
Proceedings of the Workshop on Virtual Documents,
Hypertext Functionality and the Web

Eighth International World Wide Web Conference

Tuesday May 11, 1999 - Toronto, Canada

Maria Milosavljevic
Fabio Vitali

Carolyn Watters (eds.)

Technical Report UBLCS-99-10

May 1999

Department of Computer Science
University of Bologna

Mura Anteo Zamboni, 7
40127 Bologna (Italy)

2

The University of Bologna Laboratory for Computer Science Research Technical Reports are available

via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS in compressed PostScript

format. Abstracts are available from the same host in the directory /pub/TR/UBLCS/ABSTRACTS in

plain text format. All local authors can be reached via e-mail at the address last-name@cs.unibo.it.

Recent titles from the UBLCS Technical Report Series

97-6 A Process Algebraic View of Linda Coordination Primitives , N. Busi, R. Gorrieri, G. Zavattaro, May
1997.

97-7 Validating a Software Architecture with respect to an Architectural Style, P. Ciancarini, W. Penzo,
July 1997.

97-8 System Support for Partition-Aware Network Applications, Ö. Babaoğ lu, R. Davoli, A. Montresor,
R. Segala, October 1997.

97-9 Generalized Semi-Markovian Process Algebra, M. Bravetti, M. Bernardo, R. Gorrieri, October 1997.
98-1 Group Communication in Partitionable Systems: Specification and Algorithms, Ö. Babaoglu, R.

Davoli, A. Montresor, April 1998.
98-2 A Catalog of Architectural Styles for Mobility, P. Ciancarini, C. Mascolo, April 1998.
98-3 Comparing Three Semantics for Linda-like Languages, N. Busi, R. Gorrieri, G. Zavattaro, May 1998.
98-4 Design and Experimental Evaluation of an Adaptive Playout Delay Control Mechanism for Packetized

Audio for use over the Internet, M. Roccetti, V. Ghini, P. Salomoni, M.E. Bonfigli, G. Pau, May
1998 (Revised November 1998).

98-5 Analysis of MetaRing: a Real-Time Protocol for Metropolitan Area Network, M. Conti, L. Donatiello,
M. Furini, May 1998.

98-6 GSMPA: A Core Calculus With Generally Distributed Durations, M. Bravetti, M. Bernardo, R.
Gorrieri, June 1998.

98-7 A Communication Architecture for Critical Distributed Multimedia Applications: Design,
Implementation, and Evaluation, F. Panzieri, M. Roccetti, June 1998.

98-8 Formal Specification of Performance Measures for Process Algebra Models of Concurrent Systems, M.
Bernardo, June 1998.

98-9 Formal Performance Modeling and Evaluation of an Adaptive Mechanism for Packetized Audio over
the Internet, M. Bernardo, R. Gorrieri, M. Roccetti, June 1998.

98-10Value Passing in Stochastically Timed Process Algebras: A Symbolic Approach based on Lookahead, M.
Bernardo, June 1998.

98-11Structuring Sub-Populations in Parallel Genetic Algorithms for MPP, R. Gaioni, R. Davoli, June
1998.

98-12The Jgroup Reliable Distributed Object Model, A. Montresor, December 1998 (Revised March
1999).

99-1 Deciding and Axiomatizing ST Bisimulation for a Process Algebra with Recursion and Action
Refinement, M. Bravetti, R. Gorrieri, February 1999.

99-2 A Theory of Efficiency for Markovian Processes, M. Bernardo, W.R. Cleaveland, February 1999.
99-3 A Reliable Registry for the Jgroup Distributed Object Model, A. Montresor, March 1999.
99-4 Comparing the QoS of Internet Audio Mechanisms via Formal Methods, A. Aldini, M. Bernardo, R.

Gorrieri, M. Roccetti, March 1999.
99-5 Group-Enhanced Remote Method Invocations, A. Montresor, R. Davoli, Ö. Babaoğ lu, April 1999.
99-6 Managing Complex Documents Over the WWW: a Case Study for XML, P. Ciancarini, F. Vitali, C.

Mascolo, April 1999.
99-7 Data-Flow Hard Real-Time Programs: Scheduling Processors and Communication Channels in a

Distributed Environment, R. Davoli, F. Tamburini, April 1999.
99-8 The MPS Computer System Simulator, M. Morsiani, R. Davoli, April 1999.
99-9 Action Refinement, R. Gorrieri, A. Rensink, April 1999.
99-10Proceedings of the Workshop on Virtual Documents, Hypertext Functionality and the Web, M.

Milosavljevic, F. Vitali, C. Watters (eds.), May 1999.

3

Table of content

Introduction...5
Maria Milosavljevic, Fabio Vitali, and Carolyn Watters

Research Issues for Virtual Documents...7
Carolyn Watters and Michael Shepherd

Navigational Context Design Pattern: An Implementation for Web Development...............9
Flávio Azevedo de Lima, R. T. Price

The MIRADOR project...15
Sheila Rock, Alison Cawsey, Patrick McAndrew, and Diana Bental

Conceptual Documents and Hypertext Documents are two Different Forms of Virtual
Document...21

Sylvie Ranwez and Michel Crampes

When Virtual Documents Meet the Real World ..29
Stephen J. Green, Maria Milosavljevic, Robert Dale and Cecile Paris

A Key for Enhanced Hypertext Functionality and Virtual Documents: Knowledge...........35
Philippe Martin and Peter Eklund

A Modular Framework for the Creation of Dynamic Documents ..41
Jörg Caumanns

The value-adding functionality of Web documents ..49
Kevin Crowston and Marie Williams

Automated Hypermedia Support for the Virtual Documents Generated by Analytical
Applications...51

Michael Bieber, Roberto Galnares

5

Introduction

Maria Milosavljevic1, Fabio Vitali2, and Carolyn Watters3

1 CSIRO Mathematical and Information Sciences, Australia
2 University of Bologna, Italy
3 Dalhousie University, Canada

This volume contains the submissions to the Workshop on Virtual Documents, Hypertext
Functionality and the Web, held on May 11, 1999 at the Eighth International World Wide
Web Conference (WWW8) in Toronto, Canada.

This workshop was born as the confluence of two previous series of workshops on related
topics: the Hypertext Functionalities Workshop series (of which this is the eighth in the
series), and the Reuse of Web Information/Flexible Hypertext Workshop series. Fruitful
discussions among the organizers of the two parallel workshops at the seventh
International World Wide Web Conference (WWW7) in Brisbane, Australia, April 1998,
heightened an awareness of the similarities in the topics and the potential synergy of a
combined workshop.

By "hypertext functionality" we mean much more than browsing by clicking on "goto" links
from one node to another. The focus of the HTF series is on the identification of
characteristics that define and describe the "hypertextuality" of software systems. For
instance, it aims at describing new ways to view a system's knowledge and processes from
a conceptual point of view, to let users access and navigate through the items of interest, to
enhance the system's knowledge through comments and relationships, and to customize
information and display to the individual users and their tasks. This research is being
brought to the forefront within the context of the World Wide Web, and specifically related
to virtual documents, as this provides an additional layer of complexity to the issues.

"Virtual documents" are web documents for which the content, nodes or links, or all three,
are created as needed. There already exist several kinds of virtual documents on the web
for which the content is determined dynamically. First, a template can be used for which
node contents are substituted at runtime. Second, applications, like Maple or Mathematica,
can be used to generate values for one time use. Third, CGI scripts and search engines can
be used to compose virtual documents from fragments of other documents for the user on
demand. Fourth, metadata can be generated for summarization for users, where the
extraction and summarization is done on the fly for the user. Finally, natural language
generation techniques can be employed to dynamically construct virtual documents from
underlying data in data or knowledge bases.

The eight short papers collected here provide an overview of related research and
reflections on the convergence of hypertext functionality and virtual documents on the
world wide web. We will give here a brief introduction to these works:

At an abstract level, Watters and Shepherd provide a list of fundamental, systemic issues to
be identified when discussing the production and use of virtual documents in the world
wide web, and Crowston and Williams discuss the value of genres in Web documents,
structures that are also important even in a new medium such as the Web. At a
development level, Green, Milosavljevic, Dale and Paris report on their actual experiences
with the development of systems generating web documents on the fly, especially with the
aid of natural language processors.

Providing formal grounds to the issue of dynamically creating virtual documents, Azevedo
de Lima and Price propose a methodology using design patterns, which contrasts nicely
with the model of Ranwez and Crampes based on composable Information Bricks.

At a methodological level, several papers identify the atomic blocks of virtual documents
and discuss how to enrich them with the information needed to generate different virtual

6

documents. Martin and Eklund propose to embed machine-understandable information
(conceptual commands) in the source, real documents. Rock, Cawsey, McAndrew and
Bental rely on associating documents with metadata described using standard
metainformation sets. Finally Caumanns proposes an architectural framework for software
modules to create, collect and compose chunks of inforation into virtual documents.

We believe these presentations and the discussion following in the workshop may help in
answering important questions related to virtual documents and virtual application
domains. How are virtual documents defined and managed? The management of this class
of documents requires new understandings of bookmarking, versioning, authentication,
structure, ownership, navigation, collaboration, and reuse of components. Issues of
security, data protection, verification, and access control need to be addressed. Finally we
need to address questions about how to determine if these web information systems are
actually improving service to the users.

Of course, this workshop is part of a growing body of connected events on similar topics,
which is worthwhile to list here:
• The Hypertext Functionality (HTF) workshop (the collected proceedings can be found

at http://www.cs.nott.ac.uk/~hla/HTF/HTF-workshops.html) began in conjunction
with the ACM Hypertext Conferences. The first three HTF workshops concentrated on
the identification and organization of hypertext functionalities that could form the core
of hypertext systems in a wide variety of application areas. HTF4 examined issues
related to the incorporation of advanced hypertext functionality in web-based
applications. HTF5, held in conjunction with the ICSE conference in Kyoto, May 1998,
examined the impact of HTF on software engineering.

• The 2nd Workshop on Adaptive Hypertext and Hypermedia
(http://wwwis.win.tue.nl/ah98/), held in conjunction with the Ninth ACM
Conference on Hypertext and Hypermedia.

• The Workshop on Reuse of Web-based Information and 2nd Flexible Hypertext
Workshop (http://www.mel.dit.csiro.au/~vercous/REUSE/WWW7-reuse.html), held
in conjunction with the 7th International World Wide Web Conference (WWW7),

• The Flexible Hypertext Workshop (http://www.mri.mq.edu.au/~mariam/flexht/),
held at the Eighth ACM International Hypertext Conference (Hypertext'97),

• The Intelligent educational systems on the World-Wide Web
(http://www.contrib.andrew.cmu.edu/~plb/AIED97_workshop/Proceedings.html),
held in conjunction with the 8th World Conference on Artificial Intelligence in
Education (AI-ED 97)

• The Workshop on Adaptive Systems and User Modeling on the World Wide Web
(http://zaphod.cs.uni-sb.de/~UM97/ws5.html), held in conjunction with the Sixth
International Conference on User Modeling (UM'97)

• The Workshop on User Modelling for Information Filtering on the World Wide Web
(http://www.cs.su.oz.au/~bob/um96-workshop.html), held in conjunction with the
Fifth International Conference on User Modeling (UM'96)

• The Workshop on Adaptive Hypertext and Hypermedia
(http://www.education.uts.edu.au/projects/ah/AH-94.html), held in conjunction with
the Fourth International Conference on User Modeling (UM'94).

7

Research Issues for Virtual Documents

Carolyn Watters and Michael Shepherd

Faculty of Computer Science
Dalhousie University, Halifax, NS, Canada B3J 2X4

An electronic document consists of both the content and the links associated with that
document. Therefore, documents on the Web may be composed of one or more Web pages
[Crowston & Williams, 1999]. Such documents may be static and persistent or they may be
generated dynamically and be virtual. A virtual document is a document for which no
persistent state exists and for which some or all of each instance is generated at run time
[Watters, 1999]. A virtual document can then be multiple pages, a guided tour, Java applets,
or application results, and may or may not have associated links. The content may be
defined by tags, a template, a program, a database query, or by some application. Virtual
documents have grown out of a need for interactivity and individualization of documents,
particularly on the web.

The paradigm of the Web has shifted our expectations for access to information. Previously,
we accessed information by the retrieval of electronic copies of documents from a large
repository of relatively static information. We now expect to access information through the
manipulation of a large collection of information resources. Some of these resources are
documents and some of these resources are processes that create documents. In addition,
the role of user is shifting from reader to active participant and author. Users expect
hypertext functionality to be available with digital documents, i.e., users expect to be able
to make comments and annotations, to be able to initiate discussion, and to be able to add
content and links while reading, both individually and collaboratively.

Research Issues

A number of interesting research issues must be resolved surrounding these virtual
documents on the Web. These issues cover a wide range and are described briefly below.

Generation - At what point in time is a virtual document defined? A virtual document can
be defined by an author through the use of templates and links or it can be defined as the
result of a search or application. Guided tours can be generated dynamically, based on an
information need as defined by a user profile and/or an explicitly stated query.

Search - How do you search for virtual documents? What is the domain in which to perform
the search? Will the document exist by the time the user requests it?

Revisiting - Users have an expectation that documents found once will be available on a
subsequent search. The notion of bookmark does not apply to virtual documents in its
normal, simplistic way. Bookmarks need enough information to recreate the document as it
was.

Versioning - Version control has long been a concern of Information Retrieval research and
is now a central issue for management of virtual documents. Users need to be able to return
to a bookmarked version of a virtual document and to go forward and backward in time
through changes to that virtual document.

Authentication - Who is responsible for the quality of the contents of a virtual document
where components may come from a variety of sources and /or processes?

Reference - How do authors cite virtual documents or versions of virtual documents?

Annotation - The roles of user of information and supplier of information are merging.
Readers expect to be able to add data, such as, comments, annotations, paths, and links, as
well as content, while they are reading.

