The Web as a Collaborative, Writeable Medium

An Introduction to the IETF WebDAV Standard

Jim Whitehead Univ. of California, Irvine

ejw@ics.uci.edu

What is WEBDAV?

Working Group on <u>Distributed Authoring and Versioning on the World Wide Web</u>

Goal: To enable distributed web authoring tools to be broadly interoperable.

Home page:

http://www.ics.uci.edu/pub/ietf/webdav/

WebDAV: Extending HTTP

- WebDAV is a major extension to HTTP
 - WebDAV adds properties and collections to the HTTP data model
- WebDAV provides facilities for
 - Properties list, add, remove
 - Namespace Operations move, copy
 - Overwrite prevention lock, unlock
 - Collections mkcol, hierarchy operations

Using WebDAV

- You have a report to produce
 - Fire up your favorite word processor & start editing
- You decide to bring on another author
 - Using the same word processor, save to the Web
 - Start collaboration on the document by editing in-place on the Web
- A seamless transition from individual to collaborative work

Application Use of WebDAV

Visions for WebDAV

- Participants in WebDAV have many views on what it is:
 - A protocol for collaborative authoring
 - A large-grain Web-based network file system, with nice high-latency behavior.
 - A data integration technology for accessing a wide range of repositories
 - document mgmt. systems, configuration mgmt. systems, filesystems, etc.
 - A protocol for remote software engineering
- All views are correct!

Facets of WEBDAV

- There are many ways to view the DAV work:
 - Collaboration infrastructure
 - Metadata recording infrastructure
 - Namespace management infrastructure
 - Ordered collection infrastructure
 - Versioning infrastructure
 - Access control infrastructure
 - Searching infrastructure DASL

Collaboration Infrastructure

- Whole resource locking supports:
 - remote collaborative authoring of HTML pages and associated images
 - I remote collaborative authoring of any media type (word processing, presentations, etc.)
- Infrastructure for development of asynchronous, widely distributed, hypertext-aware, collaborative editing tools.

Metadata Recording Infrastructure

- Metadata support
 - Properties. (name, value) pairs can be created, modified, deleted, and read on Web resources.
 - Consistency of properties can be maintained by the server or the client
 - Property values are well-formed Extensible Markup Language (XML)
- Infrastructure for how to record information about Web data

Namespace Management Infrastructure

- Remote name space management:
 - Copy and Move individual resources, and hierarchies of resource
 - Create and modify (ordered) collections of resources
 - Add/remove members by-reference
- Infrastructure for remotely organizing and viewing collections of Web resources

Versioning Infrastructure

- Versioning is a key part of WebDAV
 - check-out, check-in
 - version graph history
 - comments on check-out/check-in
 - browse old versions
 - automatic versioning for unaware clients
 - basic, high-value configuration management operations
- Infrastructure for remotely versioning Web resources

Access Control Infrastructure

- Access Control:
 - I The ability to remotely control who can read and write a resource
 - Key challenge:
 - Expose the access control capabilities of the repository...
 - ...while ensuring the client-side user interface can be simple (I.e., avoid lots of feature discovery)
 - Will be the focus of a new working group.
- Infrastructure for remotely creating collaboration groups

Searching Infrastructure

- Searching a WebDAV repository DASL:
 - Search for resources with a given property, or a given property value
 - Search for a substring inside a resource body
 - Search scope can be one resource, a collection of resources, a hierarchy of resources, or a whole server
- Infrastructure for remote searching

Document Roadmap

WebDAV Working Group:

Distributed Authoring

Locking, Properties, Copy/Move RFC 2518 complete

Ordered Collections

Requirements and protocol for ordered collections, external members Finish: June/July 1999

DASL Working Group:

Searching

Requirements and protocol for searching a WebDAV repository Finish: Fall 1999

Versioning

Checkin/Checkout, Variants Finish: Mid 2000, as new WG

Access Control

Requirements and protocol for remote access control Finish: Mid 2000, as new WG

Future work:

