
Ipsa forma est substantia
Language(s) as a foundation for computer science

Simone Martini

Dipartimento di Informatica – Scienza e Ingegneria
Alma mater studiorum • Università di Bologna

and
EPI Focus • INRIA Sophia / Bologna

HaPoC Symposium at IACAP-14 July 3, 2014

1 / 36



The rules of engagement:

What are programs, algorithms, machines,
and how do we understand their languages?

2 / 36



More generally

How the languages of computer science relate to that discipline?

Some concepts

information

effective (computation, procedure, process, . . . )

feasible

interaction

abstraction hierarchy

. . .

they are intrinsically tied to the linguistic way we use to
express them

3 / 36



More generally

How the languages of computer science relate to that discipline?

Some concepts

information

effective (computation, procedure, process, . . . )

feasible

interaction

abstraction hierarchy

. . .

they are intrinsically tied to the linguistic way we use to
express them

4 / 36



Computation is symbol pushing

Turing’s analysis reveals the simple combinatorial structure of
computation

5 / 36



A dismissive comment

Turing’s “machines”: These machines are humans who calculate.

[L. Wittgenstein,
Remarks on the Philosophy of Psychology, Vol. 1,

Blackwell, Oxford, 1980.]

On one hand, it is a great praise
cfr. Church’s “evident immediately”

But on the substance, W. misses the point. . .

6 / 36



The computing machine

A deep introspective analysis of a human process

Generates an abstract, combinatorial mathematical concept

It is a finite, alphabetic description

A Turing’s parapraxis (?):

(Mechanism and writing are from our point of view
almost synonymous.)

Turing, A.M. Computing Machinery and Intelligence. Mind LIX, p. 456 (1950)
Discuss: J. Lassègue, G. Longo, What is Turing’s Comparison between Mechanism and Writing Worth? CiE 2012.

7 / 36



The computing machine

A deep introspective analysis of a human process

Generates an abstract, combinatorial mathematical concept

It is a finite, alphabetic description

A Turing’s parapraxis (?):

(Mechanism and writing are from our point of view
almost synonymous.)

Turing, A.M. Computing Machinery and Intelligence. Mind LIX, p. 456 (1950)
Discuss: J. Lassègue, G. Longo, What is Turing’s Comparison between Mechanism and Writing Worth? CiE 2012.

8 / 36



Computation is performed by a machine

“The computable” is invariant

But “a computation” is not:
a specific combinatorial process,
happening on a (abstract) machine

A (universal) abstract machine M exists to interpret (execute)
its own language LM

A machine is a black box for its own language
[after Von Neumann’s Report on EDVAC, 1948. . . ]

9 / 36



Hierarchies

Universality allows hierarchies of machines

Machine Mi :

uses language LMi−1

“it is written in LMi−1
”

to implement its own language Li

hides (to some point) machine Mi−1

At any level i we do not know (and it is not
required to know) which could be level 0

10 / 36



From patterns to abstractions

Cfr. E. Visser. Understanding Software through Linguistic Abstraction, 2013

A programming pattern:
A recipe to solve a re-occurring problem; applied manually.
E.g. Calling/returning sequences in assembly, using the return
stack

A linguistic abstraction:
A construct providing a “black-box” for that pattern
E.g. Functions and their parameter passing mechanisms.

The abstraction gets autonomous life,
and autonomous semantics!

It frees the user from the details of level i − 1: portability

11 / 36



From patterns to abstractions

Cfr. E. Visser. Understanding Software through Linguistic Abstraction, 2013

A programming pattern:
A recipe to solve a re-occurring problem; applied manually.
E.g. Calling/returning sequences in assembly, using the return
stack

A linguistic abstraction:
A construct providing a “black-box” for that pattern
E.g. Functions and their parameter passing mechanisms.

The abstraction gets autonomous life,
and autonomous semantics!

It frees the user from the details of level i − 1: portability

12 / 36



From patterns to abstractions, 2

Many examples:

Abstraction on control:
functions, structured programming, exceptions, semaphores,
threads, . . .

Abstraction on data:
structured data types, dynamically allocated data, abstract
data types, messages . . .

Abstraction on control and data:
objects, inheritance, modules, . . .

Programming languages evolve converting new patterns into
abstractions, and giving them autonomous life.

13 / 36



From patterns to abstractions, 3

PL need to conquer new fields:

Concurrency:
name passing models (π-calculus)

Real-Time:
Esterel

Web services:
BPEL (Business Process Execution Language), Jolie

Big data:
??

Cloud:
??

Mobile computing:
??

14 / 36



Translations

Of course we compile a level onto a lower level

But (some) abstractions at level i are conceptually irreducible
to lower levels: emergent phenomena

There are no fully faithful translation, even inside the same
language

A language fills a niche in the honeycomb of potential perceptions
and interpretations. It articulates a construct of values, meanings,
suppositions which no other language exactly matches or
supersedes. [. . . ] We speak worlds.