8

Summary

The web has not only increased the scale of information retrieval systems and applications
but has also introduced a new variation of the notion of document. Basic research is
required to provide the same level of understanding and measures of effectiveness and
efficiency of access to virtual documents as has been achieved for persistent documents.

References

Crowston, K. and M. Williams. 1999. The Effects of Linking on Genres of Web Documents.
Proceedings of the Thirty-Second Annual Hawaii International Conference on System Sciences. Maui,
Hawaii. CD-ROM Publication

Watters, C. 1999. Information Retrieval and the Virtual Document. Journal of the American Society for
Information. To appear. Hawaii International Conference on System Sciences. Maui, Hawaii.
CD-ROM Publication

Watters, C. 1999. Information Retrieval and the Virtual Document. Journal of the American Society for
Information. To appear.

9

Navigational Context Design Pattern: An
Implementation for Web Development

Flávio Azevedo de Lima, B.Sc., and R. T. Price, Eng., M.Sc., D.Phil
Amadeus Project, sponsored by CNPq and FAPERGS
Instituto de Informática, UFRGS, Brazil
(flima|tomprice@ inf.ufrgs.br)

Abstract

This paper presents an implementation of the Navigational Context hypermedia design pattern.
This pattern has been proposed by Rossi, Schwabe and Garrido, but implementation alternatives
have not been fully explored specially regarding Web applications. The approach presented in
this paper employs features of the HTML language to implements the features specified by the
design pattern.

KEYWORDS: Design Patterns, Hypermedia Design, HTML, Web Development.

1. Introduction

The main benefit of design patterns is the reuse of the design experience and/or structures
[1, 2]. A design pattern catalogue has been proposed by Gamma et al. [1], and, many new
patterns have been proposed [8, 9], including recent efforts towards patterns for
hypermedia [2, 8]. This paper presents a new implementation approach to the Navigational
Context hypermedia design pattern [2] suited for the characteristics and tools available for
the Internet environment.

1.1 The Navigational Context Pattern

The Navigational Context pattern is based on the Decorator [1] (see figure 1 below). The
goal of the Decorator pattern is to dynamically attach additional responsibilities to an
object, in a flexible way not provided by sub-classing. In other words, Decorator detaches
the object behaviour from some (or all) of the exhibition issues. By using the decorator
pattern an object may dynamically receive additional features, depending on the context
where it is being used, without changing its core features.

The Navigational Context Pattern benefits from the experience achieved from OOHDM [3].
The use of this pattern for hypermedia purposes, as presented in [2], employs
characteristics of the Decorator pattern to include specific information about the context
where a node is being displayed. It simplifies the modelling of the navigational structure of
the application, because the access to information nodes is specified within the context. It
also helps users not getting lost, because generic information regarding the context is
displayed within the context node. However, the pattern description [2] is concerned only
with the implementation on hypermedia environments, and explicitly states that the
implementation for Web development may be difficult.

2 Web development and document management

One of the research areas of the Amadeus Project has been the modelling of Web
Information Systems based on document management and workflow [4]. The goal is to
achieve an integrated modelling methodology suited for the particular characteristics of the
Web, involving documents, executable components, workflow, web browsers, and so on.
To do so, a number of UML stereotypes [5] have been defined (for instance, «Document»,
«Context», «Executable Component», «Frame», and «Navigational Link») and modelling
steps have been suggested. One of the challenges faced was the specification of access

10

constraints in terms of roles played by different actors. Access constraints specify the
concrete views of a document available for each actor. In the modelling methodology
currently in development within the Amadeus Project it has been realised that this problem
may be solved by the definition of contexts for actor and documents. Contexts are
stereotypes that define how a document is shown. The relationships (accesses) among
actors and documents are not direct; there is always a context between an actor and a
document. The context is responsible for displaying the appropriate information contained
in a document.

The definition of how a context relates to a document is modelled in a specific step of the
methodology. Other important phases are uses cases, global navigational definition,
structure of each document and data access constraints with contexts. Documents are often
a composite of subdocuments with specific sets of information. For each root document, a
number of contexts may be defined, depending on different access restrictions for each
actor in the system. Each context must be modelled separately, specifying which and how
subdocuments and smaller pieces of information will be displayed. A consequence of this
approach is that a document is never responsible for displaying itself and its
subdocuments.

2.1 Navigational Context extended

The combination of features from hypermedia development and document management
for Web systems results in an extended design pattern with a particular implementation
that:

• uncouples the navigational objects from the context in which they are to be displayed;

• groups different objects related to each other;

• adds specific information related to the context;

• creates a navigational structure that helps users not getting lost;

• uncouples the roles of model (information) and view (display) from a node;

• specifies which information is available for each participant of the system;

• provides an open, standard-based implementation suitable for Web development.

3. HTML Features

This section briefly introduces some useful features of HTML that make possible the
implementation of the concepts presented in the paper. The more important features are
the Document Object Model (DOM, [6], [7]) and Cascading Style Sheets (CSS, [6]), in
addition to JavaScript [6]. These tools allow a complete, dynamic manipulation of an HTML
page, providing the ability to modify document for presentation in different contexts.

DOM is a great advance in HTML development. It combines HTML elements (treated,
now, as objects), CSS, and script languages to manipulate both. DOM is an API for HTML
and XML [6] documents. It specifies the attributes and methods of any element or tag
found in an HTML or XML document. DOM also defines the logical structure of documents
and the way a document is accessed and manipulated. DOM is an "object model" in the
traditional object oriented design sense. Documents are modelled using objects, and the
model encompasses not only the structure of a document, but also the behaviour of a
document and the objects of which it is composed. JavaScript adds dynamic behaviour,
manipulating the document elements defined by the DOM.

On the other hand, CCS lets the developer separate the content of an HTML document
from their presentation. It defines, in an independent manner, how different HTML
elements the browser will display. Therefore, it's possible to create a unique CSS with
global rules that must be used by all documents in a site. For example, it's possible to
decide that every <H1> must be displayed in blue by defining a rule like "H1 {color: blue}"
within a style sheet. It's also possible to define styles for specific elements and declare

11

element classes, among other possibilities.

4. Pattern Implementation

The Decorator pattern has the following structure [1]:

Figure 1: Decorator design pattern

ConcreteDecorators aggregate components, which may be another Decorator or a
ConcreteComponent. The implementation here presented translates this structure into a
simpler composition, where a document (a ConcreteComponent) may be directly
aggregated by contexts (a ConcreteDecorator). There is no real need for the abstract classes,
because HTML files do not have all the formal semantics of programming classes.

The extended Navigational Context, modelled with an UML stereotype based on Class, is
an aggregation of HTML Frames, another stereotype. Each frame of the context is
responsible by showing one subdocument, specifying which information will be displayed.
The context may (and often do) provide additional frames or fields to show specific
information and links. Figure 2 shows a Navigational Context definition, which has been
implemented for experimentation. The notation used is the most recent outcome of the
Amadeus Project, evolved from a previous work [4], and is explained below.

The context "SummContext" is responsible by the navigation through a set of Staff pages,
either teachers or students (this choice is specified in the "Index" document). The function
of the context is to hide some of the information contained by the actual document. Two
frames ("SummControlFrame" and "SummDisplayFrame") compose the context.
"SummDisplayFrame" exhibits the "Staff" document. "SummControlFrame" implements
additional functionality, providing links to other documents of the same type (teacher or
student, as chosen), a link to the home page, and a description of the current context. The
"SummScript" executable component contains the JavaScript code that manipulates the
document. To specify how the context affects the document, every attribute and method of
the document must be duplicated in the respective frame, with the appropriate changes in
permissions. "SummDisplayFrame" shows an example: in the document, all attributes are
invisible; in the frame, "name" and "email" are visible, but locked (this is a new convention
not supported by Rational Rose, the tool currently in use).

12

Figure 2: "Summarised Information" Navigational Context

To use the context, the user must specify the type of the staff in a previous page. When the
context is loaded, it is responsible by retrieving the appropriate set of documents (in this
example, the documents are hard coded in the script). Specific information and links are
provided in an additional frame.

One of the advantages of this approach is the easy translation of the visual model to
implementation HTML files and JavaScript code, because model elements are near to
implementation elements. The example implementation contains the following HTML files:
• _GlobalIndex: frameset that contains "_GlobalHidden" and the main page of the

application, "AppIndex". This is the page referenced by the user to load the application;
• _GlobalHidden: hidden document that contains global JavaScript code and variables to

pass information among documents;
• AppIndex: the main page of the application;
• _Null: blank page for implementation issues;
• SummContext: frameset that contains the frames "SummControlFrame" and

"SummDisplayFrame". This is the actual context, the page referenced by the
"AppIndex" page to load the documents within the context;

• SummControl: contains additional information of the context (contextual links and a
text description) and the JavaScript code that manipulates the "Staff" document. The
functions in "SummScript" displays the appropriate attributes of the document;

The influence of the context over the documents is achieved with the use of the HTML
features described before. The sequence of actions is:

1. User loads "_GlobalIndex.html"

1.1. Document "_GlobalHidden.html" is loaded in a hidden frame

13

1.2. Document "AppIndex.html" is loaded in the main frame

2. User selects the radio button "Teachers" in "AppIndex.html", for example

3. User clicks on the button "Summary" in "AppIndex.html"

3.1. The function "onSumm()" in "AppIndex.html" is executed

3.1.1. Sets a global variable in "_GlobalHidden.html" to "teachers"

3.1.2. Sets a global variable in "_GlobalHidden.html" to "summary"

3.1.3. Calls function "loadContext()" in "_GlobalHidden.html"

3.1.3.1. Loads "SummaryContext.html" in the main frame

3.1.3.1.1. Loads "_Null.html" in the "display" frame

3.1.3.1.2. Loads "SummControl.html" in the "control" frame

3.1.3.1.2.1. Loads first teacher document in the "display" frame

3.1.3.1.2.1.1. Calls "doContext()" in "SummControl.html"

3.1.3.1.2.1.1.1. Shows the appropriate attributes of the
document

While modelling the document, the designer must be aware of the contexts in which the
document will be displayed to decompose the document into appropriate subdocuments.
Each subdocument must also be designed with the contexts in mind, to achieve an
adequate modelling of its elements.

Although the example is simple, it makes clear the great opportunities open by the use of
the DOM and script languages for the implementation of Navigational Contexts. For
example, the type of user may be identified in a login page and then appropriate contexts
may be automatically chosen.

5. Conclusion

An alternative implementation for the Navigational Context has been presented. It uses
advanced characteristics of HTML to implement the features defined by the pattern. The
additional features obtained from this approach
• provides an open, standard-based implementation suitable for Web development;
• provides a simple strategy to automatically translate visual models to HTML files;
• provides a very powerful way to manipulate every element in HTML documents;
• uncouples the roles of model (information) and view (display) from a node. A

document becomes unaware of its presentation;
• formally specifies which information is available for each participant of the system at

design time;
• requires the use of a context to access a document (at least, a default, transparent

context must be provided);
• requires a way to pass information about documents across different frames. A context

must receive parameters to retrieve the appropriate documents. It can be achieved by
the use of global JavaScript variables in hidden frames.

This work is currently under development within the scope of the Amadeus Project and
will be part of a master's thesis.

References

[1] E. Gamma; R. Helm; R. Johnson; J. Vlissides. Design Patterns – Elements of Reusable Object-
Oriented Software. Reading: Addison Wesley Longman, 1995.

[2] G. Rossi; D. Schwabe; A. Garrido. Design Reuse In Hypermedia Applications Development.
Proceedings of the Eight ACM International Conference on Hypertext, Southampton, 1997.

14

[3] D. Schwabe; G. Rossi; S. Barbosa. Systematic Hypermedia Design With OOHDM. Proceedings of
the Seventh ACM International Conference on Hypertext, Washington, 1996.

[4] F. A. de Lima; R. T. Price. Towards an Integrated Design Methodology for Internet-based Information
Systems. Fifth International Workshop on Engineering Hypertext Functionality, in conjunction
with the International Conference on Software Engineering. Kyoto, 1998. Available on WWW
at http://www.ics.uci.edu/~kanderso/htf5/papers/flima/.

[5] H-E Eriksson; M. Penker. UML Toolkit. New York: Wiley Computer Publishing, 1998.

[6] E. Holzschlag. Special Edition Using HTML 4, Fifth Edition. Que Education & Training, 1998.

[7] Document Object Model (DOM) Level 1 Specification, W3C Recommendation 1 October, 1998.
Available on WWW at http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

[8] C. Schmidt (editor). Pattern Languages of Program Design. Addison-Wesley, 1995.

[9] C. Larman. Applying UML and Patterns: an Introduction to Object-Oriented Analysis and Design.
Prentice-Hall PTR, 1997.

15

The MIRADOR project

Metadata Improved Relevance Assessment through Descriptions of Online
Resources

Sheila Rock, Alison Cawsey, Patrick McAndrew and Diana Bental

Department of Computing and Electrical Engineering
Heriot-Watt University
Edinburgh EH14 4AS, UK
mirador@cee.hw.ac.uk

Abstract

MIRADOR (Metadata Improved Relevance Assessment through Descriptions of Online
Resources) is concerned with using metadata to produce tailored descriptions of online resources,
that will help people evaluate their relevance and suitability. In this document, we describe the
background to MIRADOR, and then discuss some early evaluative work that we have begun.

1. Introduction

There is a great diversity of multimedia resources available on the Internet. Such diversity
and volume is very useful in most contexts, and educational ones, which are the focus of
our investigation, are no exception. However, as the volume of resources increases, it
becomes difficult to track down material relevant to an individual, and expensive to
download a resource just to see if it is relevant.

Figure 1 An overview of the MIRADOR approach

The main response to this problem has been in the form of better search and retrieval tools.

16

However, we believe it is also beneficial to approach this issue from the user end (in the
educational context, users may be teachers, learners, or anyone making use of a resource in
any way), by providing mechanisms whereby the user is more able to assess the potential
relevance of a resource of interest. In particular, providing the user with better descriptions
of the resources will aid this assessment.

