Ipsa forma est substantia Language(s) as a foundation for computer science

Simone Martini

Dipartimento di Informatica – Scienza e Ingegneria

Alma mater studiorum • Università di Bologna

and

EPI Focus • INRIA Sophia / Bologna

HaPoC Symposium at IACAP-14 July 3, 2014

More generally

How the languages of computer science relate to that discipline?

Some concepts

- information
- effective (computation, procedure, process, . . .)
- feasible
- interaction
- abstraction hierarchy
- ...
- they are intrinsically tied to the linguistic way we use to express them

More generally

How the languages of computer science relate to that discipline?

Some concepts

- information
- effective (computation, procedure, process, . . .)
- feasible
- interaction
- abstraction hierarchy
- ...
- they are intrinsically tied to the linguistic way we use to express them

A dismissive comment

Turing's "machines": These machines are humans who calculate.

[L. Wittgenstein, Remarks on the Philosophy of Psychology, Vol. 1, Blackwell, Oxford, 1980.]

On one hand, it is a great praise cfr. Church's "evident immediately"

But on the substance, W. misses the point...

The computing machine

- A deep introspective analysis of a human process
- Generates an abstract, combinatorial mathematical concept
- It is a finite, alphabetic description

A Turing's parapraxis (?):

(Mechanism and writing are from our point of view almost synonymous.)

Turing, A.M. Computing Machinery and Intelligence. Mind LIX, p. 456 (1950)
Discuss: J. Lassègue. G. Longo, What is Turing's Comparison between Mechanism and Writing Worth? CiE 2012.

The computing machine

- A deep introspective analysis of a human process
- Generates an abstract, combinatorial mathematical concept
- It is a finite, alphabetic description

A Turing's parapraxis (?):

(Mechanism and writing are from our point of view almost synonymous.)

Turing, A.M. Computing Machinery and Intelligence. Mind LIX, p. 456 (1950) Discuss: J. Lassègue, G. Longo, What is Turing's Comparison between Mechanism and Writing Worth? CIE 2012.

Computation is performed by a machine

- "The computable" is invariant
- But "a computation" is not:
 a specific combinatorial process,
 happening on a (abstract) machine
- A (universal) abstract machine M exists to interpret (execute) its own language L_M
- A machine *is a black box* for its own language [after Von Neumann's *Report on EDVAC*, 1948...]

Hierarchies

Universality allows hierarchies of machines

 $\begin{array}{c} M_{i+2} \\ \hline M_{i+1} \\ \hline M_{i} \\ \hline M_{i-1} \\ \end{array}$

Machine M_i:

- uses language $L_{M_{i-1}}$ "it is written in $L_{M_{i-1}}$ "
- to implement its own language L_i
- hides (to some point) machine M_{i-1}

At any level i we do not know (and it is not required to know) which could be level 0

From patterns to abstractions

Cfr. E. Visser. Understanding Software through Linguistic Abstraction, 2013

- A programming pattern:
 A recipe to solve a re-occurring problem; applied manually.
 E.g. Calling/returning sequences in assembly, using the return stack
- A linguistic abstraction:
 A construct providing a "black-box" for that pattern
 E.g. Functions and their parameter passing mechanisms.
- The abstraction gets autonomous life, and autonomous semantics!
- It frees the user from the details of level i-1: portability

From patterns to abstractions

Cfr. E. Visser. Understanding Software through Linguistic Abstraction, 2013

- A programming pattern:
 A recipe to solve a re-occurring problem; applied manually.
 E.g. Calling/returning sequences in assembly, using the return stack
- A linguistic abstraction:
 A construct providing a "black-box" for that pattern
 E.g. Functions and their parameter passing mechanisms.
- The abstraction gets autonomous life, and autonomous semantics!
- It frees the user from the details of level i-1: portability

From patterns to abstractions, 2

Many examples:

- Abstraction on control: functions, structured programming, exceptions, semaphores, threads, . . .
- Abstraction on data: structured data types, dynamically allocated data, abstract data types, messages . . .
- Abstraction on control and data: objects, inheritance, modules, . . .

Programming languages evolve converting new patterns into abstractions, and giving them autonomous life.

From patterns to abstractions, 3

PL need to conquer new fields:

- Concurrency: name passing models (π -calculus)
- Real-Time: Esterel
- Web services:
 BPEL (Business Process Execution Language), Jolie
- Big data:??
- Cloud: ??
- Mobile computing:

??

Translations

• Of course we compile a level onto a lower level

THE PARTY OF THE P

- But (some) abstractions at level *i* are *conceptually irreducible* to lower levels: emergent phenomena
- There are no fully faithful translation, even inside the same language

A language fills a niche in the honeycomb of potential perceptions and interpretations. It articulates a construct of values, meanings, suppositions which no other language exactly matches or supersedes. [...] We speak worlds.

[G. Steiner, Errata, ch. 7, p. 99; 1997]

Translations

- Of course we compile a level onto a lower level
- But (some) abstractions at level *i* are *conceptually irreducible* to lower levels: emergent phenomena
- There are no fully faithful translation, even inside the same language

A language fills a niche in the honeycomb of potential perceptions and interpretations. It articulates a construct of values, meanings, suppositions which no other language exactly matches or supersedes. [...] We speak worlds.

[G. Steiner, Errata, ch. 7, p. 99; 1997]

"Programming" languages

- What we insist in calling programming languages
- Are powerful tools to organize, make coherent, and model reality

data models procedural models interaction models synchronization models organization models

. . .

New models

Our models are intrinsically different way from the model of, e.g., continuous mathematics (i.e., physics)

- Discrete
- Effective
- Scalable at different abstraction levels

Moreover, and crucially

Our programming languages are also (a huge part of) the metalanguage in which we express the discipline.