[G. Steiner, Errata, ch. 7, p. 99; 1997]

15 / 36



Translations

Of course we compile a level onto a lower level

But (some) abstractions at level i are conceptually irreducible
to lower levels: emergent phenomena

There are no fully faithful translation, even inside the same
language

A language fills a niche in the honeycomb of potential perceptions
and interpretations. It articulates a construct of values, meanings,
suppositions which no other language exactly matches or
supersedes. [. . . ] We speak worlds.

[G. Steiner, Errata, ch. 7, p. 99; 1997]

16 / 36



“Programming” languages

What we insist in calling programming languages

Are powerful tools to organize, make coherent, and model
reality

I data models
I procedural models
I interaction models
I synchronization models
I organization models
I . . .

17 / 36



New models

Our models are intrinsically different way from the model of, e.g.,
continuous mathematics (i.e., physics)

Discrete

Effective

Scalable at different abstraction levels

18 / 36



Moreover, and crucially

Our programming languages are also
(a huge part of) the metalanguage
in which we express the discipline.

19 / 36



Forme is substance

The way we express a concept
an algorithm, a protocol, a software architecture, . . .

is co-essential to that very concept.

The essence of our discipline lays in the immaterial linguistic
expression of computation and interaction

And, of course, there is never a fully faithful translation
between one such expression and another. . .

[cfr. e.g. George Steiner, After Babel ,19982]

20 / 36



“Programming” languages

No scientific discipline exists without first inventing a visual and
written language which allows it to break with its confusing past.

[B. Latour, Visualisation and Cognition: Thinking with Eyes and Hands; 1986]

Referring to Dagognet, F.: Tableaux et Langages de la Chimie. Paris : Le Seuil 1969;
and to: Ecriture et Iconographie. Paris : Vrin 1973.

What we call programming languages are both such a founding
language and the very object of the discipline.

21 / 36



“Programming” languages

No scientific discipline exists without first inventing a visual and
written language which allows it to break with its confusing past.

[B. Latour, Visualisation and Cognition: Thinking with Eyes and Hands; 1986]

Referring to Dagognet, F.: Tableaux et Langages de la Chimie. Paris : Le Seuil 1969;
and to: Ecriture et Iconographie. Paris : Vrin 1973.

What we call programming languages are both such a founding
language and the very object of the discipline.

22 / 36



Let us follow Latour. . .

“Programs” are:

mobile

immutable when they move

flat

“their scale may be changed at will”:
phenomena can be dominated with the eyes and held by hands

reproduced and communicated at little cost

may be reshuffled and recombined

may be made part of a written text

they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of
(and for) inscriptions.

23 / 36



Let us follow Latour. . .

“Programs” are:

mobile

immutable when they move

flat

“their scale may be changed at will”:
phenomena can be dominated with the eyes and held by hands

reproduced and communicated at little cost

may be reshuffled and recombined

may be made part of a written text

they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of
(and for) inscriptions.

24 / 36



Let us follow Latour. . .

“Programs” are:

mobile

immutable when they move

flat

“their scale may be changed at will”:
phenomena can be dominated with the eyes and held by hands

reproduced and communicated at little cost

may be reshuffled and recombined

may be made part of a written text

they merge with geometry (they are a faithful model of reality)

They are inscriptions, like geographical maps, or diagrams.

More: programming languages are a formal, general language of
(and for) inscriptions.

25 / 36



Programming languages, once integrated in human languages,
become an important piece of that “languaging” (Maturana) which
forms the interaction between us, and among us and the world.

26 / 36



27 / 36



On s’est adressé aux plus habiles de Paris et du royaume. On s’est
donné la peine d’aller dans leurs ateliers [. . . ]

À peine, entre mille, en trouve-t-on une douzaine en état de
s’exprimer avec quelque clarté sur les instruments qu’ils emploient
et sur les ouvrages qu’ils fabriquent.

[D. Diderot, Prospectus à l’Encyclopédie, 141; 1751.]

We asked the most skilled in Paris and in the kingdom. We even
went into their workshops [. . . ]

Among a thousand one will be lucky to find a dozen who are
capable of explaining the tools or machinery they use, and the
things they produce with any clarity.

[D. Diderot, Prospectus à l’Encyclopédie, 141; 1751.]

28 / 36



PL are a radically new way of saying things (and saying them
clearly).
They provide that missing language for saying things in several
areas of the human experience.

29 / 36



Inarticulate does not mean stupid; indeed, what we can say in
words may be more limited than what we can do with things. [. . . ]

Here is a, perhaps the, fundamental human limit: language is not
an adequate “mirror-tool” for the physical movements of the
human body.

[R. Sennett, The Craftsman. 2009]

The example of Stradivari’s skills and technique.

30 / 36



Inarticulate does not mean stupid; indeed, what we can say in
words may be more limited than what we can do with things. [. . . ]

Here is a, perhaps the, fundamental human limit: language is not
an adequate “mirror-tool” for the physical movements of the
human body.

[R. Sennett, The Craftsman. 2009]

The example of Stradivari’s skills and technique.

31 / 36



Programming languages provide a way for us to describe to each
other what we know how to do. [. . . ]

[They are] intellectual organizing principle[s] for understanding and
describing the past, and making sense of the kinds of expertise
that flourished and came to maturity.