Our aim is therefore to support the user in searching for multimedia resources on the web
by:
• providing tailored descriptions of existing networked resources
• taking into account user profiles and richer resource descriptions
• using metadata to generate these tailored descriptions.

Figure 1 is an overview of our approach. We distinguish between local information, such as
user profiles and the particular query that a user might have, and web-based information,
which includes the web resources themselves and the metadata associated with them. In a
conventional search, the query together with data about the web resources results in a
document set that matches the query. Some search processes might use metadata to drive
or enhance the search. What MIRADOR aims to provide is an ability to generate tailored
descriptions of the document set identified in the search process, using metadata and using
user profiles for the tailoring.

2. Background

There have been a number of recent developments in providing web resources that have
contributed to our approach.

The concept of metadata is increasingly gaining currency as a mechanism for enhancing the
usefulness of internet resources, and there have been a number of initiatives around
formalising and standardising frameworks and architectures for its use. The Dublin Core is
one example of such an initiative, an attempt to identify a metadata set for describing
electronic resources, and there have been others. Thiele[1] provides a good overview of the
literature around the Dublin Core Workshop series.

In the wake of these initiatives, there has been an increase in the number of web resources
that include metadata. This is not without its own problems, however. We have noticed for
example that the inclusion of metadata in web resources is often patchy, and occasionally
we might find a document whose metadata bears little relation to the resource it describes.
Like comments in a program, because the metadata is not as visible as the resource itself, it
can often be forgotten when a resource is changed or upgraded. In the most extreme case
an author might use a metadata template, perhaps copied from another resource, and not
ever get round to completing or changing the metatdata for the new resource.

There has been progress towards metadata standards for describing educational resources.
In particular, the IMS Project (Instructional Management Systems), a cooperative of
academic, commercial and government organizations, looking at internet architecture for
learning, is investing some energy in metadata, and together with ARIADNE (Alliance of
Remote Instructional Authoring and Distribution), has come up with a schema for
education metadata.

Briefly, the ARIADNE proposal describes a schema of information, in 6 mandatory
categories. These (currently) are:
• general information on the resource itself
• semantics of the resource
• pedagogical attributes
• technical characteristics
• conditions for use
• meta-metadata information

Within these, various descriptors are proposed, not all of them mandatory. There is

17

currently a total of over about 25 descriptors, and within these, the IMS proposal describes
over 80 elements, in a hierarchy.

Figure 2 An example of the kind of output we aim for MIRADOR to produce

In the computational linguistics arena, natural language generation techniques are being
used to generate summaries of documents, for information retrieval [2]. In contrast to this,

18

our approach is to use metadata as the underlying knowledge base, and apply natural
language generation techniques in generating tailored descriptions of resources. One
important advantage that metadata gives over using document content as the source data,
is that metadata is available for non-text resources, such as those containing video, audio,
or graphics. The approach taken by Amitay[3] recognises these limitations with non-text
documents. Instead of using the resource of interest itself, she looks for descriptions found
in textual resources that point to the resource of interest, and aims to determine which such
description is the most appropriate. Our approach is instead to use the metadata found
with the resource, to generate a coherent description of a number of resources, that is
tailored to the context of use.

So, combining relevant aspects of these recent developments, we propose to address the
need for better mechanisms for finding web resources, by generating natural language
descriptions of existing multimedia resources from metadata about the resources, and
tailoring these descriptions to take into account the educational context and user need. We
have constructed the example in Figure 2 to demonstrate this, using categories based on the
ARIADNE-IMS educational metadata recommendations.

3. A preliminary investigation

As a prelude to establishing what kinds of tailored descriptions would be useful to users of
web resources, we have done a study of some existing descriptions. Our aims in this study
are to:

1. determine the structure of human authored document descriptions, which will inform
the design of the descriptions we might aim to generate

2. establish how the content of some human-authored descriptions matches the
information in a recognised metadata schema (in particular, the ARIADNE-IMS
master schema, which has been proposed for educational resources).

EEVL, the Edinburgh Engineering Virtual Library, maintains a searchable catalogue of
reviews and links to engineering-related web sites. Described by Moffat [4], it was
established as a project under the Electronic Libraries Programme. The EEVL database
contains descriptions of nearly 4000 engineering-related web sites, and we have taken a
sample of 22 of these (descriptions of tutorials, about computing topics) for our analysis.
These are descriptions of single documents, and our aim is ultimately to provide
descriptions of multiple resources, including some contrast and comparison. However, the
single document descriptions are a useful starting point for identifying the kinds of
information such descriptions contain.

The resources being described are generally text documents, but some of them include
video clips, audio, images, etc. Two example descriptions are shown in Figure 3. We have
identified (so far) some 20 different information types, which together cover the content of
the descriptions. These include things like Written_for, Written_by, Written_why, Keywords,
Aimed_at, Time_to_complete , etc. Any one description may have text that pertains to any of
these 20 information types.

The IMS metadata master schema is based on the IEEE LOM V2.2 Working document,
jointly authored by IMS and ARIADNE. Some, but not all, of our information types have an
obvious mapping to this schema. The IMS schema, in contrast to the Dublin Core, has a
hierarchy of sets of metadata, containing a total in excess of 80 fields.

6. PLC Tutor

The PLC Tutor provides a complete non-vendor-specific guide to
programmable logic controllers. It offers an introduction, and
sections on basic programming, advanced programming, wiring, and
links to manufacturers. New chapters are introduced to the

19

tutorial on a regular basis. The site can also be downloaded, if
required.

13. Transmath - a CBL mathematics tutor

The Transmaths project aims to address some of the problems
experienced by increasing numbers of first year undergraduate
scientists and engineers, who arrive at University with
inadequate mathematical knowledge and skills, by providing them
with a self-paced, user friendly computerised mathematics tutor.
The Mathematics departments of Imperial College and the
University of Leeds were awarded a grant under the Teaching and
Learning Technology Programme (TLTP) to produce CBL material for
the remedial teaching of mathematics.

The Transmath Web page provides further information about the
project, a list of available modules, an ftp server for
downloading Transmath, articles written by the Transmath team,
and an evaluation of TMP and Transmath software. Other sites of
interest are also available.

Figure 3 Example descriptions, taken from the EEVL database

Initial findings

Most of the information we have in the descriptions can be directly connected with fields
within the ARIADNE categories General, Technical, Pedagogical, and Semantics. The areas
where this is not the case are minor:

We have noticed that many descriptions will themselves have hyperlinks to resources other
than the one they are describing. This is information that is not easy to cater for in the
metadata schema. The closest we can find is the information in the Relation category, which
is described as 'characteristics of the resource in relationship to other resources', but this is
more general than we would like.

In the IMS schema, keywords are a sub-level within the Semantics category, pertaining to
the Concept or the Discipline. This does not always fit with the use of keywords in our
sample descriptions, which might sometimes pertain to the educational goal, or the nature
of the resource, for example.

Many of the information categories will have contributions from more than one language
fragment, while others will have only one. For example, there may be a number of
educational concepts mentioned in the description; there may be a number of prerequisites
for learners wishing to use the resource. Though usually such collections of information are
close to each other in the description text, there is no requirement that this is the case. In
particular, hyperlinks to other resources may be distributed through various parts of the
description.

We also note that an important property of text descriptions is that they provide a coherent
organisation of information, that itself conveys some semantic content. An analysis of this
organisation takes us beyond the flat representation that is obtainable from metadata. In
particular, the Dublin Core metatdata has no hierarchical structure at all; the ARIADNE-
IMS schema has a hierarchy which is inflexible. This suggests that in generating
descriptions we must consider this indirect semantic content and underlying
communicative goals.

Natural language prose is felt to be more useful than say just listing the metadata
information for a number of reasons. It is possible to focus the information in a way that is
tailored to the user's needs and it allows emphasis and stress of certain information. In
addition, a text description is an appropriate way in which to provide the kind of
comparison we envisage. A small study is planned, to verify this, comparing the usefulness
of text versus tables in this context.

20

4. Concluding remarks

The MIRADOR project is one that aims to bring together recent developments in metadata,
educational resources, and natural language generation, in a novel way, which will provide
some help to users of networked educational resources, in dealing with the volume of
resources that are available.

We aim to develop a system to provide better descriptions of resources, and take as our
starting point an analysis of professional human authored descriptions. This analysis
suggests that the metadata we plan to use as our source data is, if complete, a mostly
adequate resource, but we have identified some limitations. Our analysis also suggests
ways of structuring descriptions.

We now plan to work on implementation issues and move on to consider how descriptions
can be tailored to user and query.

Bibliography

1. Thiele, Harold, The Dublin Core and Warwick Framework D-Lib Magazine, January 1998, ISSN
1082-9873. Available: http://www.dlib.org/dlib/january98/01thiele.html [Accessed February
1999].

2. McKeown, Kathleen R., Jordan, Desmond A. and Hatzivassiloglou, Vasileios Generating
Patient Specific Summaries of Online Literature. AAAI Spring Symposium on Intelligent Text
Summarisation, pp34-43, Stanford, 1998.

3. Amitay, Einat. (1998). Using common hypertext links to identify the best phrasal description
of target web documents. In Proceedings of the SIGIR'98 Post-Conference Workshop on Hypertext
Information Retrieval for the Web, 1998. Available http://www.mri.mq.edu.au/~einat/sigir/
[Accessed April 1999].

4. Moffat, Malcolm, An EEVL solution to engineering information on the Internet Aslib Electronics
Group 38th Annual Conference, 15-17 May 1996. Available:
http://www.eevl.ac.uk/paper1.html [Accessed February 1999].

21

Conceptual Documents and Hypertext Documents are
two Different Forms of Virtual Document

Sylvie Ranwez and Michel Crampes
Laboratoire de Génie Informatique et d'Ingénierie de Production
EMA - EERIE, Parc Scientifique Georges Besse
F-30035 Nîmes Cedex 1
ranwezs@site-eerie.ema.fr, mcrampes@ema.fr

Abstract

When posing simple queries on the Internet, users often find themselves facing relatively
incoherent and poorly organized groups of items of information. They should be helped in their
navigation through them. This help can take the form of Conceptual Documents that are adapted
to their particular state and preferences.

In this paper we give a definition of Virtual Documents and we study two particular cases:
Hypertext Documents and Conceptual Documents. We show how Conceptual Documents
can improve data retrieval and quality of knowledge transfer. We propose an approach for
generating conceptual documents and we present an application based on this approach.

Keywords: Virtual Documents, Conceptual Documents, Hypertext, Conceptual Navigation.

1. Introduction

Searching for information on the Internet, users find themselves faced with collections of
pieces of information which they bring to light either by browsing or by using search
engines. These collections often have little coherence and users have to filter and organize
them in order to make them exploitable. When they do this, they synthesize a form of
document suited to their needs. In what follows, we call the individual pages or pieces of
pages which users unearth ‘Information Bricks’ (IBs). We call a Real Document (RD) the
composite document which they eventually synthesize out of these bricks.

Our research focuses on techniques that would allow the production of these real
documents from raw information as coherently as possible. A collection of information
bricks with techniques suited to building a real document is called a Virtual Document
(VD) - one which is not itself a real document but which contains the specifications
necessary for producing one.

This paper analyses first what characterizes coherency in a document, then how it is
possible to produce a VD from a set of IBs. Two forms of VD are analyzed: Hypertextual
and Conceptual. A Real Document is presented as the result of a VD and specific
circumstances. The circumstances differ according to the type of VD - whether it is
hypertextual or conceptual. Hypertext documents come into being through the user’s own
browsing through hyperlinks. Conceptual documents through a conceptual engine and the
user’s specifications.

Finally we give a presentation of a project under development in our laboratory for
designing a foundation for building conceptual documents.

2. Preliminary definitions

A document (from the Latin documentum) means "a thing used for giving instruction". Often
it is written and can be used as proof, information or testimony.

A document is a tool used for transferring knowledge. Therefore it must be structured in a
way that optimizes the user’s comprehension. This structure might be as follows:

22

• A document is composed of different parts that we call bricks.
• Each part has a style and plays a particular role in the knowledge transfer. The role

depends on the place of the part in the document.
• Each part has a certain volume or size.
• Between bricks there are transitions that express the chronological or causal links that

join them together.
• In a given document, the vocabulary comes from a single domain ontology and,

consequently, the same word should always mean the same thing.
• Finally the document has an entropy value which represents its degree of complexity

according to Shannon’s theory of information.

This document is called a Real Document (RD) since it can be consulted without any
change, i.e. in its present state.

The thing we call an Information Brick (IB) is a fragment of a document, rendered on one
(at least) medium, characterized by a conceptual model and insertable into a real
document. Once a set of IBs exists, the building of a real document takes the form of
selecting the pertinent ones then organizing and assembling them. Bricks can be nested
since they can be segmented into sub-bricks. The size of an IB depends on the author’s wish
(how deep he explains a concept), and on the content itself: a pen description will probably
be shorter than a plane description.

The document from which IBs are extracted is called a Source Document.

The most common definition for Virtual is: being in essence or effect but not in fact; in
other words, being in a state of possibility. In the following we will adhere to this
definition; it is one widely used in data processing - in for example the term ‘virtual
memory’: something which appears functionally for a given user without taking into
account the physical structure or the logic used.

In accordance with the two definitions given above, we can define what a Virtual
Document is.

3. Virtual Document: a definition

A Virtual Document (VD) is a non-organized collection of Information Bricks (IBs)
associated with tools and techniques allowing the creation of a Real Document (RD).

By analogy with object-oriented languages, a Virtual Document is a composite class, IBs are
components, and techniques and tools are construction methods. A Real Document can be
seen as an instance of this class.

A more formal definition for a Virtual Document might be:

VD = { IB } + Methods allowing the generation of a finished IB sequence.

The methods must take into account:
• predefined links between IBs if any;
• any parameters supplied;
• user actions;
• a specific strategy for methods.

A Real Document is then a sequence of IBs generated by the methods in concordance with
the user’s specification.