Notifications

Requirements and protocol for asynchronous notifications

Commercial WebDAV Products

- Several companies will be supporting WebDAV in their upcoming products:
 - Microsoft
 - Internet Information Services 5 (IIS)
 - Internet Explorer 5
 - Office 2000
 - Novell
 - GroupWise Web Publisher
 - Xerox
 - DocuShare 2.0

Commercial WebDAV Products (2)

Commercial products:

- Cyberteams
 - WebSite Director (integrated WebDAV server and workflow system)
- DataChannel
 - RIO
- **IBM**
 - WebSphere (rumored)
- Complete list:
 - http://www.webdav.org/projects/

Open Source Projects

- WebDAV has picked up strong support in the Open Source community as well:
 - Greg Stein's mod_dav Apache module
 - Joe Orton's sitecopy, site synchronization tool
 - Jim Davis, PyDAV, Python-based WebDAV server
 - Steve Ball and Daniel Lopez, TcIDAV, TcI API for WebDAV
 - UCIs WebDAV Explorer, DAV Posties

WebDAV Distributed Authoring Protocol

Object Model and Design Overview

WebDAV Object Model

Web Resource

Properties
(name, value)
pairs

Body
(primary
state)

Scope of WebDAV Methods

Properties

Properties: Naming

- Properties are (name, value) pairs
- Property names are URIs
 - can be a URL (no registration needed)
 - can be a URI (register new URI scheme)

Benefits:

- Due to ownership of a domain name, URLs provide globally unique names without registration
- URLs allow rapid development and deployment of new schemas
- I Stable, long-lifetime schemas can be named with a URI scheme, which is registered with IANA

Properties: Name/Instance Distinction

- A property name URI names the syntax and semantics of the property.
 - Only one instance of a property may be created on a resource (but may be multi-valued)
 - I "live" properties: server maintains consistency by enforcing syntax and semantics
 - I non-live properties: client enforces syntax and semantics (property may be inconsistent)
- Benefits:
 - server can provide properties with values it generates
 - client can define new properties unknown to the server
 - major benefit: flexibility

Properties: Value is well-formed XML

- The value of a property is a well-formed XML (eXtensible Markup Language) fragment
 - **WebDAV also requires use of XML Namespaces**
- Benefits:
 - extensibility: namespaces allow mix of elements in properties
 - I i18n support: XML supports ISO 10646 encoding of characters
 - property contents are structured values
 - supports "plug-and-play" of W3C RDF work

Properties: PROPPATCH

- PROPPATCH method is used to create and remove properties from a resource
 - Property creation and removal directives are specified with XML "create" and "remove" elements
 - Directives are executed sequentially and atomically
- Benefits:
 - simple method handles modification to the state of a property
 - can modify several properties at once, with one network round trip
 - atomicity ensures properties will not be left in an inconsistent state

Properties: PROPFIND

- PROPFIND retrieves properties from a resource.
 - Retrieve all property names and values
 - Retrieve only specified names and values
 - Retrieve only a list of property names

Benefits:

I can retrieve property information with a single network round trip

PROPFIND, implicit allprop

PROPFIND /demo.txt HTTP/1.1

Host: dav.ics.uci.edu Content-Length: 0

HTTP/1.1 207 Multi-Status

Server: DAV-demo-server/1.0

Date: Tue, 09 Feb 1999 00:25:47 GMT

Content-Type: text/xml; charset="utf-8"

Content-Length: 891

PROPFIND, implicit allprop (2)

PROPFIND, implicit allprop (3)

PROPFIND, named properties

PROPFIND, named properties (2)

PROPFIND, named properties (3)

PROPPATCH

```
PROPPATCH /webdav.html HTTP/1.1
Host: sandbox.xerox.com
Content-Type: text/xml; charset="utf-8"
Content-Length: 283
<?xml version="1.0" encoding="utf-8" ?>
<d:propertyupdate xmlns:d="DAV:">
 <d:set>
   <d:prop xmlns:j="http://www.ics.uci.edu/~ejw/">
    <j:personal>
      <j:item>My property</j:item>
    </j:personal>
   </d:prop>
 </d:set>
</d:propertyupdate>
```