Forme is substance

- The way we express a concept

 an algorithm, a protocol, a software architecture, ...
 is co-essential to that very concept.
- The essence of our discipline lays in the immaterial linguistic expression of computation and interaction
- And, of course, there is never a fully faithful translation between one such expression and another...

[cfr. e.g. George Steiner, After Babel,1998²]

"Programming" languages

No scientific discipline exists without first inventing a visual and written language which allows it to break with its confusing past.

[B. Latour, Visualisation and Cognition: Thinking with Eyes and Hands; 1986]

Referring to Dagognet, F.: Tableaux et Langages de la Chimie. Paris: Le Seuil 1969; and to: Ecriture et Iconographie. Paris: Vrin 1973.

What we call programming languages are both such a founding language and the very object of the discipline.

"Programming" languages

No scientific discipline exists without first inventing a visual and written language which allows it to break with its confusing past.

[B. Latour, Visualisation and Cognition: Thinking with Eyes and Hands; 1986]

Referring to Dagognet, F.: Tableaux et Langages de la Chimie. Paris: Le Seuil 1969; and to: Ecriture et Iconographie. Paris: Vrin 1973.

What we call programming languages are both such a founding language and the very object of the discipline.

Let us follow Latour. . .

"Programs" are:

- mobile
- immutable when they move
- flat
- "their scale may be changed at will":
 phenomena can be dominated with the eyes and held by hands
- reproduced and communicated at little cost
- may be reshuffled and recombined
- may be made part of a written text
- they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams

More: programming languages are a formal, general language of (and for) inscriptions.

Let us follow Latour...

"Programs" are:

- mobile
- immutable when they move
- flat
- "their scale may be changed at will":
 phenomena can be dominated with the eyes and held by hands
- reproduced and communicated at little cost
- may be reshuffled and recombined
- may be made part of a written text
- they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of (and for) inscriptions.

Let us follow Latour...

"Programs" are:

- mobile
- immutable when they move
- flat
- "their scale may be changed at will":
 phenomena can be dominated with the eyes and held by hands
- reproduced and communicated at little cost
- may be reshuffled and recombined
- may be made part of a written text
- they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of (and for) inscriptions.

ENCYCLOPEDIE.

OIL

DES SCIENCES,
DES ARTS ET DES MÉTIERS,

RECUEILLI
DES MEILLEURS AUTEURS

DES DICTIONNAIRES ANGLOIS

DE CHAMBERS, D'HARRIS, DE DYCHE, &c.

PAR UNE SOCIÉTÉ DE GENS DE LETTRES.

Mis en ordre & publié par M. DIDEROY. & quant à la PARTIE MATHÉMATIQUE,
par M. D'ALEMBERT, de l'Académie Royale des Sciences de Paris
& de l'Académie Royale de Berlin.

Tantum feries juncturaque pollee,
Tantum de medio fumptis accedie honoris! HORAT.

DIX VOLUMES IN-FOLIO,

PROPOSÉS PAR SOUSCRIPTION.

A PARIS, Che

BRIASSON, res Seates Jacques, à la Places d'erLE BRETON, Imprimeur codinaire du Roy, res de la Hope
DURAND, res Saire Jacques, à Saire Leody, & au Griffon.

M. D.C.C. LI.

AVEC APPROBATION ET PRIVILEGE DU ROY.

On s'est adressé aux plus habiles de Paris et du royaume. On s'est donné la peine d'aller dans leurs ateliers [...]

À peine, entre mille, en trouve-t-on une douzaine en état de s'exprimer avec quelque clarté sur les instruments qu'ils emploient et sur les ouvrages qu'ils fabriquent.

[D. Diderot, Prospectus à l'Encyclopédie, 141; 1751.]

We asked the most skilled in Paris and in the kingdom. We even went into their workshops [...]

Among a thousand one will be lucky to find a dozen who are capable of explaining the tools or machinery they use, and the things they produce with any clarity.

[D. Diderot, Prospectus à l'Encyclopédie, 141; 1751.]

Inarticulate does not mean stupid; indeed, what we can say in words may be more limited than what we can do with things. [...] Here is a, perhaps the, fundamental human limit: language is not an adequate "mirror-tool" for the physical movements of the human body.

[R. Sennett, The Craftsman. 2009]

The example of Stradivari's skills and technique

Inarticulate does not mean stupid; indeed, what we can say in words may be more limited than what we can do with things. [...] Here is a, perhaps the, fundamental human limit: language is not an adequate "mirror-tool" for the physical movements of the human body.

[R. Sennett, The Craftsman. 2009]

The example of Stradivari's skills and technique.

Programming languages provide a way for us to describe to each other what we know how to do. [...]

[They are] intellectual organizing principle[s] for understanding and describing the past, and making sense of the kinds of expertise that flourished and came to maturity.

[H. Mairson, Functional Geometry and the Traité de Lutherie. ICFP 2013]

Hybris?

Galileo, on the 450-th anniversary of his birth:

- "The book [of the universe] is written in mathematical language,
- and the symbols are triangles, circles and other geometrical figures"
- But also numbers, effective procedures and abstractions.
- The descriptions co-exist and complement each other
- in the fruitful plurality of languages and descriptions

Hybris?

Galileo, on the 450-th anniversary of his birth:

- "The book [of the universe] is written in mathematical language,
- and the symbols are triangles, circles and other geometrical figures"
- But also numbers, effective procedures and abstractions.
- The descriptions co-exist and complement each other
- in the fruitful plurality of languages and descriptions