4. Different forms of Virtual Document and their characteristics

In this part we will differentiate two kinds of Virtual Document: Hypertextual and
Conceptual.

23

4.1 Hypertext Documents (HD)

By analogy with the vocabulary used in object languages, a Hypertext Document is a sub-
class of a VD.

An HD is composed of hypertext information bricks that have predefined connections. The
links contained in these bricks (hyperlinks) lead to other bricks - the whole constituting a
graph. The method which allows the building of a Real Document out of an HD (the
"constructor" of an object-oriented language) is the user’s browsing through the document -
i.e. the visit paid to this graph.

A hypertext document is by definition a VD because its final form depends entirely on the
wishes of the user. The route taken in visiting the document is known only by the user; it is
not preset. A particular case of a HD is the one where there is only one link at the end of
each page - and it leads to the following page. In this case the HD is also the RD.

The formal characteristics of a VD are:

HD = {Hypertext IB} + User’s browsing.
• The predefined links are the hypertext links that are in the IBs;
• There are no given parameters;
• User actions are limited to clicks on hyperlinks;
• The strategy is specific but implicit in each user’s mind.

4.2 Conceptual Documents (CD)

A Conceptual Document is a Virtual Document from which it is possible to build a Real
Document dynamically and at any moment the user asks for one. Contrary to HDs, the
bricks that compose a CD can have several formats. These bricks are selected via the
semantics of their contents. They can be accessed via the Internet or locally (CDROM, DVD,
hard disk,...). In this case, the methods used to create a Real Document consist of an engine
and the user’s specifications. The engine is in charge of selecting the IBs, organizing and
assembling them, but it does this in obedience to specifications defined by the user.

Among these specifications can figure economic constraints such as reading time. This
point is significant since it constitutes one of the major differences between HDs and CDs.
Indeed, we can have HDs whose links take into account the semantics of the IBs referred to,
but time will never play a role in the browsing. However it is one of the things users keep
firmly in mind.

With our formalism, we can write:

CD = {IB}+ Engine and specifications.
• Any and all links are possible between bricks since the links will be the result of a

conceptual evocation process [CRA 97][CRA 98]. The set of bricks constitutes a special
graph called a "clique".

• The parameters are given by the user (time, final document size, data concerning their
requirements, conceptual focus, etc.) ;

• The user’s actions amount to selecting the required parameters;
• The engine can be directed to follow a precise strategy. This is important in particular in

pedagogical applications.

4.3 Other characteristics for VDs

It is possible to distinguish homogeneous VDs from heterogeneous VDs.

4.3.1 Homogeneous Virtual Documents

A VD is homogeneous if all its bricks come from the same source document. Thus they all
have the same author or group of authors.

A homogeneous document has the following properties:

24

• IB size is nearly the same for each brick. There is no great difference in size because the
same method is used for partitioning all the bricks of any one document;

• Brick style is the same for all. Because all the bricks come from the same author and
from the same source document, scriptural and graphical styles do not change;

• It is possible to give indications to guide dictum order. The source document can
contain causal links and information that can serve during brick ordering;

• The role of each brick is defined in relation to the dictum order;
• Text continuity, and the use of linking words, is related to the framework of the source

document;
• Entropy is high: there is little redundancy,
• There are no contradictions between the different bricks (the author may have respected

some basic guidelines yielding coherence, readability and restriction to suitable
vocabulary);

• Finally, the ontologic domain is unique: words always have the same meanings (not
unrelated to the remark above about the quality of a document).

4.3.2 Heterogeneous Virtual Documents

Heterogeneous Virtual Documents are documents composed of bricks that can have
several different origins – Internet, CD-ROM, etc. – and thus several authors. Their
characteristics are as follows:
• The size of the different bricks making up a document can differ.
• Their styles can vary widely - to the extent of shocking the user when assembled

together into a composite document.
• There is no partial order between IBs (causal, presence etc. links are not defined).
• The role of each brick is unspecified.
• There are no transitions between bricks.
• Entropy may be low: redundancy may occur, with several bricks treating the same

subject.
• There may be contradiction - between authors or points of view.
• The ontologic base is heterogeneous and a word may have different meanings in

different bricks.

In such documents, problems of coherence are likely. Transitions between IBs will need
particular treatment.

5. How to create Real Documents from Conceptual Ones?

The constructing of an RD has three phases to it. The first one is Information Retrieval (IR),
and it takes into account size constraints. The second one is the building of the real
document; this includes the filtering of the retrieved IBs, the ordering and assembling of
these IBs. The final one consists in displaying the document through a convenient interface
(HTML for example).

To do this we need an engine. We have constructed what we call a Conceptual Evocative
Engine (CEE), one which uses the semantics of the IBs to do the selecting and building of
the final document [CRA 97] [CRA 98].

To allow reusability of IBs, they have to be qualified with metadata. Qualification needs a
description method. We have developed such a method through a Document Type
Definition (DTD) and the corresponding language written in XML. Once the qualification is
done the CEE can identify each brick by the semantics of its content and build up
conceptual links between those bricks.

Brick qualification using a DTD and associated treatment has several advantages, amongst
them the apprehension of constraints of different sorts - narrative and economic for
example.

25

First, narrative constraints:
• Using the semantics of the IBs’ content, information retrieval is improved and it is

possible to avoid contradictions.
• If the DTD is based on a unique ontology, problems of synonymy and homonymy are

avoided.
• It is possible to express constraints such as causality in the description of a brick that

will be used during the ordering of the IBs.
Second, economic constraints:
• Time constraints can be respected, using the time parameters included in the

description. During the selection of IBs, the CEE can eliminate any bricks that are too
long, selecting only those that correspond to the time available to the user.

• It is possible to confine selection to bricks of the same size, improving thus the
homogeneity of the final document.

When the engine has selected IBs which meet the user’s needs, it has to assemble them. This
is achieved by taking into account not just user preferences and narrative and economic
constraints but also information such as the educational curriculum the user has followed
or is following. The result is a real document adapted to the specific needs of the specific
user.

6. Application: The Karina project and the associated DTD

The theoretical considerations set out above constitute the basis of an application - that we
call Karina - that we have developed in our laboratory.

Karina is a project jointly undertaken by the Alès School of Mines (l'Ecole des Mines d'Alès
or EMA) and the Marseilles Higher Engineering School (l'Ecole Supérieure des Ingénieurs
de Marseille or ESIM) within the framework of the French Ministry of Industry's call for
projects for the Information Highway. This particular project aims to furnish teachers with
tools enabling them to use the Internet for making courses available and also for making
use of course bricks provided either by other teachers or by alternative sources - electronic
newspapers etc. Initially our application is oriented towards distance learning, but we wish
it to remain general enough to embrace cultural and leisure activities as well.

The conceptual evocation engine has served as the object of models [CRA 98] for realizing
narrative abstracts in the domain of interactive television. It is now subject to further
development, with the aim of finding application in the domain of teaching [RAN 98].

7. State of the art

In adaptive hypermedia systems, the aim is to find a compromise between guiding users
and letting them browse on their own [BRU 96] [GRE 97] [STE 97] [WEB 97]. This work
concerns essentially the adaptation of user-browsing to an already established hypergraph
[BRU 98]. It does not aim at the construction of new links and their organization in
response to user needs. The approaches cited above are attempting to find ways of
adapting pre-existent hypermedia, not dynamically constructing routings through ad hoc
collections of bricks borrowed from other documents.

The sharing of resources though makes document indexing necessary. Document
description articulates around complete documents and makes use of either specific
descriptors [MAR 97][BAR 98] or descriptors already established as standards or
recommendations [DUB 97][MARC]. This latter category includes the IMS (Instructional
Management System) recommendation for educational documents [IMS 98]. The aim of the
project is to furnish specifications for the description of educational materials using a
system of meta-data.

The XML (eXtensible Mark-up Language) language allows the description of electronic
documents by means of a DTD (or Document Type Definition). The use of DTDs for

26

internet documents is recent yet already well-established because, for example, a
preliminary version of the MARC standard DTD is available [MARCDTD]. XML is
intended to be evolutive since it allows for the fusing of several DTDs - not unlike the
principles of inheritance in the object world [W3C 98].

Other forms of document description are visited: [BAL 97] for instance proposes an object
architecture for modeling electronic documents. In Karina, we use a similar reification
technique to transform a descriptor into an XML element without however situating our
model in the pure object world.

The authors of [BRA 98] use HTML comments to annotate documents in order to be able to
implement adaptive changes. In the Karina project, the entities forming the basis of
conceptual browsing are explicitly declared as XML elements - not hidden in comments.

 [GRE 98] proposes a technique for automatically generating links between documents
treating any one subject. This permits grouping the responses to a search on that subject. In
order to extract a content semantics, the approach is to note the words and their frequency
of use in a document - including closely related words (this via relations which can be
established by WordNet links). The main problem here is in speed of execution.

Starting from the linear form of the conceptual graph, we have explored the use of light
versions of weighted conceptual graphs for effecting conceptual evocations between
documents [CRA 97] [CRA 98].

8. Conclusion

In their browsing and searching on the internet, users need guidance. They need a system
capable of creating documents adapted to their precise requirements and demands;
documents which come into being as a result of the application of certain circumstances to
a virtual document.

After defining these different types of document, we have concentrated on one of them -
the conceptual one. We put forward a system permitting the creation of such documents
and the production of real documents adapted to the needs of their users.

Our approach focuses on modes of conceptual browsing. These operate on collections of
information bricks which are qualified - that is to say containing inside themselves meta-
information related to their content and to any constraints limiting their use. A conceptual
evocation engine (CEE) has been modeled and is currently the object of further
development.

The process of constructing real documents out of their conceptual counterparts requires
the definition of rules of narrative construction and constraint optimization algorithms -
this because a real document has to obey constraints of size and time. Our theoretical work
now bears on this aspect of the problem. We are attempting to establish the formal bases of
a language for conceptual document description - and thus also for virtual document
construction.

References

[BAL 97] Baldonado M., Chen-Chuan K.C., Gravano L.? Metadata for Digital Libraries:
Architecture and Design Rationale. Actes. DL'97 ACM Digital Library '97? Philadelphia.,
PA., USA, July 1997, ACM Press, pp. 247-253.

[BAR 98] Barthélémi S., Loubier M., Pinon J.M., SEMUSDI, SErveur MUlitimédia pour les Sciences
De l'Ingénieur. Actes du congrès NTICF'98, INSA de Rouen, 18-19-20 Novemvre 1998.

[BRA 98] De Bra P., Calvi L., 2L670: A Flexible Adaptive Hypertext Courseware System. Actes
HyperText'98, Pittsburgh., PA., USA, June 1998, ACM Press, pp. 283-284.

[BRU 96] Brusilovsky P., Schwartz E., Weber G., A Tool for Developing Hypermedia-Based ITS on
WWW, Position Paper for ITS'96 Workshop on Architectures and Methods for
Designing Cost-Effective and Reusable ITSs, Montreal, June 10th 1996.

27

[BRU 98] Brusilovsky P., Methods and Techniques of Adaptive Hypermedia. Adaptive Hypertext and
Hypermedia, Brusilovsky, P., Kobsa, A., et Vassileva J. eds. Kluwer Academic
Publishers, 1998.

[CRA 95] Crampes M. Composition Multimédia dans un contexte Narratif. Modèles et
Maquetage Basé sur une Architecture Agents. PhD Thesis, University of Montpellier
II, 1995.

[CRA 97] Crampes M. Auto-Adaptative Illustration through Conceptual Evocation in Proc.
DL'97 ACM Digital Library '97 (Philadelphia., PA., USA, July 1997), ACM Press, pp.
247-253.

[CRA 98] Crampes M., Veuillez J.P., Ranwez S., Adaptive Narrative Abstraction Actes. HyperText
98, Pittsburgh., PA., USA, June 1998, ACM Press, pp. 97-105.

[DUB 97] Dublin Core Metadata Element Set: Reference Description,
http://purl.oclc.org/dc/about/element_set.htm, 1997.

[GRE 97] Greer J.E., Philip T. Guided Navigation Through Hyperspace, Actes Workshop "Intelligent
Educational Systems on the World Wide Web", 8th World Conference of the AIED
Society, Kobe, Japan, 18-22 August 1997.

[GRE 98] Green S.J. Automated Link Generation: can we do better than term repetition? Seventh
International World Wide Web Conference, Brisbane, Australia, 14-18 April 1998.

[IMS 98] Educause, Instructional Management Systems. http://www.imsproject.org/metada,
1998

[MAR 97] Marchionini G., Nolet V., Williams H., Ding W., Beale Jr. J., Rose A., Gordon A.,
Enomoto E., Harbinson L., Content + Connectivity => Community: Digital Resources for a
Learning Community. Actes Second ACM Digital Library conference, Philadelphia, PA,
USA, July 1997.

[MARC] Library of Congress; Network Development and MARC Standards Office. MARC
STANDARDS Machine-Readable Cataloging, http://LCWEB.loc.gov/marc/.

[MARCDTD] Library of Congress; Network Development and MARC Standards Office.
MARCDTD,http://lcweb.loc.gov/marcdtd/mrcbfile.dtd.

[RAN 98] Ranwez S., Formalisation d'Ontologie Pédagogique (incluant matériel et procédés
didactiques) et raisonnement sur cette ontologie pour l'élaboration de cours adaptatifs, suivant
différentes Stratégies Pédagogiques, dans un système de formation continue disponible via
Internet. Rapport interne LGI2P, Ecole des Mines d'Ales, 1998.

[STE 97] Sterb M.K. The difficulties in Web-Based Tutoring, and Some Possible Solutions, Actes
Workshop "Intelligent Educational Systems on the World Wide Web", 8th World
Conference of the AIED Society, Kobe, Japan, 18-22 August 1997.

[W3C 98] W3C, Document Object Model (DOM) Level 1 Specification Version 1.0 W3C REC-DOM-
Level-1-19981001, http://www.w3.org/TR/REC-DOM-Level-1/, 1 October 1998.

