetric
cryptosystem, a different key is used for encryption (public key) and decryption (private key).

In our case, we considered a public-key cryptosystem. The important components of a public-key
encryption scheme include: a key generation algorithm (Gen) that creates a pair of keys  ( pk , sk )

(public key and private key) for each user, an encryption algorithm (Enc) that converts a plaintext

message  m into  a  ciphertext  c=En c pk (m ) using  the  recipient's  public  key,  and  a  decryption

algorithm (Dec) that converts the ciphertext back into the original plaintext using the recipient's

private key (m=Dec sk (c )).  Enc and  Dec algorithms must be computationally efficient when the

corresponding keys are known, and the scheme's security is based on the difficulty of computing the
Dec function without having access to sk. 

An asymmetric cryptosystem that leverages on the computationally difficult problem called Perfect
Dominating Set (PDS in the following) problem has been proposed (Fellows and Koblitz, 1994).
Given a graph G= (V , E ) with a set of vertices  V  and a set of edges E, a (closed) neighbourhood of

a vertex u∈V  is the set N [u ]={v∈V /uv∈E }∪{u } (that is, the vertices in V that are adjacent to u,
and  u itself). A  dominating set of  G is a subset of vertices  S⊆V  such that every vertex of  V is
included in the neighbourhood of a vertex in S. If S is a dominating set of G, then every vertex in V
is a neighbour to at least one vertex in S, or it belongs to S. If each vertex of V is included in exactly
one neighbourhood of a vertex of S, then S is said to be a perfect dominating set (often referred to
also as perfect code). Figure 1 (left) gives an example of a graph with a PDS. 

Thus, the PDS problem is the following (Fellows and Hoover, 1991): given a graph  G= (V , E ),
output a PDS of G, if one exists. 

Deciding whether a graph has a PDS is, in general, NP-complete (Klostermeyer, 2015, p. 107).
Therefore,  our  PDS  Problem  is  NP-hard,  which  means  we  only  have  algorithms  that  take
exponential time in the number of nodes, and we may never be able to improve that. This feature
can be used to design a cryptosystem, as we will see.

The PDS problem can be used to develop an asymmetric cryptographic system because (1) starting
from a set of vertices S, it is possible to construct a graph that has S as a PDS; but (2) given a graph
that has a PDS, it is hard to find it by only knowing the graph. 

The  PDS  cryptosystem  works  as  follows.  Bob  wants  to  confidentially  communicate  a  secret
message (an integer) m to Alice. They can use the following encryption protocol.

 Alice creates a graph G = (V, E) (where V={v1 , v2 ,... v k}) that has S as PDS. G is Alice’s
public key, and the PDS S is Alice’s private key.

 Bob writes m as the sum of random integers m1 ,m2 ,... ,mk (m1+m2+...+mk=m)
 Bob assigns an mi to each vertex vi of V. mi is now called the secret value vi.
 Bob calculates a public value  pi of each vertex  vi by summing the secret values of  vi’s

closed neighbourhood (i.e. including vi own secret value). 
 Bob creates the encrypted message by writing on each vertex vi of the graph its public value

pi (and removing its secret value mi). 

Figure 1 (right) shows the previous graph with public (grey) and secret values (black underlined).



Fig. 1 (left): The subset {I, K, F} is a PDS for the graph ; (right): The secret message m=19 encrypted
using the same graph. Secret values in black underlined, and public values in grey.

To decrypt  the  encrypted  message  (the  graph  G  with  public  values)  that  Bob  sent  her,  Alice
calculates the sum of the public values of the nodes in the PDS (the PDS is her private key).

In principle, the graph G (public key) and the encrypted message can freely circulate: a priori, the
system is secure because finding the PDS from the graph is computationally challenging (NP-hard).
However,  algebraic attacks can be performed (Fellows & Koblitz, 1994), which makes it not a
good cryptosystem in real life, but very interesting for a didactical situation.

While  the  cryptosystem is  known (Fellows  and Koblitz,  1994)  and has  been  used  in  teaching
activities  (e.g.,  Bell  et  al.,  2003),  our  main  contribution  is  the design of  an original  didactical
situation around it, with an organization of its milieu, an identification of the didactical variables,
and an detailed a priori analysis, that foster its learning potential in mathematics and informatics.