[H. Mairson, Functional Geometry and the Traité de Lutherie. ICFP 2013]

32 / 36



33 / 36



Appendix: Violin by Andrea Amati
(define Amati

(let ((xq 400)) ;; should be 208mm in the Amati---this is just a screen fit...

; LAYOUT OF THE AREA on which the curves are drawn...
(let ((X (label "X" (point 0 000)))) ; this could be anywhere---just to center it on the output screen

(let ((A (label "A" (xshift X (- (/ xq 2)))))
(Q (label "Q" (yshift X xq))))

(let ((N (label "N" (pointfrom X Q (/ 1 4)))))
(let ((q (label "q" (xshift (intersect (horizontal Q) (vertical A))

(/ (distance X N) 2))))
(vv (xshift A (/ (distance X N) 8)))
(O (label "O" (yshift Q (- (* (distance X N) (/ 5 4))))))
(Z (label "Z" (yshift N (* (distance X N) (/ 2 3)))))
(P (label "P" (yshift X (- (* (distance X N) (/ 8 3)))))))

(let ((p (label "p" (intersect (horizontal P) (vertical vv))))
(M (label "M" (pointfrom X P (/ 1 2))))
(a (label "a" (xshift A (/ (distance X Z) 2)))))

(let ((b (label "b" (xshift Z (- (/ (distance A a) 2))))))
(let ((ee (label "e" (xshift (intersect (vertical b) (horizontal N)) (- (* (xdistance b p) (/ 3 8)))))))

(let ((c (label "c" (xshift (intersect (vertical p) (horizontal X)) (/ (xdistance ee p) 4))))
(d (label "d" (xshift (intersect (vertical p) (horizontal X)) (/ (xdistance ee p) 2))))
(h (label "h" (xshift (intersect (vertical ee) (horizontal Z)) (- (/ (xdistance ee p) 4)))))
(g (label "g" (xshift (intersect (vertical ee) (horizontal Z)) (- (/ (xdistance ee p) 2))))))

(list X A Q N q O Z P p M a b ee c d h g
(horizontal N) (horizontal O) (horizontal Z) (horizontal P) (horizontal X) (horizontal M)
(vertical p) (vertical q) (vertical b) (vertical ee)

; THE LOWER BOUTS...
(let ((ZMcircle (circle Z (distance Z M)))

(ZPcircle (circle Z (distance Z P))))
(let ((m (label "m" (bottom (intersect ZMcircle

(make-line 1 p) ; line w/slope 1 through p
)))))

(let ((mcircle (circle m (distance M P))))
(let ((n (label "n" (xshift m (- (distance X Z) (distance M P))))))

(let ((ncircle (circle n (+ (distance M P) (distance X Z) (- (distance M P)))))
(reverse-lower-left

(lower-circle (reverse-curve (circle n (distance X Z)) (+ (distance X Z) (/ (distance X N) 2)) c))))
(list m n (circle n (distance n (center reverse-lower-left)))

ZPcircle mcircle ncircle reverse-lower-left
(make-curve P c (list ZPcircle mcircle ncircle reverse-lower-left)) ))))))

; THE UPPER BOUTS...
(let ((Ncircle (circle N (distance N Q)))

(o (label "o" (top (intersect
(circle N (distance N O))
(make-line -1 q) ; line w/slope -1 through q
)))))

(let ((ocircle (circle o (distance O Q))))
(let ((reverse-upper-left

(upper-circle (reverse-curve ocircle
(distance N O)
g))))

(list o (circle o (distance o (center reverse-upper-left)))
Ncircle ocircle reverse-upper-left
(make-curve Q g (list Ncircle ocircle reverse-upper-left)) ))))

; THE MIDDLE BOUTS...
(let ((f (label "f" (xshift ee (- (distance X Z)))))

(v (label "v" (xshift ee (- (/ (distance X N) 2)))))
(s (label "s" (xshift ee (- (/ (distance N Z) 2))))))

(let ((ecircle (circle f (distance f ee)))
(vcircle (circle f (distance f v)))
(scircle (circle f (distance f s))))

(let ((reverse-lower-middle
(upper-circle (reverse-curve ecircle (distance f v) d)))

(reverse-upper-middle
(lower-circle (reverse-curve ecircle (distance f s) h))))

(list f v s (circle f (distance f ee)) reverse-upper-middle reverse-lower-middle
(make-curve g c (list reverse-upper-middle (circle f (distance f ee)) reverse-lower-middle)) )))))))))))))))

34 / 36



Hybris?

Galileo, on the 450-th anniversary of his birth:

“The book [of the universe] is written in mathematical
language,

and the symbols are triangles, circles and other geometrical
figures”

But also numbers, effective procedures and abstractions.

The descriptions co-exist and complement each other

in the fruitful plurality of languages and descriptions

35 / 36



Hybris?

Galileo, on the 450-th anniversary of his birth:

“The book [of the universe] is written in mathematical
language,

and the symbols are triangles, circles and other geometrical
figures”

But also numbers, effective procedures and abstractions.

The descriptions co-exist and complement each other

in the fruitful plurality of languages and descriptions

36 / 36