[WEB 97] Weber G., Specht M. User Modeling and Adaptive Navigation Support in WWW-based
Tutoring Systems, Actes UM-97, Cagliari, Italy, June 2-5, 1997.

29

When Virtual Documents Meet the Real World

Stephen J. Green1, Maria Milosavljevic2, Robert Dale1 and Cecile Paris2

1 Language Technology Group
Microsoft Research Institute
Macquarie University
North Ryde NSW 2113
Australia
{sjgreen,rdale}@mri.mq.edu.au

2 Intelligent Interactive Technologies Group
CSIRO Mathematical and Information Sciences
Locked Bag 17
Sydney NSW 1670
Australia
{Cecile.Paris,Maria.Milosavljevic}@cmis.csiro.au

1. Introduction

We have been involved in an ongoing project involving the creation of virtual documents
using techniques drawn from the area of Natural Language Generation (NLG; see Reiter
and Dale (1999) for an up-to-date overview of this field). In the past year, we have taken
this work to a new level, by attempting to scale up the techniques we originally developed
on small hand-constructed knowledge bases (KBs) to a stage where they cam be applied to
a large KB that was automatically built from a database of museum objects.

This experience has illustrated some important principles to keep in mind when virtual
documents on the Web meet the difficulties and inadequacies inherent in real-world data.
In addition, we have gained some insight into how generation techniques can be used to
produce virtual documents in multiple languages.

2. Virtual documents and NLG

The forerunner of most of the systems that we have built is the Peba-II system
(Milosavljevic et al., 1996), which automatically generates descriptions and comparisons of
animals. These descriptions and comparisons are based on a model of the user, so that they
can include references to animals that the user has already seen described.

As an experiment in seeing how domain-dependent these techniques were, we took the
Peba-II system as a base and built a new database containing the kinds of objects that one
would expect to see in a museum of computing. This system, Power, could be used to
produce exactly the same kinds of descriptions and comparisons as Peba-II, with only a
new KB and the addition of some new lexical items.

The problem with the approach taken in these two systems was that the KBs had to be
constructed by hand, a time-consuming and difficult task at best. Because of this, the KBs
were small, although of quite high quality. Despite this, the systems have been quite
successful and have shown the feasibility of using NLG techniques in a near real-time
environment like the Web (see Dale et al. (1998) for more information.)

3. Automatically acquiring a knowledge base

Our success in porting Peba-II to a new domain lead us to consider how we could
automatically acquire a much larger KB of objects to describe. Our interest in the museum
domain is not unique - The Intelligent Labelling Explorer (Hitzman et al., 1997) project has
also focussed on generating descriptions of museum gallery objects. The Powerhouse
Museum was willing to provide access to the database of their Collection Information

30

System (CIS). This database consists of approximately 300,000 objects, most of which are in
storage at the museum's various facilities because of a lack of floor space in the museum's
exhibition halls.

<rec num=12798 id="H4448-513">

OID: H4448-513

INT: Part

LOC: TH2.STEP.6A

LOD: 27/11/1997

OBN: Boots

OBS: Balmoral boots, elastic sided, pair, women's,
patent/kid/leather/elasticised fabric/wood,/brass prize work,
[Gundry & Sons], England, c.1851; 1862-1869.

DES: Balmoral boots, elastic sided, pair, women's,
patent/kid/leather/ elasticised fabric / wood /brass, prize
work, [Gundry & Sons], England, c.1851; 1862-1869. Pair of
women's elastic sided boots (Balmoral), with wooden filler, of
welted construction with rounded toes featuring peaked caps and
stacked heels. The uppersconsist of a patent golosh, seamed at
the back, glace kid leg, seamed at front and back, and elastic
sides extending to the golosh. The uppers are decorated with
oval stitching at the edge of caps and scallops at the throat
of golosh. The leather heel is fine wheeled, featuring a top
piece with brass nailed edge. The black leather sole features a
sueded forepart with brass nails, as well as an internal clump
and brass hinged section for extra strength and a brown
polished ridged waist with black edge. Reputed to have been
made by Gundry & Sons. (See object file for specialist report
by June Swann)

MDE: Gundry & Sons; London, England

MDN: 1965 list says "made by Gundry & Sons, Soho Square." Swann says
hinged device to increase flexibility is unusual. Similar
screws on H4448-515. Note hinged sole in 1862 exhibition. She
finds no information about Box in information she has about the
1851 exhibition, though William Walsh is mentioned in
connection with a pair of shoes. Patent 558, 5 March 1861,
granted to J.M. Carter, a similar sole with 2 cuts across the
tread and 4 rows of screws "for soldiers, riflemen, sportsmen.
The inner sole is whole and contains pitch." It is not possible
to confirm whether these boots contain pitch.

DAT: c 1851 - 1869

MAR: Interior obscured by last, no marks on exterior

DIM: Length 248 mm Height 31 mm Overall Height 160 mm Width 58 mm

</rec>

Figure 1: A well-populated database record

We selected as a subset of the items in the database only those objects on display in the
museum. We also included in this set all those objects in the database that were a part of
something on display, even if these particular objects were not on display. This subset
amounted to approximately 15,000 objects. Figures 1 and 2 demonstrate the range of data
quality in the database. The entry in Figure 1 provides a rather complete description of the
Balmoral boots, including a discussion on the construction and history of the boots. The
entry in figure 2, on the other hand, provides no information beyond that required for a
database record to actually exist! It is worth noting that this database was intended for
internal use by curators only, and not intended to be used to generate object descriptions

31

for public consumption.

<rec num=15463 id="PROP/EXP/82">

OID: PROP/EXP/82

INT: PROP

LOC: EH2.EXP.3H

LOD: 16/02/1996

OBS: Aerosol deodorants/colognes (2), "Lynx" & "Australis".

DES: Aerosol deodorants/colognes (2), "Lynx" & "Australis".

</rec>

Figure 2: A sparsely populated database record

In addition to the database, we were provided with a hierarchical thesaurus of objects that
had been prepared by the museum. With these two information sources, and with lists of
countries and materials extracted from the Macquarie Thesaurus we could begin the
process of extracting a KB from the database. The extraction process is broken down into
five basic steps:

1. Normalisation of the database: This is to ensure that each record is surrounded by an
SGML-style rec tag, and that each field of an entry is on a single line. This eases the
processing requirements at the further stages.

2. Extraction of dimensions: In this step, a Perl script extracts the dimensions of the
objects. This information resides in easily identifiable fields (e.g., the DIM field in Figure
1) and the information in that field is structured and can be decomposed into its
subfields (e.g., length and height).

3. Extraction of thesaurus categories: This step involves trying to identify the thesaurus
category that applies to each of the objects in the database. This is normally found in the
OBN (Object Name) field and corresponds to an entry in the Powerhouse's thesaurus.

4. Extraction of names, materials, makers, locations, and dates of construction: This
involves extracting information from the textual information contained in the database
records. Most of our work here so far has focussed on the OBS (Object Statement) field.
This field is supposed to include information encoded in a standardised and rigorous
way. However, in practice, not all the information that is supposed to be included is
present, or it is present in a different order, or format, from the norm. Yet, with the help
of information from the Powerhouse's thesaurus and the lists of materials and
countries, we were able to identify information such as date of manufacturing or
purchasing, materials and location.

5. Extraction of PART-OF and A-KIND-OF information: We used the OID (Object ID) field
to determine the PART-OF hierarchy for the database. For example, in the database
record shown in Figure 1, the OID H4448-513 indicates that this object is the 513th part of
the object with OID H4448 (in this case the Balmoral boots are part of a large collection
of footwear). According to the database specifications, an object may have parts, sub-
parts, and sub-sub-parts.

Clearly the quality of the KB entries created will depend greatly on the database they are
extracted from. For example, of the 15,483 records that we received in the database dump,
only 9,887 (in other words, around 64% of the total) actually have an OBN field.
Furthermore, of the 9,887 objects that have OBN fields, only 7,751 are valid object names,
that is to say that the Object Name assigned to the object appears in the museum thesaurus.
Thus, about 50% of the database entries do not provide any information about the types of
the objects.

Even a high-quality entry, such as that in Figure 1, is problematic, as much of the
information that we would like to put in a description is "locked-up" in text. In Figure 1, we
see this in the description of the construction of the boot. Although much recent work in
Natural Language Processing is oriented towards extracting useful information from texts

32

that have some similar characteristics, current techniques are simply not up to the task of
performing this extracting reliably in such a way that results are reusable for our purposes.
We cannot simply use the text directly, as we cannot guarantee that the text will be well
structured or even relevant. In addition, the text may contain information that the public
viewing these descriptions are not meant to know. A more-structured database would
make this task significantly easier. Figure 3 shows the generated text for the database entry
in Figure 1.

Figure 3: A description of the Balmoral boots produced by the PowerTNG system

4. Navigating through a virtual document space

In the Peba-II and Power systems, the task of navigating the virtual document space was
accomplished by selecting items of interest from a list and then following hypertext links
around the object hierarchy. This is sufficient when there is only a small number of objects
and a user can easily look through a list of them. When we move to a KB consisting of
thousands of objects, however, we need to rethink our navigation strategy. It is, to say the
least, infeasible (and perhaps impossible in current browsers) to have a user select an item
of interest from a list of 15,000.

The obvious choice for a navigation strategy is to use the object hierarchy provided by the
Powerhouse. This has the advantage that we can use a structure that was built by humans
and which therefore should represent the actual relationships between the objects in the
database. Given the thesaurus and the generated KB, we can produce a hierarchy that will
allow a user to navigate from the top level to a specific object. Currently, this navigation
hierarchy is a static set of pages that is generated when the KB is regenerated, but there is
no reason why it cannot be dynamic too.

As the location of the objects in the museum is also encoded in the database entries, we
built a navigation hierarchy based on location. The location information includes the
exhibit that an object is part of as well as the case in which it appears. We found, however,
that such a hierarchy offered little help to users, since they had no idea what was in the

33

exhibits, let alone which objects were gathered in something called "Case 6A".

While using the thesaurus-based navigation hierarchy allows a user to navigate to an object
by traversing through classes and subclasses, it will not allow them to navigate directly
from one object to another. Our aim in building the generation component was to make
sure that any systematic relationships between objects (e.g., that one is a part of another, or
they were manufactured by the same artisan) is expressed in the virtual document as a
hypertext link. This is implemented simply as a set of inverted files to which the generation
component has access.

Our initial approach was to inline all of these links into the text, but this led to some
confusion about the discourse intention of following the links (see Milosavljevic and
Oberlander (1998) for a discussion of dynamic hypertext as discourse). In the original Peba
and Power systems, only the names of objects were linked. The discourse intention of
following one of these links was clear: "describe this animal" or "describe this computer".
However, when more than one kind of entity is linked, the intention is less clear. For
example, if the user follows a link whose anchor is the word leather, will he or she be taken
to a description of the material leather or to a listing of the objects in the database that are
made of leather?

Our solution was simply to make the discourse intentions for links other than links to
named entities very explicit, leading to constructions such as See other objects made of
leather appearing at the end of the descriptions of objects.

5. Changes in functionality

Although we are claiming to be porting the Peba-II/Power system to an automatically
generated KB, in fact, we have completely re-written the system to take advantage of some
of the lessons learned during the development of the previous systems. As with any re-
write, there have been some changes in functionality.

5.1 Comparisons

Unlike the ancestor systems, the current system will not generate comparisons. There is no
fundamental reason why this cannot be done, but there is no obvious way to introduce a
comparison to the user. In the original systems, comparisons were generated either by
selecting two objects from two lists of all the objects known to the system or by selecting
another object when looking at a description of some object. Needless to say, this is
ineffective when there are 15,000 objects to choose from.

Another factor limiting the scope for providing comparisons is that, in the hand-crafted KB
used previously, the KB author was able to specify objects that could be confused with the
given object, along with other useful properties that might play a role in comparison. These
potential confusors are not available in the automatically generated KB. We are still
exploring the appropriate use of comparisons in this context, but see Milosavljevic and
Oberlander (1998) for more information.

5.2 Multilinguality

A major change for the better is that the current system is fully multilingual, with
descriptions available in English, French, Spanish, Dutch, and Chinese. The main difficulty
with the multilinguality is that one of the major components of the database is the names of
the objects themselves. Translating these names to each of the target languages is a
daunting (but not impossible) task. Currently, the English names of items are always
shown. Figure 4 shows the text of the description shown in Figure 3 in French and Spanish.

Ces objects sont des `Balmoral boots'. Ils ont ete fabriques en entre
1870 et 1875. Ils ont ete fabriques a `London'. Ils sont en
`leather', patent leather, glace kid, `linen' et `wood'. Les
`Balmoral boots' sont 45 mm de hauteur, 255 mm de longeur, 55 mm de
largeur total, 150 mm de hauteur total et 30 mm de largeur.

34

Estos son `Balmoral boots'. Fueron hechos entre los aÒos 1870 y 1875.
Fue producido en `London', Inglaterra. Est·n hechos de cuero, patent
leather, glace kid, lino y madera. Los `Balmoral boots' tienen 45 mm
de altura, 255 mm de largo, 55 mm de anchura total, 150 mm de altura
total y 30 mm de ancho.

Figure 4: French and Spanish descriptions of the Balmoral boots

For some of the smaller sets of lexical items (e.g., materials and places), translations have
and are continuing to be made. These are presented to the user in the target language.
Adding a new language is straightforward, requiring the translation of about 400 materials
and countries and the translation of the template sentences used by the generator.

6. What's missing?

Clearly, we could improve the quality of the texts generated if we could do a better job of
extracting information from the database of objects. Unfortunately, this is currently out of
our hands. The experience would have been very different if the database had been more
consistently marked-up with XML or another representation language.

The lack of typed links on the Web leads us to produce texts that are probably less fluent
than they could be. If it were possible to specify exactly what discourse intention would be
understood by the user following a particular link, then we could do away with the lists of
links at the bottom of each text that we produce. This would appear to be possible under
the current extended linking proposal for XLink.