In our  didactical  situation,  participants  are  given a  complex  task  (decrypting  a  secret  message
encrypted  with  the  PDS  cryptosystem).  Due  to  the  careful  choice  of  didactical  variables,
participants have to devise solving strategies that involve understanding and applying concepts and
methods from mathematics and informatics and sometimes the change of semiotic registers. 

The didactical situation and elements of the a priori analysis

The objectives of the didactical situation are (1) Introduce some general concepts and terminology
from cryptography  (e.g.,  plaintext  and  ciphertext,  encryption  and  decryption  algorithms,  attack
models, private and public keys, difficult-to-reverse problem, one-way function) and make students
understand and explore the  ideas and challenges of public-key cryptography;  (2) Make students
explore and interact with mathematical and informatics concepts and interdisciplinary objects (e.g.,
graphs, algorithms, matrices). 

The didactical situation is organised as follows:

Phase 1: Encryption. Participants are shown the encryption algorithm using the graph G (the public
key). They are neither taught what a PDS is (not needed for encryption) nor that G has a PDS.

Phase 2:  Cryptanalysis.  Participants are divided into three groups.  The same encrypted message
(i.e., the graph G with public values) is given to everyone, and they are asked to decrypt it. Each
group is given different information to solve the problem, as detailed in the following.



The aim of making three groups, sharing and debating their results after the research phase, is to
make them grasp the issues of asymmetric cryptography, the role of the public and secret keys, and
that attacks can be done with different levels of information about the protocols. For each group, we
present the information given and the position in which students are put. Then we describe the main
strategies, highlighting mathematical, informatics, and algorithmics contents and thinking involved.

Group A – Available information: the PDS definition and a PDS for the graph G. No information
on using the PDS to decrypt is given:  they should find by themselves the decryption algorithm
using the PDS. They are put in the position of engineers trying to design a decryption protocol.

Strategy: Identify the neighbourhoods of all vertices that belong to the given PDS. Then observe
that the intersection of these neighbourhoods is empty and that the union of these neighbourhoods
covers graph G. The neighbourhoods can be represented as lists of vertices or graphically as ‘stars’
on the graph. By the cryptosystem construction, the public value of each vertex is the sum of the
secret values of its neighbourhood. Thus, the sum of the public values of the vertices of the PDS is
equal to the sum of the secret values of all the nodes, which is the plaintext message. In order to
elaborate this strategy, it is needed to interpret the definition of PDS (expressed using terminology
from set theory) on the graphical representation of the graph, and make the connection with the
encryption procedure. More precisely, it is needed to deduct what the perfect domination property
means for the public values of the nodes. This procedure is not trivial  and requires an intuitive
understanding of the proof of correctness of the cryptosystem, i.e., the decryption of an encrypted

message  returns  the  plaintext  message:  Dec sk ( Enc pk (m ) )=m.  This  can  involve  making  the

decryption algorithm explicit and proving the encryption’s correctness.

Group B – Available information: the definition of PDS and the decryption algorithm (which uses
the PDS). Group B knows that there is a PDS in graph G, but they do not know it. This incites the
group to try to find the private key (the PDS) using the encrypted message and the public key.
Group B is thus confronted with an instance of the difficult problem of finding a PDS in a graph.
They are put in the position of attackers who know completely the protocols but not the private key.

Strategies: we describe three possible strategies, using different semiotic registers (Duval, 2017):
the  graph  representation,  the  lists  of  vertices,  and  the  graph's  adjacency  matrix.  These  three
strategies amount to a structured, exhaustive search of the subsets of vertices to find the PDS. 

Strategy 1: Finding stars. Given a graph G = (V, E), we have to find a set S that is a PDS of G. 

Let v be a vertex of V. By the PDS definition, in the neighbourhood N[v], there exists exactly one
vertex that belongs to S. Thus, if v vertex is not in S, then exactly one of its neighbours is in S.

If a vertex u belongs to S, then: i) the neighbouring vertices of u do not belong to S, and ii) for any
neighbour u′ of u, the neighbouring vertices of u′ do not belong to S either (otherwise u′ would be
linked to two vertices that belong to  S).  Thus, if we find a vertex  in S,  we can deduce that its
neighbours and the neighbours of its neighbours are not in S.