PROPPATCH (2)

```
HTTP/1.1 207 Multi-Status

Date: Tue, 09 Feb 1999 01:36:43 GMT

Server: PyDAV 1.1 filestore 1.1

Content-Type: text/xml; charset="utf-8"

Content-Length: 317

<?xml version="1.0" encoding="utf-8"?>
<A:multistatus xmlns:A="DAV:">
<A:response>
<A:href>/webdav.html</A:href>
<A:propstat>
<A:prop>
<B:personal xmlns:B="http://www.ics.uci.edu/~ejw/"/>
</A:prop>
```

PROPPATCH (3)

```
<A:status>HTTP/1.1 200 OK</A:status>
</A:propstat>
</A:response>
</A:multistatus>
```

Collections

Collections

- A collection is a set of URIs listing the member resources
 - A resource may have more than one URI/URL, hence a resource may be accessible via more than one collection.
- Advanced Collections specification defines ordered collections:
 - I The server persistently stores a single ordering of the resources in a collection.
 - A listing of the members of a collection returns the resources in that order.

Collection Benefits

- Provides a resource type which can model file system directories.
- Using referential resources, can create arbitrary collections of resources, which may be located on multiple servers.
- Provides hierarchical navigation capability
 - Supports "File... Save" or "File... Open" dialog box functionality in existing applications
- Provides scope for "Depth" operations

Collections: MKCOL

- The MKCOL method creates a new collection
- MKCOL can be invoked with a request body
 - No request body: empty collection is created
 - Request body: media-type specific results
 - primarily to reserve body for future capability
- Benefits:
 - a simple method is used to create a collection
 - MKCOL method avoids problems with adding collection creation semantics to PUT

Listing Members of a Collection: PROPFIND

- PROPFIND lists the members of a collection, along with selected properties, when used with Depth 1 or Depth infinity
 - **Depth 1: the collection and its members**
 - Depth infinity: the collection and its members, and its children and their members, recursively
- Key insight: a directory listing function (ls, dir, etc.) is just a specialized metadata retrieval function
- Benefit: a tailorable collection listing operation

Namespace Management: COPY

- COPY method duplicates an HTTP resource, property or collection
- Recursive behavior for collections controlled by Depth header
- Copies are performed by-value
- Benefit:
 - I allows duplication of resources without needing to transmit them over the wire twice.

COPY Options

- Overwrite header can disable overwriting the destination
- keepalive XML element (in request body) lists properties which must be live on the destination or the copy must fail
- **Benefits:**
 - prevent overwriting of existing data
 - I fine-grain control over the copying of properties

Namespace Management: MOVE

- MOVE is defined to be a COPY, followed by a DELETE, performed atomically
- All COPY options apply to MOVE as well
- Benefits:
 - allows the renaming of resources
 - allows positioning the resource in a different location in the hierarchy
 - More efficient than separate COPY and DELETE

Overwrite Prevention: Locking

Write Lock

- Write lock is the only lock access type defined in this specification
- A write lock prevents a principal without the lock from successfully modifying the state of the resource
 - Specifically, it prevents execution of PUT, POST, DELETE, MKCOL, PROPPATCH, MOVE, LOCK, UNLOCK
 - GET, PROPFIND are unaffected by write lock

Write Lock Scope

- In the scope of a lock is an entire resource
 - It is not possible to specify a sub-resource lock. Why?
 - In the ability to create a sub-resource lock requires knowledge about the content type being locked.
 - WebDAV wanted to support all content types equally, not give preferential support to a few.
 - Due to the large number of content types, support for sub-resource locks would have added a lot of extra semantics to the protocol. Some content types wouldn't have been supported.

Write Lock Scope (2)

- Further arguments against sub-resource locking:
 - Lontent types change rapidly (two revisions of HTML, XML during development of WebDAV protocol). Supporting one revision of a content type would make protocol brittle, quickly obsolete.
 - New content types would not be supported, yet new content types emerge constantly.