One of the advantages of a hand-crafted KB is that it is a relatively straightforward task to
specify possible links between objects while building it. Although we could use a similarity
metric to propose links between items based on the KB features that they have in common,
the sparseness of our current data would mean that most such comparisons would be
based on size. It may be that we can resort to using IR-like techniques (see Green, 1997) to
automatically determine which objects are related, but this will most likely only work for
the textually rich objects. By the same token, this would allow us to make use of data that
we are currently ignoring.

Finally, there is no straightforward (or perhaps integrated) way to get an overview of what
the information space underlying the system is. There is currently no way for a user to get
some idea of how many things there are to look at or how to get to them.

References

(Bernard, 1990) Bernard J. Ed. The Macquarie Thesaurus. Macquarie Library, North Ryde NSW. 1990.

(Dale et al., 1998) Robert Dale, Jon Oberlander, Maria Milosavljevic and Alistair Knott. Integrating
natural language generation and hypertext to produce dynamic documents. Interacting with
Computers. 11(2). 15 December 1998.

(Green, 1997) Stephen J. Green. Automated link generation: Can we do better than term repetition?.
In Proceedings of the Seventh International World Wide Web Conference, April, 1998, Brisbane, Australia,
pp. 75--84.

(Hitzman et al., 1997) Hitzeman J., Mellish C. and Oberlander J. Dynamic generation of museum
web pages: The intelligent labelling explorer. Archives and Museum Informatics, 11:105--112. 1997.

(Milosavljevic et al., 1996) Maria Milosavljevic, Adrian Tulloch and Robert Dale. 1996. Text
Generation in a Dynamic Hypertext Environment. In Proceedings of the Nineteenth Australasian
Computer Science Conference (ACSC'96), Melbourne, Australia. 31 January - 2 February 1996, 417-426.

(Milosavljevic and Oberlander, 1998) Maria Milosavljevic and Jon Oberlander. 1998. Dynamic
Hypertext Catalogues: Helping Users to Help Themselves. In the Proceedings of the 9th ACM
Conference on Hypertext and Hypermedia, Pittsburgh, PA, USA, 20-24 June 1998.

(Reiter and Dale, 1999) Ehud Reiter and Robert Dale. 1999. Building Natural Language Generation
Systems. Cambridge University Press.

35

A Key for Enhanced Hypertext Functionality
and Virtual Documents: Knowledge

 Philippe Martin and Peter Eklund
Griffith University, School of Information Technology,
PMB 50 Gold Coast MC, QLD 9726 Australia
Tel: +61 7 5594 8271; Fax: +61 7 5594 8066;
E-mail: {philippe.martin,p.eklund}@gu.edu.au

1. What the users want: precise and organized information, not
documents

Web search engines - such as Altavista1 or Infoseek2 - retrieve entire documents based on
the keywords they include. They exploit undirected Web robots to periodically traverse
and index internet/intranet documents. Directed Web robots - such as Harvest3, WebSQL4

and WebLog5 - apply string-matching and structure-matching commands (e.g. hypertext
path expressions) to explore an intranet or a small subset of Internet and retrieve entire
documents or parts of them. However, often people are not looking for lists of documents
but either for a precise answer to a precise query, or for a structured presentation of information
related to a certain object such as a particular event, technique, software type, idea or person.
For example, someone looking for "large-scale deductive database systems" does not want a
giant list of references to conferences, articles and courses on database systems, or home
pages and user manuals of specific database systems, s/he first wants a classification of
features that such systems may have, and then s/he may ask for a classification of existing
tools according to some features, e.g. the kinds of query language, exploited techniques,
API, memory & performance characteristics, support for multi-users, reliability, license.

Though such precise information and comparisons are important for each person interested
in using deductive database systems, it is a long and difficult task for that person to collect
the information just by reading documents. However, it is not necessarily difficult for each
provider of information on an object to represent this information in a document or a shared
knowledge repository so that they can be retrieved - and to a certain extent, merged or
composed - via conceptual commands. As opposed to string-matching and structure-
matching commands, conceptual commands rely on logical inferences (e.g. exploitation of
subsumption relations between terms in the knowledge statements) and improve both
precision and recall in information retrieval. They may also be combined with other
commands within scripts or usual documents to create virtual documents.

2. Easing knowledge representation

The easiest way to express information is in natural languages. However, outside limited
domains, these languages are too ambiguous for the semantic content of sentences to be
automatically extracted. We argue in our article for the WWW8 conference 6that general
and intuitive knowledge representation languages or derived simpler notations (e.g. a
"controlled language" that is a subset of natural language that eliminates sources of
ambiguity) are preferable to metadata languages7 based on XML8 (e.g. RDF9 and OML10) for
indexing Web documents and representing knowledge within them. Indeed, the retrieval of
precise information is eased by a language designed to represent semantic content and
support logical inference, and the readability of such a language eases its exploitation,
presentation and direct insertion within a document (thus also avoiding information
duplication).

XML is intended as a machine-readable rather than human-readable language because it is
mainly meant to be generated and read by machines not people. XML-based metadata

36

languages inherit this poor readability and most of them (e.g. RDF) do not specify how to
represent logical operators or quantifiers. As an alternative, WebKB proposes to use
expressive but intuitive knowledge representation languages to represent (or index)
information in documents and mix knowledge statements with other textual elements (e.g.
sentences, sections or references to images). To allow this, the knowledge (or commands
exploiting it) must be enclosed within the HTML tags "<KR" and "</KR" or the strings "$("
and ")$". The knowledge representation language used in each chunk must be specified at
its beginning, e.g.: "<KR language="CG"". (Lexical/structural/procedural commands may
be used whichever language is specified). Thus, there is no need to separate knowledge
from its documentation nor duplicate it in an external knowledge base.

At present,WebKB only exploits the CG (Conceptual Graph) formalism. However, the
exploitation of wrappers (e.g. KIF to CGs) or other inference engines would allow WebKB
to accept other knowledge representation languages. To compare the alternatives, here is
an example showing how a simple sentence may currently be represented in WebKB, how
it could be represented in KIF, and what its RDF representation is. The sentence is: "John
believes that Mary has a cousin who has the same age as her".

<KR language="CG">
load "http://www.bar.com/topLevelOntology";
//Import this ontology Age
< Property; //Declare Age as a subtype of Property
Cousin(Person,Person) {Relation type Cousin}; //Declare relation
Cousin with its signature

[Statement: [Person: "Mary"]- { ->(Chrc)->[Age: *a];
 ->(Cousin)->[Person]->(Chrc)->[*a];
 }
]->(Believer)->[Person: "John"];
</KR>

<KR language="KIF">
load "http://www.bar.com/topLevelOntology";
//the WebKB command for file interpretation

(Define-Ontology Example (Slot-Constraint-Sugar topLevelOntology))
(Define-Class Age (?X) :Def (Property ?X))
(Define-Relation Cousin(?s ?p) "Relation type Cousin"
 :Def (And (Person ?s) (Person ?p)))

(Exists ((?j Person))
 (And (Name ?j John)
 (Believer ?j '(Exists ((?m Person)(?p Person)(?a Age))
 (And (Name ?m Mary) (Chrc ?m ?a)
 (Cousin ?m ?p) (Chrc ?p ?a)
))
)))
</KR>

<!-- RDF notation (with allowed abbreviations);
 this file is named "example" -->
<RDF xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"
 xmlns:t="http://www.bar.com/topLevelOntology">

 <Class ID="Age"> <subClassOf resource="t#Property"/> </Class>
 <PropertyType ID="Cousin">
 <comment>Relation type Chrc (Characteristic)</comment>
 <range resource="t#Person"/>
 <domain resource="t#Person"/> </PropertyType>
</RDF>

37

<RDF xmlns="http://www.w3.org/TR/WD-rdf-syntax#"
 xmlns:t="http://www.bar.com/topLevelOntology"
 xmlns:x="http://www.bar.com/example">
<!-- x refers to this file -->

 <Description aboutEach="#Statement_01">
 <t#Believer>John</t#Believer>
 </Description>

 <t#Person bagID="Statement_01">
 <t#Name>Mary</t#Name>
 <x#Chrc><x#Age ID="age"></x#Age></x#Chrc>
 <x#Cousin><t#Person><x#Chrc resource="#age"/></t#Cousin>
 </t#Person>
</RDF>

The CG representation (top) seems simpler than the others. The semantic network structure
of CGs (i.e. concepts connected by relations) has three advantages:

1. it restricts the formulation of knowledge without compromising expressivity and this
tends to ease knowledge comparison from a computational viewpoint;

2. it encourages the users to express relations between concepts (as opposed, for instances,
to languages where "slots" of frames or objects can be used);

3. it permits a better visualization of relations between concepts.

We advocate the use of Conceptual Graphs (CGs)11 and simpler notational variants that
enhance knowledge readability (e.g. we have also developed a formalized English and
structured text notation). To further ease the representation process, we propose (i) a
technique allowing users to leave some knowledge terms undeclared, and (ii) a top-level
ontology of 400 concept and relation types. We have implemented a knowledge-based
directed Web robot named WebKB to parse and execute our notations, knowledge
handling & retrieval commands, Web document handling commands, and script language
(to combine groups of commands). This tool is accessible as a CGI server. The WebKB site12

provides HTML+Javascript interfaces.

Various kinds of applications of knowledge representation, indexation and queries are
illustrated by examples in the WebKB site. Here is how some information on the Aditi
database system could be represented in one of the structured text notations accepted by
WebKB. The difference with the structured way (Information is extracted from the "Catalog
of free database systems"13). Relations between each term used in this knowledge statement
and other terms may be similarly defined elsewhere (in other documents or shared
knowledge repositories) by one or several other users. Then, for example, subsumption
relations between terms may be exploited for conceptual retrieval.
[Aditi.
 isa: large-scale deductive database system;
 user interface: NU-Prolog, graphical interface (implemented with: Motif);
 index method: B-trees, multi-level signature files;
 ports: SunOS, IRIX;
](representation date: 1992/12/17; representation author: aditi@cs.mu.oz.au).

3. Storing knowledge and commands in documents

It is handy for an information provider to store and structure knowledge inside Web
documents, especially if the duplication of information into machine readable statements
and human-only readable statements can be avoided (e.g. by using a controlled language14

for sentences and a visual language15 for graphics) or at least reduced by the possibility of

38

mixing and linking the two kinds of statements. To allow this, WebKB exploits the
convention that each group of knowledge statements or commands in a document must be
delimited by the two special HTML tags "<KR" and "</KR" or the strings "$(" and ")$". The
knowledge representation language used in each group must be specified at its beginning,
e.g.: "<KR language="CG"". Each group is visible unless the document's author hides it
with HTML comment tags. Furthermore, various notations allow people to use knowledge
statements for indexing any part of any Web document (not just parts which can be
referred by URLs). Thus, knowledge statements may be retrieved and handled via
document-based commands, and conversely indexed parts of documents may be retrieved
and handled via knowledge-based commands.

When a command sent to the WebKB CGI server requires it to "run" a Web document
(referred to by a URL), the server retrieves the document and executes the knowledge
statements and commands within it (some commands may be to run other Web
documents). The results are sent back to the client and constitutes a generated document
(hence, a virtual document). Depending on a parameter, the WebKB server may or may not
send back the human-only readable statements along with the results (if it does, the
generated document is a copy of the original document with the query results in place of
the commands). Similarly, the WebKB server may be used to exploit other CGI servers.
Within HTML documents, dynamic linking may be achieved by using Javascript16 to
associate a command with an hypertext link in such a way that the command is sent to the
WebKB server when the link is activated.

As with any other directed Web robot, the scalability and efficiency of the current WebKB
is limited by the fact that (i) the users must know which documents contain (or may
contain) the knowledge to exploit, and (ii) these documents must be accessed and parsed
each time their content has to be exploited. Pieces of knowledge, like Web documents, may
be provided by all Web users, and need to be inter-related or integrated, to allow each user
to benefit from the knowledge of users they do not know. For this purpose a cooperatively
built knowledge repository is necessary.

4. Storing knowledge and commands in distributed scalable
knowledge servers

Some Web servers, called ontology servers, support shared knowledge repositories, e.g. the
Ontolingua ontology server17 and Ontosaurus18. However, they are not usable for managing
large quantities of knowledge and, apart from AI-Trader19, do not allow the indexation and
retrieval of parts of documents. Finally, support of cooperation between the users is
essentially limited to consistency enforcement, annotations and structured dialogues, as in
APECKS20, Co421 and Tadzebao22.

We are extending WebKB to handle a cooperatively built knowledge repository which
addresses scalability via the five following points23:

1. a scalable multi-user persistent object repository to support the storage and exploitation
of knowledge structures (we have chosen the Shore24 system);

2. algorithms allowing the exploitation of large-scale dynamic taxonomies efficiently (we
have chosen Fall's algorithms25);

3. visualization techniques (mainly the handling of aliases for terms and the generation of
views) to avoid lexical conflicts and enable users to focus on certain kinds of
knowledge;

4. protocols to allow users to solve semantic conflicts via the insertion of new terms and
relations in the common ontology and, in some cases, in the knowledge of other users;

5. conventions for representing knowledge to improve the automatic comparison of
knowledge from different users and hence their consistency and retrieval.

Though these five points permit the exploitation of a large knowledge repository (essential

39

for efficiency reasons and practical use), it is also clear that for efficiency and reliability
reasons, a unique server cannot be used to handle a universal knowledge repository by all
Web users. Knowledge has to be distributed and mirrored on various knowledge servers.
However, since there is no static conceptual schemas in knowledge bases, the techniques of
distributed database systems - such as AlephWeb26, Hermes27, Infomaster28 and TSIMMIS29 -
cannot all be reused.

A first step to the distribution of a knowledge repository is to duplicate it on several
servers, with updates made on a server automatically duplicated in other servers. Some
servers may be dedicated to searches and others to updates.