We iteratively add vertices to a set S to find a PDS. If we do not succeed, we backtrack to the
vertices' choices to continue exploring potential PDSs. In informatics, backtracking is a ‘systematic
way to run through all the possible configurations of a search space’,  especially useful when ‘we



must generate each possible configuration exactly once’ (Skiena, 2020, p. 281): we build a solution
incrementally, and when we reach a partial solution that cannot become a correct solution anymore,
we abandon the path and backtrack to explore other paths. Elaborating this strategy first requires
understanding  the  definition  of  a  PDS  and  then  interpreting  the  definition  on  the  graphical
representation of the graph. Systematising the steps of the algorithm requires an understanding of
both the properties of domination and perfect domination and a intuitive idea of backtracking. 

Strategy 2: Lists. For each vertex of G, we write its neighbourhood as a list of neighbour vertices.
We then study these lists in order to find a set of lists whose intersection is empty and whose union
covers graph G. The basic idea of this strategy is that each vertex of graph G belongs to exactly one
neighbourhood of a vertex of S. The idea is to incrementally build a collection L of lists, such that
their intersection is empty, while their union contains all the vertices of G. More technically, L is a
LIFO stack, a data structure that implements the LIFO (last-in, first-out) policy: the last list added
on top of L is the first to be removed when it is not suitable for building the PDS S. Elaborating this
strategy requires understanding the perfect domination properties, expressing these properties using
lists, and an intuitive understanding of a LIFO stack (even if not recognised as such).

Strategy 3: Adjacency matrix of the graph. This strategy consists in writing the adjacency matrix of

the graph G: for a vertex i, in the corresponding row li=[ ai 1, ai 2 ..., a❑ ] the coefficients a ij=1 if the

vertices j and i are connected and 0 otherwise. Note that here a ii=1 for all vertex i (because, in the
PDS definition, we are considering closed neighbourhoods). If we find a set of rows whose sum is
[1, 1, ..., 1], the vertices corresponding to these lines constitute a PDS (because each vertex of G is
adjacent to exactly one of the chosen vertices). This idea is very close to Strategy 2:  we go through
the set of rows of the matrix, including or excluding rows, to find a subset of rows whose sum is [1,
1,  ...,  1] -  but  the  register  of  representation  is  different.  Elaborating  this  strategy  requires
understanding the properties of the PDS and expressing these properties using the adjacency matrix.

Group C –  Available information: no information other than the encrypted message.  They only
know the encryption algorithm. This is expecting them to try to break the system without searching
for the key, but exploiting other vulnerabilities. Thus, they are put in the position of attackers who
do not try to solve the PDS problem, but explore other approaches to decrypt the message.

Strategy: Starting from the encrypted message, a linear system can be constructed  as follows: for

each  vertex  v,  of  public  value  pv and  neighbourhood  N [ v ]=[ v , v1, ...vk ],  write  the  equation

xv+xv1
+ ...+x vk

=pv where x i is the secret value of vertex i. This equation translates the encryption

step that allowed passing from private values to public values. The linear system of those equations
will have as many equations and unknowns as vertices in G. The solution of the linear system is the

tuple of all secret values  [ x1 , x2 , ... , xn ], whose sum is the plaintext message  m.  Note that, in this

case, there is a correspondence between the adjacency matrix (one of the standard ways to represent
the graph data structure in informatics (Cormen et al., 2022, p. 549)) and the matrix equation that
can be used to solve the linear system  created. Unfolding this strategy requires interpreting the
cryptosystem as a linear system and examining its resolution. Note that the solution to the problem
does not necessitate the resolution of the linear system but just finding the sum of all secret values;
among others possibilities, this can be done by finding the rows corresponding to the PDS nodes.



Principal didactical variables

The principal didactical variables identified, and their values for our learning objectives, are:

 Access to information  : it is our main variable since each group has different information.
 The type of   graph  : it should be hard to find the PDS. Certain types of graph, for which it is

known that the PDS problem is not hard (e.g., trees (Klostermeyer, 2015, p. 107)), should be
excluded. Moreover, while the PDS problem is hard for planar graphs, we observed that
using non-planar graphs makes the problem visually more difficult for the participants. 