Write Lock Scope (3)

Implications of whole-resource locking:

- Pro:
 - Supports existing applications which operate on entire files, providing easy migration path to add WebDAV support
 - | Handles all content types
- Con:
 - Reduced availability of resources during collaboration (but, shared locks can help...)

Write Lock (cont'd)

- Live properties may still change even though a lock is active
- Dead properties may only be changed by the lock owner.
- A null resource may be locked to reserve its name. This makes the resource non-null, since it now has lock related properties defined on it.

Lifecycle of a Lock

Exclusive Lock

Zero or one possible lock holders

everyone on the Internet

Shared Lock

Zero, one, or many possible lock holders

lock holders

access permission holders

everyone on the Internet

Why Exclusive and Shared?

- Exclusive locks are too rigid
 - people often forget to release locks
 - requires an administrator to release the lock
- Shared locks allow people to use out-ofband communication to negotiate access to the resource
 - if someone forgets to release a lock, it doesn't hold up the entire group
- Collaborators work opportunistically

Lock Compatibility

Lock reques Current lock state	t Shared Lock	Exclusive Lock
None	true	true
Shared Lock	true	false
Exclusive Lock	false	false*

Legend: True = lock MAY be granted False = lock MUST NOT be granted

^{* =} owner of lock MAY have lock regranted

LOCK Required Support

- A WEBDAV server is not required to support locking
- If a server does support locking, it may choose to support any combination of exclusive and shared locks.
- Why? Systems differ markedly in the type of locking support they provide, and may not be able to support locks at all (i.e., some replicated stores)

LOCK Method

- LOCK creates the lock specified by the <lockinfo> XML element (in the request body) on the Request-URI.
- A user-agent should submit owner information with a lock request
- LOCK returns a lock token which identifies the lock to the server
- The client may request a timeout value

Lock Owner Information

- The owner XML element (inside <lockinfo>) provides a means to associate lock holder contact information with a lock.
 - If you want the lock holder to release the lock, perhaps you can contact them and ask them to relinquish it
 - Authentication information often does not contain contact information (e.g., a key)

LOCK, single resource

LOCK /webdav.html HTTP/1.1

Host: sandbox.xerox.com

Timeout: Second-500, Infinite

Content-Type: text/xml

Content-Length: 151

```
<?xml version="1.0" ?>
<d:lockinfo xmlns:d="DAV:">
  <d:locktype><d:write/></d:locktype>
  <d:lockscope><d:exclusive/></d:lockscope>
</d:lockinfo>
```

LOCK, single resource (2)

```
HTTP/1.1 200 OK
Date: Tue, 09 Feb 1999 02:25:21 GMT
Server: PyDAV 1.1 filestore 1.1
Content-Type: text/xml
Content-Length: 435

<?xml version="1.0"?>
<A:prop xmlns:A="DAV:">
<A:lockdiscovery>
<A:activelock>
<A:activelock>
<A:lockscope>
<A:exclusive/>
</A:lockscope>
```

LOCK, single resource (3)

```
<A:locktype>
    <A:write/>
    </A:locktype>
    <A:depth>infinity</A:depth>
    <A:timeout>Second-500</A:timeout>
    <A:locktoken>
        <A:href>opaquelocktoken:918527121.406</A:href>
        </A:locktoken>
        </A:activelock>
        </A:lockdiscovery>
        </A:prop>
```

Hierarchy Locks

- Using the Depth header set to Infinity, can lock a collection hierarchy
 - A single lock token is returned, identifying the lock on all resources.
 - An UNLOCK on this token removes the lock from all associated resources.
- All or nothing semantics
 - All resources in hierarchy are locked, or none are

Hierarchy Locks (cont'd)

- Hierarchy locks act to ensure:
 - All resources in the hierarchy are members of the lock
 - Resources removed from the hierarchy are removed from the lock
- But...
 - If a locked hierarchy is copied/moved, the destination hierarchy is not locked.