A second step is to have general servers and specialized servers. A specialized server
would store the same knowledge as general servers plus knowledge related to a well-
defined set of objects, e.g. knowledge expressed with the subtypes of certain types. Since
these sets of objects are well-defined (extensively or via definitions), a general server would
store the URLs of these servers and, when answering a query, delegate the query to the
relevant servers if more precision is required. These sets of objects might be determined by
the managers of specialized servers, or according to the frequency of accesses to objects in
knowledge repositories. Whatever the specialized server a user updates, if the knowledge it
enters is relevant to other servers (e.g. if the knowledge is expressed with general terms), it
should be automatically duplicated in these servers. The rationale of all this duplication is
to speed searches and simplify the query mechanisms by avoiding, whenever possible,
parallel searches in various servers and then the composition of the results.

Other steps may be necessary, but what should be avoided in this knowledge-based (hence
precision-oriented) approach is to let the specialized servers develop independently of one
another instead of being part of a unique consistent virtual knowledge repository.
Otherwise, conceptual queries and cooperation across the repositories are no more possible,
and as in current traders, a most relevant repository to answer a query has to be
automatically "guessed".

Finally, knowledge servers should not be limited to storing knowledge statements: they
should also allow a storage and handling of knowledge-based and document-based
commands similar to the storage and handling we described for documents.

5. Conclusion

The more a piece of information is precisely represented, the more adequately it can be
retrieved and exploited. General and intuitive knowledge representation languages seem
best adapted for this end. WebKB permits the use of Conceptual Graphs as well as simpler
notations when less expressivity or precision is required. Ambiguities due to declared
terms are partially solved according to the constraints in the used ontologies.

Storing knowledge within documents is useful but the scalability of this approach is
limited. Ultimately, we believe a knowledge-based Web relies on scalable distributed
cooperatively built knowledge repositories and automated knowledge acquisition
techniques. We have proposed (and work on) some directions for this goal. In this view,
knowledge-annotated documents are used as isolated modules of knowledge on which a
user can work before submitting content to a knowledge server for integration. A
document including commands can also be sent to a knowledge server as a template for
generating virtual documents. Of course, scripts of commands could also be stored in a
repository handled by a knowledge server and referred to from a document. We are
currently extending WebKB to allow for these combinations of features.

In the same way we register a Web site today, we will probably register knowledge
representations (or documents including knowledge representations) and complement or
refine one another's knowledge.

40

References

1. Altavista: http://www.altavista.digital.com/

2. Infoseek: http://www.infoseek.com

3. Harvest: http://harvest.transarc.com/

4. WebSQL: http://www.cs.toronto.edu/~websql/

5. WebLog: http://www.cs.concordia.ca/~special/bibdb/weblog.html

6. WWW8 article:
http://meganesia.int.gu.edu.au/~phmartin/WebKB/doc/papers/www8/www8.ps

7. Metadata languages: http://www.w3.org/Metadata/

8. XML: http://www.w3.org/XML/

9. RDF: http://www.w3.org/RDF/

10. OML: http://wave.eecs.wsu.edu/CKRMI/OML.html

11. CGs: http://meganesia.int.gu.edu.au/~phmartin/WebKB/doc/CGs.html

12. WebKB: http://meganesia.int.gu.edu.au/~phmartin/WebKB/

13. Databases: http://www.cis.ohio-state.edu/hypertext/faq/usenet/databases/free-
databases/faq.html

14. Controlled languages: http://www-uilots.let.uu.nl/Controlled-languages/

15. Visual languages: http://www.cpsc.ucalgary.ca/~kremer/home.html\#visualLanguages

16. Javascript: http://developer.netscape.com/docs/manuals/communicator/jsref/index.htm

17. Ontolingua ontology server: http://WWW-KSL-SVC.stanford.edu:5915/

18. Ontosaurus: http://www.isi.edu/isd/ontosaurus.html

19. AI-Trader: http://www.vsb.informatik.uni-frankfurt.de/projects/aitrader/intro.html

20. APECKS: http://www.psychology.nottingham.ac.uk/staff/Jenifer.Tennison/APECKS/

21. Co4: http://ksi.cpsc.ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html

22. Tadzebao: http://ksi.cpsc.ucalgary.ca:80/KAW/KAW98/domingue/

23. Repository ideas:
http://meganesia.int.gu.edu.au/~phmartin/WebKB/doc/coopKBbuilding.html

24. Shore: http://www.cs.wisc.edu/shore/

25. Fall's algorithms: http://www.cs.sfu.ca/cs/people/GradStudents/fall/personal/index.html

26. AlephWeb: http://www.pangea.org/alephweb.aleph/paper.html

27. Hermes: http://www.cs.umd.edu/projects/hermes/

28. Infomaster: http://infomaster.stanford.edu/infomaster-info.html

29. TSIMMIS: http://www-db.stanford.edu/tsimmis/tsimmis.html

41

A Modular Framework for the Creation of Dynamic
Documents

Jörg Caumanns
Free University of Berlin
caumanns@wiwiss.fu-berlin.de

Abstract

In this position paper a modular framework for the creation of dynamic documents is proposed.
The motivation for this framework is to make use of the World Wide Web as both a source and a
target for dynamic documents. To reach this goal we propose the use of an information store as
an intermediate layer between retrieval and integration of document fragments and semantic
information. By hiding away retrieval from integration even existing dynamic document
creating applications can make use of already available and forthcoming information retrieval
and natural language processing systems.

Introduction

Whenever a more or less famous person of our times and business enjoys the world with
his visions about what the brave new networked hypermedia future will look like, the on-
the-fly creation of documents is among the promises made [6, 10]. The idea of dynamically
composing a document is indeed very exciting. It even gets more exciting if the resulting
document not only exactly matches a user's request but even is adapted to his background
and personality.

Most of these visions of dynamic documents are heavily influenced by the enormous
growth of the World Wide Web. The Web is an ideal base for dynamic documents because
it can be used as both source and target:
• The world's largest search engine - Altavista - claims to have indexed more than 100

million documents. These are 100 million information sources containing information to
be extracted and reintegrated. These are 100 million documents consisting of a billion
fragments to be split and restructured like the pieces of a jigsaw. These are 100 million
documents covering a million of topics and providing an uncountable number of
information which could be extracted, analysed, and transformed into big knowledge
bases.

• The World Wide Web has means and standards for document presentation (HTML,
Java, ActiveX, etc.), document exchange (HTTP), document linkage (hyperlinks), and
dynamic document creation (CGI, ASP).

Most dynamic document systems make intensive use of the Web's target functionality.
Only few of theses systems makes use of the Web as a dynamic and large fragment and/or
information source. The major drawback of ignoring the Web's source functionality is the
restriction to a set of well defined knowledge domains for which proprietary structural and
semantic information is available.

In this position paper we propose a generic framework for the creation of dynamic
documents that allows for the integration of powerful (not only web based) information
retrieval systems. By adding the dynamic retrieval of fragments, semantic and factual
information, dynamic document systems can become useful tools for learning and
information about any topic a user is interested in.

42

Retrieval vs. Integration

Figure 1 gives a coarse impression of the architecture of most dynamic document systems.
The most important building blocks are
• some kind of semantic structure (e.g. a semantic or a conceptual network) providing

information about the knowledge domain covered by the system,
• a collection of fragments (canned texts, phrases, images, etc.) needed to put together the

surface of the resulting document,
• a selection module to select the most appropriate among the fragments,
• a sequencing module for discourse planning and structuring, and
• a document generator to integrate the selected and sequenced fragments or phrases into

a set of HTML files.

Whether and how these building blocks are implemented depends on the kind of dynamic
document system:
• With a natural language generating system like ILEX [8] the fragment store contains a

lexicon of phrases. Sequencing is named text planning and makes use of a network of
facts. The document generator is implemented as a surface realisation component.

• Fragment based bottom-up oriented systems (non-planning approaches doing selection
first) like i4 [3] don't require a semantic network. Instead the semantic information
needed for selection and sequencing is kept with each fragment. This causes the
demand for the fragment store to hold both fragments and meta-data (attributes in this
case). The selection module picks the most appropriate among the fragments and
passes them to the sequencing module to create the discourse structure. Integration of
fragments into HTML code is again task of the document generator.

• Fragment based top-down approaches (discourse planning adaptable hypertext
systems) like ELM-ART [2] use a simple conceptual network for discourse planning. For
each concept that is part of the resulting document a providing fragment is selected. All
selected fragments are sequenced and integrated into a set of HTML files.

All of these approaches have in common that at least the fragments and/or the semantics
have to be provided manually:
"Hand-entered information includes type hierarchies for jewels and designers, ..." [8]
"This work has made use of an online encyclopedia." [7]
"The first step is to collect a set of mediaobjects and provide meta-information about them. This is
nearly the only task that has to be performed manually." [4]
"A special graphical editor for concept structures allows the creation of concepts, connecting them
among each other with various types of semantic relations ..." [12]

43

The major drawback of the demand for hand-entered information is the restriction to a well
defined knowledge domain. E.g. if a user wants to learn something about climate on mars
he has to rely on Altavista, because none of the dynamic document systems available
contains semantic information and/or fragments about the solar system.

A second drawback is the fixed nature of the hand-entered data. Manual maintenance of a
semantic network about a rapidly changing topic (e.g. the German tax system or the Italian
government) is nearly impossible and will in the long run result in non-current documents.
Further more many domains allow for different interpretations of facts (e.g. the Clinton-
Levinsky case or some economic topics like the European Monetary Union). A static
semantic structure can usually only reflect a single interpretation, which prevents an
objective, balanced description of "facts".

To overcome these problems, the semantic structure as well as the document building
fragments should be retrieved dynamically. By doing so arbitrary user requests could be
answered with dynamic documents. Even rapidly changing and highly subjective topics
could be handled because each time a user requests information about such a topic a new,
current, and adapted semantic network would be set up.

The figure above shows how such a framework for adaptable, dynamic documents that
makes use of dynamic fragment and semantics retrieval could look like. In NLG and top-
down oriented scenarios, data from various sources is first collected and analysed to set up
a semantic network. The semantic network is hidden within an information store to
provide a layer of abstraction between retrieval, selection, and sequencing. Documents
matching parts of the semantic network are retrieved, split, normalised and stored within

44

the information store, too. Based on these information discourse planning, selection,
sequencing and document creation is done using any of the existing approaches. For a
bottom-up oriented scenario without discourse planning, documents matching some
domain specific queries are retrieved and analysed. Then these documents are split,
indexed, and stored in the information store. In parallel a fragment graph is set up within
the information store that is used for selection and sequencing. If a semantic network is
available for the given knowledge domain, semantic document analysis can be omitted,
because the fragment graph can as well be set up using this information.

Information sources may be accessed through filters. Possible filters for databases could be
anything from query languages up to complex information integration systems for
combining the contents of many different databases. Among filters for WWW based
information sources could be search engines (e.g. Altavista), query languages (e.g. WebSQL
[13]), clustering and classification systems (e.g. SONIA [11]), or any combination of these
services.

Dynamic retrieval of semantic structures cannot be completely automated using current
technology. For this reason hand-entered information can be added to the information
store. By hiding hand-entered information inside the information store existing dynamic
document systems can easily adapted to the proposed modular architecture.

This directly leads to the main idea behind the proposed architecture: Starting with only
manually provided information the content of the information store is step by step
attributed, enriched, and extended by automatically retrieved information and fragments.
E.g. if a hand-entered semantic network is given, it should be possible to dynamically
retrieve a high percentage of the documents, fragments, or phrases needed by making use
of existing IR technology. Especially web sites already providing meta-information about
their contents and structure (e.g. by using Dublin Core [5] or Web-Schemes like Araneus [1])
could be good sources for this kind of information. Further more, existing semantic
structures can be used transparently by accessing them through the generic interface of the
information store. Even if all semantic structures and fragments have to been entered
manually, the framework supports the transparent integration of services like language
detection, quality measuring, document fragmentation, etc.

Another advantage of this modular architecture is the possibility to logically and physically
distribute the various services, e.g. by using a CORBA-like infobus architecture. Mapped to
the CORBA terminology, selection, sequencing (discourse planning), and document
creation would be application objects, the information store a common facility, and source
wrappers, filters and additional services common object services. Communication between
the services would be done through an object request broker.

The Information Store

The information store acts as an intermediate layer between the information retrieval and
information/fragment integration part of a dynamic document system. Its main purposes
are to
• decouple these layers from each other by providing an abstract interface for accessing

semantic information as well as concepts, fragments or phrases
• enable the integration of services like language detection or quality measuring (e.g. [8])
• allow the externalisation of problems like pricing and authentication

The most important part of the information store is its interface. How semantic structures
and fragments are stored (and even if they are stored at all) and how they are encoded
internally is completely implementation dependant. The information store may either be
implemented as a real store or just as a cache. If it is implemented as a cache it is just used
as an abstraction layer, e.g. to wrap an existing semantic network or to integrate fragments
from different sources.

The two kinds of objects maintained by the information store are fragments and concepts.

45

Fragments may be of any size and type ranging from single words or phrases up to large,
mixed-type documents and digital video. Outside the information store each concept and
fragment is just a set of name-value pairs (attributes). Relationships between any two
objects (object mappings) can be assigned attributes as well in order to set up semantic
networks, fragment graphs, and indices.

Interfaces

The figure above shows how the information store is used to separate information and
fragment retrieval from integration. Various filters can be placed between the information
store and the other building blocks either to provide additional functionality or to wrap
interfaces. What filters are needed and used depends on the retrieval system, the additional
services required, the dynamic document system, and the knowledge domain.

The information store should at least contain seven standardised interfaces - two on the
retrieval side and five on the integration side:

getJobs()

Return a list of what kind of fragments, facts, or semantic information is currently
required.

addObject()

Add an object or an object mapping to the information store. The content, encoding,
price, and other attributes of the object must be described by attributes.

getObject()

Read an object or object mapping from the information store.

getObjectMeta()

46

Read only a certain attribute's value from the information store.

getMeta()

Get meta data about all objects. These meta data may range from the number of
objects stored up to a conceptual network created dynamically from all objects within
the information store.

queryObject()

Test whether a certain object or mapping exists within the information store. The
description of the desired object should be based on meta data describing the object.

queryMeta()

Test whether a certain kind of global meta data can be provided by the object store.