 The size of the graph  : it should be large enough so that an exhaustive search of the PDS is
tedious, but small enough so that writing the linear system is still be feasible by hand. 

 The graph's maximum degree and the degrees of the vertices:   a too visible difference of
degrees between the vertices could influence the starting point and Strategy 1 (starting with
vertices with higher or lower degree). The graph should be “almost regular” (but not with all
nodes of same degree k, as in this case you can get the plaintext message without the PDS).

Conclusion: learning potential and links with algorithms

We have presented  elements  of  the  a priori analysis  of  a  didactical  situation  in  cryptography,
highlighting the potential of cryptography to deal with contents in mathematics, informatics, and
their  links.  A first  observation  from  our analysis,  is  that  the  frontier  between  informatics  and
mathematics  is  blurry,  and many concepts  and ways of reasoning are shared at  their  interface.
Among these concepts, we see that many algorithms or drafts of algorithms are at stake: in the
asymmetric cryptography principle, as it is based on the notion of algorithmic problem complexity,
but also through the notions and procedures involved in the solving. We see also that the algorithms
support most of the reasoning in the strategies. We consider this as  algorithmic thinking, in the
sense of reasoning with and about algorithms (designing effective procedures to solve problems,
formalizing  and  proving  algorithms,  use  and  combine  them  as  tools  in  exploring  an  solving
problems). One key point is that these learning potentials, in this cryptography problem, can only be
realized with a careful organization of the didactical situation, based on a detailed a priori analysis.

We have experimented our situation in various contexts (science teachers education, mathematics
students,  in-service teachers  education...)  and data collected is under analysis.  We have already
noticed a strong stability of strategies developed in these different contexts. The next step is to
validate  the  learning  potentials  identified  in  this  paper,  in  terms  of  interactions  between
mathematics and informatics, algorithms, and algorithmic thinking. 
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References

Akkerman,  S.  F.,  &  Bakker,  A.  (2011).  Boundary  crossing  and  boundary  objects.  Review  of
Educational Research, 81(2), 132–169. https://doi.org/10.3102/0034654311404435

Bell,  T.,  Thimbleby,  H., Fellows, M., Witten,  I.,  Koblitz,  N., & Powell,  M. (2003). Explaining
cryptographic systems. Computers & Education, 40(3), 199–215. https://doi.org/10.1016/S0360-
1315(02)00102-1

https://doi.org/10.1016/S0360-1315(02)00102-1
https://doi.org/10.1016/S0360-1315(02)00102-1
https://doi.org/10.3102/0034654311404435


Bell,  T.,  Witten,  I.,  &  Fellows,  M.  (2015).  Public  Key  Encryption.  CS  Unplugged.
https://classic.csunplugged.org/activities/public-key-encryption/

Brousseau, G., & Warfield, V. (2020). Didactic Situations in Mathematics Education. In S. Lerman
(Ed.),  Encyclopedia  of  Mathematics  Education, Springer  International  Publishing,  206–213
https://doi.org/10.1007/978-3-030-15789-0_47

Cormen, T.  H.,  Leiserson, C. E.,  Rivest,  R. L.,  & Stein,  C. (2022).  Introduction to algorithms
(Fourth). The MIT Press.

CSTA. (2017).  CSTA K-12 Computer Science Standards, rev. 2017. Computer Science Teachers
Association. http://www.csteachers.org/standards

Duval, R. (2017).  Understanding the Mathematical Way of Thinking – The Registers of Semiotic
Representations. Springer International Publishing. https://doi.org/10.1007/978-3-319-56910-9

Fellows, M. R., & Hoover, M. N. (1991). Perfect domination. Australas. J Comb., 3, 141–150.

Fellows,  M.  R.,  &  Koblitz,  N.  (1994).  Combinatorially  based  cryptography  for  children  (and
adults). Congressus Numerantium, 99, 9–41.