Hierarchy Lock Cases

Cases:

- COPY/MOVE IN: a resource copied/moved into a locked hierarchy is added to the lock for that hierarchy
- COPY/MOVE WITHIN: a resource copied/moved within a locked hierarchy is still a member of that hierarchy
- I COPY OUT: when a resource is copied from a locked hierarchy, the source resource of the copy is still a member of the lock, the destination resource is not.

Hierarchy Lock Cases (cont'd)

- MOVE OUT: when a resource is moved from a locked hierarchy, it is removed from the source lock
- DELETE: removes the resource from the hierarchy lock

Combinations:

- Moving a resource from one locked hierarchy to another causes the resource to be removed from the source lock, and added to the destination lock.
- Copying a resource from a locked hierarchy to another causes the source resource to remain in the source hierarchy lock, and the destination resource is added to the destination hierarchy lock.

UNLOCK

- UNLOCK removes the lock identified by a lock token from the Request-URI, and all other resources included in the lock
 - If a lock affects an entire collection, UNLOCK removes the lock from all resources in the collection.

Odds and ends...

Feature Discovery

- HTTP OPTIONS method is applied to individual resources to discover supported capabilities
 - Allow header (HTTP/1.1) lists methods supported by the resource
 - DAV header (WebDAV) lists the WebDAV compliance level supported
 - 1 Meets all MUST requirements
 - 2 All MUSTs plus LOCK support

OPTIONS Example

OPTIONS /wg/ HTTP/1.1

Host: www.webdav.org

HTTP/1.1 200 OK

Date: Tue, 09 Feb 1999 02:39:06 GMT

Server: Apache/1.3.4 (Unix) DAV/0.9.6

Content-Length: 0

Allow: GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE, PROPFIND,

PROPPATCH, MKCOL, COPY, MOVE

DAV: 1

Internationalization

- All WebDAV applications MUST support the character set tagging, character set encoding, and the language tagging functionality of the XML specification.
 - UTF-8 and UTF-16 charset support
 - UTF-16 begins with a BOM
 - Although the WebDAV spec. does not, it is strongly recommended to use the MIME charset parameter.
 - **Examples:**
 - text/xml; charset="utf-8"
 - text/xml; charset="utf-16"

Use Scenario: DAV Posties

Posties - Overview

Goal:

- I Create an electronic, collaborative Post-It™ note application
 - Supports informal, lightweight interaction
- The user should be able to just click on a note, and start typing
 - But, the application should still prevent overwrites
- Notes are shared by a group, which can be geographically dispersed
 - One user's changes appear on others' screen
- Synergy with Web view notes in browser

Posties: Why use DAV?

- The Posties application uses DAV well
 - Format of notes is unconstrained
 - Requires use of HTTP PUT
 - DAV locking prevents overwrites
 - User interface metaphor doesn't map well to Web forms
 - Going to a page then changing a form too heavyweight, want to just click and edit
 - Requires use of a custom user interface

Posties: Known Deficiencies of HTTP/DAV

- HTTP/DAV doesn't provide notification of note updates
 - HTTP/DAV is a request/response protocol, where the server cannot send asynchronous messages to the client
 - A separate notification protocol can provide this functionality, and there is much current work in this area (e.g. NSTP, GENA)
 - DAV does allow efficient polling for changes use PROPFIND to request entity tags for all notes in one request

Posties: Use of DAV

- **Each note is a separate Web resource.**
 - I Can be viewed by a Web browser, as well as by Posties application
 - All notes for a collaborative context are within a single collection.
- When a user clicks on a resource, and starts typing, Posties checks for modifications to the note, uploading new note contents if necessary

Posties: Use of DAV (2)

- Overwrite prevention using locks
 - After checking for new note contents, it requests a lock in the background (LOCK method)
 - If no lock exists, user is unaware lock took place
 - If lock exists, error dialog is displayed, small loss of typed data.
 - Lock is released when user clicks on other note, or is inactive (HTTP PUT, followed by UNLOCK)
- Poll for changes to notes on a regular basis
 - every 10 minutes, adjustable by user
 - Perform depth infinity PROPFIND for DAV:getetag
 - HTTP GET retrieves modified notes (locally store etag)