The only purpose of the two query interfaces is money. The idea is that any call to one of
the query interfaces is for free, while retrieving objects or meta data from the objects store is
potentially not.

Meta Data

Each object or mapping within the information store is described by attributes. The values
of these attributes can partly be provided by an information retrieval system, partly be
calculated by various filters or the information store itself, and partly be set by hand.

What kind of meta data is available depends on the type of the object. E.g. concepts could
be described by synonyms, grammatical and morphological rules, domain specific
information, etc. Fragments may be attributed by
• their contents (e.g. required and provided concepts or a conceptual network encoded as

a set of concept-concept mappings)
• formal aspects (e.g. type, size, age, language, etc.)
• copyright information defining by whom, for what purpose, and how the object may

be used
• authentication information defining when, where and by whom the object was

retrieved and how and by whom the originality of the object was proven (or can be
proven).

• pricing information stating who has to pay what amount of money to whom for using
the object.

Mappings of concepts to concepts are used to describe semantic or conceptual networks.
Possible attributes could be the kind and direction of relationship between the two objects.
Mappings of fragments to fragments are required by bottom-up oriented, fragment based
systems in order to set up fragment graphs. For systems that do discourse planning based
on semantic structures mappings from concepts to their providing fragments are needed.
All of these mappings are mainly attributed by various weight specifiers, e.g. how a
concept is explained by a certain fragment.

In order to make meta data as extensible and flexible as possible some of the attribute's
names and semantics should be taken from existing standards (e.g. Dublin Core [5]), some
have to be standardised, and some should be left open to the implementers of the retrieval
and the integration parts.

Filters

The functionality of the information store can be extended by filters. Retrieval side filters
are mainly used to calculate additional meta data while integration side filters provide
additional services like pricing, type conversion, or formatting.

The main idea of providing the ability to add filters to the information store is to make use
of already available systems (e.g. language detection, document fragmentation, stemming,
keyword extraction) and to externalise open problems (e.g. pricing).

47

Acknowledgements

This work is supported by the German Research Network as part of the
DIALECT/DIALERN project and by the German Research Society as part of the Berlin-
Brandenburg Graduate School in Distributed Information Systems (DFG grant no. GRK316)

References

1. Araneus Homepage, http://www.dia.uniroma3.it/Araneus/index.html.

2. Brusilovsky, P., Schwarz, E., and G. Weber, ELM-ART: An intelligent tutoring system on
World Wide Web. In 3rd International Conference on Intelligent Tutoring Systems, ITS-96,
Montreal, June 1996.

3. J. Caumanns, "A Bottom-Up Approach to Multimedia Teachware", In 4th International
Conference on Intelligent Tutoring Systems, ITS-98, San Antonio, 1998.

4. Caumanns, J. and H-J. Lenz, "Hypermedia Fusion - A Document Generator for the World
Wide Web", In IEEE Multimedia Systems 99, ICMCS99, Fierence, June 1999 (to appear).

5. Dublin Core Home Page, http://purl.oclc.org/dc/.

6. B. Gates, The Road Ahead, Viking Penguin, New York, 1995.

7. Hearst, M., Kopec, G., and D. Brotsky, "Research in Support of Digital Libraries at Xerox
PARC." Available as http://www.dlib.org/dlib/june96/hearst/06hearst.html.

8. Milosavljeciv, M. and J. Oberlander, "Dynamic Hypertext Catalogues: Helping Users to Help
Themselves." In 9th ACM Conference on Hypertext and Hypermedia, HT'98, Pittsburgh, June
1998. Available as http://www.cmis.csiro.au/Maria.Milosavljevic/papers/ht98/.

9. Naumann, F., Leser, U., and J.C. Freytag, Quality-driven Integration of Heterogeneous Information
Sources, Technical Report HUB-IB-117, February 1999. Available as
http://www.dbis.informatik.hu-berlin.de/~naumann/HUB-IB-117.ps.gz

10. N. Negroponte, Being Digital, Knopf, New York, 1995.

11. Sahami, M., Yusufali, S., and M.Q.W. Baldonado, "SONIA: A Service for Organizing
Networked Information Autonomously." In Third ACM Conference on Digital Libraries, DL98,
Pittsburgh, June 1998.

12. J. Vassileva, "Dynamic Course Generation on the WWW", In Workshop on Intelligent Educational
Systems on the World Wide Web, Kobe, August 1997.

13. WebSQL Home Page, http://www.cs.toronto.edu/~websql/

49

The value-adding functionality of Web documents

Kevin Crowston1 and Marie Williams2

1 Syracuse University
School of Information Studies
4-206 Centre for Science and Technology
Syracuse, NY 13244-4100
crowston@syr.edu
Phone: +1 (315) 443-1676
Fax: +1 (315) 443-5806

2 Web Architechs
206 Meadowbrook Dr.
Syracuse, NY 13210
williams@web-arch.com
Phone: +1 (315) 426-0272
Fax: +1 (315) 426-0679

The World-Wide Web (or the Web) is an Internet client-server communication system for
retrieving and displaying multi-media hypertext documents (Berners-Lee, et al., 1994).
Documents are identified by an address called a Uniform Resource Locator or URL. The
Web's main advantage over earlier Internet systems is its merger of retrieval and display
tools, its capacity for handling formatted text, embedded graphics and other media and
point-and-click links to other documents (hence the name). As well, many browsers are
capable of seamlessly retrieving information using older protocols (e.g., FTP, Gopher and
Usenet News) and automatically launching other applications to display diverse Internet
data types (e.g., sound, animation).

As a basis for studying organizational communications, Yates and Orlikowski (1992;
Orlikowski and Yates, 1994) proposed using genres. They defined genres as, "typified
communicative actions characterized by similar substance and form and taken in response
to recurrent situations" (Yates and Orlikowski, 1992, p. 299). They further suggested that
communications in a new media would show both reproduction and adaptation of existing
communicative genres as well as the emergence of new genres.

Crowston and Williams (in press) found numerous examples of pages that recreated genres
familiar from traditional media. They also saw examples of genres being adapted to take
advantage of the linking and interactivity of the new medium and novel genres emerging
to fit the unique communicative needs of the audience.

More interesting, the technology of the Web enables novel applications based on a shift
from static documents to "live" data. For example, Yan et al. (1996) describe how patterns of
user access can be used to suggest which information should be viewed next. However,
these uses of the Web are unlike conventional documents. Instead, we expect such systems
to recreate genres from information systems. Therefore, we propose using a typology of
system value-adding processes to categorize the functionality of Web sites. Specifically, we
propose using Taylor's value-added model (Taylor, 1986). Value-added processes are those
"characteristics or attributes which are added to the data and information items being
processed that make them more useful to users than they were at the start of the process"
(Taylor, 1986, p. 19). An information system adds value by helping users make choices or
clarify their options. In this framework, many uses of the web are such value-adding
systems.

Taylor goes on to list numerous ways that a system can be value-adding (what he calls
"user criteria of choice"): by enhancing ease of use (e.g., easier access to data), by noise
reduction (e.g., providing selected information), by quality (e.g., accuracy or currency), by
adaptability (e.g., addressing a specific user need) and by time or cost savings.

For example, a Web search engine such as Altavista provides ease of use by allowing

50

searches for documents with specified keywords. On the other hand, a Web index such as
Yahoo provides noise reduction, since it includes only a selection of Web sites and may
improve quality, if the selection is accurate, comprehensive, current and reliable. An article
database such as ABI/Inform or Lexis/Nexis goes even further in providing noise
reduction (e.g., by providing abstracts of articles) and quality (e.g., by selecting articles
from trusted sources). Finally, hot lists of sources (e.g., the MkLinux resources page)
provide what Taylor calls adaptability, because the sources chosen are those that are
directly relevant to a specific task (in this case, setting up a computer to use MkLinux). All
of these systems may provide time or cost savings compared to retrieving the information
by taking a trip to the library (though perhaps at the expense of one of the other criteria).

Bibliography

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F. and Secret, A. (1994). The World-Wide Web.
Communications of the ACM, 37(8), 76-82.

Crowston, K. and Williams, M. (in press). Reproduced and emergent genres of communication on
the World-Wide Web. The Information Society.

Orlikowski, W. J. and Yates, J. (1994). Genre repertoire: The structuring of communicative practices
in organizations. Administrative Sciences Quarterly, 33, 541-574.

Taylor, R. S. (1986). Value Added Processes in Information Systems. Norwood, NJ: Ablex Publishing
Corporation.

Yan, T. W., Jacobsen, M., Garcia-Molina, H. and Dayal, U. (1996). From user access patterns to
dynamic hypertext linking. In Fifth International World Wide Web Conference. Paris, France.

Yates, J. and Orlikowski, W. J. (1992). Genres of organizational communication: A structurational
approach to studying communications and media. Academy of Management Review, 17(2), 299-326.

51

Automated Hypermedia Support for the Virtual
Documents Generated by Analytical Applications

Michael Bieber, Roberto Galnares
New Jersey Institute of Technology
{bieber, galnares}@njit.edu; http://www-ec.njit.edu/~bieber

Motivation

Our domain are the everyday analytical applications used daily in the real world [BK95].
By "analytical applications" we mean computational applications such as database
management systems, decision support systems, spreadsheets and other systems that
generate their display content in real time, often as a result of user queries and other
interaction. The documents and display screens are virtual - they often do not exist before
being displayed. Therefore hypermedia constructs must be added dynamically, in real
time, as the document is about to be displayed. Furthermore, links cannot be inferred only
using lexical analysis. Does the number "6" in a spreadsheet represent a month or net
income?

Background

We are developing the DHymE hypermedia engine to provide automated hypermedia
support to analytical applications. DHymE uses mapping rules, which provide links for a
particular type of object. For example, if a document contains a value representing the net
income for a company, DHymE would search for mapping rules for "net income" objects.
Our goal is supplementing analytical applications with hypermedia support, without
altering them. We are developing the RA relationship analysis approach [BY99] to help
developers determine which relationships are in their application domain. Each of these
can then be specified by a mapping rule, and therefore become mapped to a hypermedia
link..

This paragraph gives a technical description of DHymE's interaction with an analytical
application. The DHymE hypermedia engine executes separately from the target
application. We write a wrapper program for each application to integrate it into our
engine architecture. Applications or their wrappers then connect to DHymE through a Web
proxy server. DHymE intercepts all messages passing between the application and the user
interface, and uses the mapping rules to map each appropriate element of the message to a
hypermedia node or anchor. Our Web browser wrapper integrates these anchors into the
document being displayed and passes it through the proxy server to the user's Web
browser. When the user selects an anchor, the browser wrapper passes it to DHymE, which
returns a list of possible links (one for each appropriate relationship as determined by the
mapping rules). If the user selects a normal application command (mapped to an operation
link), DHymE passes the command on to the application for processing. If the user selects a
hypermedia engine link (e.g., to create an annotation), DHymE processes it entirely. If the
user selects a supplemental relationship, DHymE infers the appropriate application
commands, meta-application operations (e.g., at the operating systems level or schema
level) or hypermedia engine operations that will produce the desired information. If the
user selects a user-created annotation, DHymE retrieves it. Thus DHymE automatically
provides all hypermedia linking (as well as navigation) to applications, which remain
hypermedia-unaware and in fact often entirely unchanged. We currently are integrating
several applications with DHymE, automatically giving each a Web interface or
supplementing its existing Web interface: a personnel requisition tracking system, a
relational database management system, a spreadsheet, and a mathematical model
management system. [Bi99] describes these ideas and an older, non-Web prototype of

52

DHymE in more detail.

Issues

There are many interesting issues involving virtual documents when mapping hypermedia
to analytical applications. Here are a few:

* Parsing Virtual Documents

How do we parse the virtual documents created by analytical applications to determine
where the elements of interest are? If an element of interest has a mapping rule for its
element type, then the DHymE hypermedia engine creates a link anchor over that element
of interest corresponding to the mapping rule.

* Document Specifications

How does one specify the set of commands that have to be passed to an application to
create a specific document or screen? What parameters will be needed to specify a
particular instance? These commands must be written in a general way and embedded in a
mapping rule. It then must be instantiated with the particular instance that the user wants
to see, based on which link anchor the user has just selected.

* Regenerating Virtual Documents

Suppose the user creates a bookmark or a stop along a guided tour to a virtual document or
screen. Then the document or screen is closed. How do we regenerate that document or
screen later, especially if the user had to input parameter values to create it in the first
place? (We don't want to ask the user to re-input these parameter values.)

* Target Areas

How do we specify specific arrival anchors (target areas) within virtual destination
documents once a link has been traversed and the virtual document is about to be
displayed?

* Saving Virtual Documents

Who owns a virtual document - the user or the application? If the user saves it, do we strip
out the hypermedia components we added to the document for integrity purposes? Should
it be stored centrally by the DHymE engine or locally on the user's disk? May it be altered
by the user or would the system creator wish to keep it intact for legal or copyright
reasons?

and the old standard problems:

* Link and Annotation Integrity

If the content of the document changes, how do we relocate links?

* Link and Annotation Relevance

How do we know when a link or annotation has lost its relevance?

References

[Bi99] Bieber, M. "Supplementing Applications with Hypermedia," under revision for ACM
Transactions on Information Systems. [On-line:
http://www.cis.njit.edu/~bieber/pub/supp/supp.html]

[BK95] Michael Bieber and Charles Kacmar, "Designing Hypertext Support for Computational
Applications," Communications of the ACM 38(8), 1995, 99-107.

[BY99] Bieber, M. and J. Yoo, "Hypermedia: A Design Philosophy," in submission. [On-line:
http://www.cis.njit.edu/~bieber/pub/ht-philosophy/phil.html]