Joint Task Force on Cybersecurity Education. (2018).  Cybersecurity Curricula 2017: Curriculum
Guidelines for Post-Secondary Degree Programs in Cybersecurity. ACM. https://dl.acm.org/doi/
book/10.1145/3184594

Klostermeyer,  W.  F.  (2015).  A  Taxonomy  of  Perfect  Domination.  Journal  of  Discrete
Mathematical  Sciences  and  Cryptography,  18(1–2),  105–116.
https://doi.org/10.1080/09720529.2014.914288

Konak,  A.  (2014).  A  cyber  security  discovery  program:  Hands-on  cryptography.  2014  IEEE
Integrated STEM Education Conference, 1–4. https://doi.org/10.1109/ISECon.2014.6891029

Lindmeier,  A.,  &  Mühling,  A.  (2020).  Keeping  Secrets:  K-12  Students’  Understanding  of
Cryptography.  Proceedings  of  the  15th  Workshop  on  Primary  and  Secondary  Computing
Education. ACM, New York, 1–10.  https://doi.org/10.1145/3421590.3421630

Lodi, M., Sbaraglia, M., & Martini, S. (2022). Cryptography in Grade 10: Core Ideas with Snap!
And Unplugged.  Proceedings of the 27th ACM Conference on Innovation and Technology in
Computer Science Education Vol. 1, 456–462. https://doi.org/10.1145/3502718.3524767

Modeste, S. (2016). Impact of Informatics on Mathematics and Its Teaching. In F. Gadducci & M.
Tavosanis  (Eds.),  History  and  Philosophy  of  Computing.  Springer,  243–255.
https://doi.org/10.1007/978-3-319-47286-7_17

Skiena,  S.  S.  (2020).  The  Algorithm  Design  Manual.  Springer  International  Publishing.
https://doi.org/10.1007/978-3-030-54256-6_9

Švábenský, V., Vykopal, J., & Čeleda, P. (2020). What Are Cybersecurity Education Papers About?
A Systematic Literature Review of SIGCSE and ITiCSE Conferences.  Proceedings of the 51st
ACM  Technical  Symposium  on  Computer  Science  Education,  ACM,  New-York,  2–8.
https://doi.org/10.1145/3328778.3366816

https://doi.org/10.1145/3328778.3366816
https://doi.org/10.1007/978-3-030-54256-6_9
https://doi.org/10.1145/3502718.3524767
https://doi.org/10.1145/3421590.3421630
https://doi.org/10.1109/ISECon.2014.6891029
https://doi.org/10.1080/09720529.2014.914288
https://dl.acm.org/doi/book/10.1145/3184594
https://dl.acm.org/doi/book/10.1145/3184594
https://doi.org/10.21585/ijcses.v2i1.21
http://www.csteachers.org/standards
https://doi.org/10.1007/978-3-030-15789-0_47
https://classic.csunplugged.org/activities/public-key-encryption/
https://doi.org/10.1007/978-3-319-47286-7_17

	Cryptography as a field to foster interactions between mathematics and informatics, and algorithms. Analysis of a didactical situation
	Introduction
	Theory of Didactical Situations

	Presentation of the didactical situation 
	Elements of preliminary analysis
	A public-key cryptosystem using perfect dominating sets on graphs
	The didactical situation and elements of the a priori analysis
	Group A – Available information: the PDS definition and a PDS for the graph G. No information on using the PDS to decrypt is given: they should find by themselves the decryption algorithm using the PDS. They are put in the position of engineers trying to design a decryption protocol.
	Group B – Available information: the definition of PDS and the decryption algorithm (which uses the PDS). Group B knows that there is a PDS in graph G, but they do not know it. This incites the group to try to find the private key (the PDS) using the encrypted message and the public key. Group B is thus confronted with an instance of the difficult problem of finding a PDS in a graph. They are put in the position of attackers who know completely the protocols but not the private key.
	Group C – Available information: no information other than the encrypted message. They only know the encryption algorithm. This is expecting them to try to break the system without searching for the key, but exploiting other vulnerabilities. Thus, they are put in the position of attackers who do not try to solve the PDS problem, but explore other approaches to decrypt the message.
	Principal didactical variables

	Conclusion: learning potential and links with algorithms
	Acknowledgment – Work supported by the IDENTITIES Project, co-funded by the Erasmus+ Programme of the European Union under Grant Agreement n° 2019-1-IT02-KA203-063184.

	References