Posties: Other Issues

Privacy

- HTTP Digest authentication, in conjunction with server-side access control can be used to:
 - | Protect privacy of notes
 - Limit set of people who can write to notes (delimit collaboration group)
 - Requires "log-in" step when first starting Posties
 - Need to integrate functionality from standard access control protocol, when its done

Summary

A Solid Specification

- The base WebDAV specification is finished, and stable, the end product of significant review:
 - Over 1,000 list messages
 - 15 meetings
 - Nine major revisions
 - Many independent reviewers
- A solid specification

Use your Imagination

- Combine the power of the core Web for information distribution with...
- The ability to write content to a server under programmatic control.
- What do you get?
 - You decide!

Getting Involved (WebDAV)

- How do you join the WEBDAV Working Group?
 - Join the mailing list
 - w3c-dist-auth@w3.org
 - Send message with subject "subscribe" to w3c-dist-auth-request@w3.org
- Attend a working group meeting:
 - Next meeting: Minneapolis, MN (USA) IETF, March 15-19, 1999

http://www.ics.uci.edu/pub/ietf/webdav/

Getting Involved (DASL)

- How do you join the Distributed Authoring, Searching and Locating group?
 - Mailing list: www-webdav-dasl@w3.org
 - Send message with subject "subscribe" to www-webdav-dasl-request@w3.org
- Also meeting at Minneapolis IETF
- http://www.ics.uci.edu/pub/ietf/dasl/

WebDAV Resources

- WebDAV Working Group
 - http://www.ics.uci.edu/pub/ietf/webdav/
- webdav.org WebDAV Resources
 - http://www.webdav.org/
 - Maintained by Greg Stein
- DASL Working Group
 - http://www.ics.uci.edu/pub/ietf/dasl/
- WebDAV Projects
 - http://www.webdav.org/projects/
 - A complete list of known WebDAV projects, maintained by Michael Best

WebDAV Resources (2)

WebDAV Distributed Authoring Protocol

- http://www.ics.uci.edu/pub/ietf/webdav/protocol/ draft-ietf-webdav-protocol-10.pdf
- http://www.ics.uci.edu/pub/ietf/webdav/protocol/ draft-ietf-webdav-protocol-10.txt
- Soon to be released as RFC 2518:
 - ftp://ftp.isi.edu/in-notes/rfc2518.txt

Hypertext Transfer Protocol 1.1

- Proposed Standard Request for Comments 2068
- ftp://ftp.isi.edu/in-notes/rfc2068.txt
- http://www.ics.uci.edu/pub/ietf/http/rfc2068.ps.gz

WebDAV Resources (3)

- XML 1.0 Recommendation
 - http://www.w3.org/TR/REC-xml/
- XML Namespaces Recommendation
 - http://www.w3.org/TR/REC-xml-names/
- XML Media Types
 - Request for Comments (RFC) 2376
 - ftp://ftp.isi.edu/in-notes/rfc2376.txt

Mailing List Archives

WebDAV Mailing List

- w3c-dist-auth@w3.org
- http://lists.w3.org/Archives/Public/w3c-dist-auth/

DAV Versioning Mailing List

- ietf-dav-versioning@w3.org
- http://lists.w3.org/Archives/Public/ietf-dav-versioning/

DASL Mailing List

- www-webdav-dasl@w3.org
- http://lists.w3.org/Archives/Public/www-webdav-dasl/

WebDAV Introductory Articles

- WebDAV: IETF Standard for Collaborative Authoring on the Web
 - IEEE Internet, September/October, 1998
 - http://www.ics.uci.edu/pub/ietf/webdav/intro/ webdav_intro.pdf
- Collaborative Authoring on the Web: Introducing WebDAV
 - ASIS Bulletin, Vol. 25, No. 1, Oct/Nov, 1998
 - http://www.asis.org/Bulletin/Oct-98/webdav.html