Algorithms and Data Structures in Biology

Divide and Conquer Algorithms

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019

The Divide and Conquer Approach

- ► In the divide and conquer approach to algorithm design, one:
 - First partitions the underlying problem instance to two, "smaller", instances.
 - ▶ Then **solves** them separately.
 - ► Finally **aggregates** the results.
- ▶ This way of proceeding often leads to fast algorithms, or to an improvement over existing algorithmic techniques.

An Efficient Sorting Algorithm

```
MERGESORT(c)
   n \leftarrow \text{size of } \mathbf{c}
2 if n = 1
          return c
    left \leftarrow list of first n/2 elements of c
5
    right \leftarrow list of last n - n/2 elements of c
    sortedLeft \leftarrow MERGESORT(left)
6
    sortedRight \leftarrow MERGESORT(right)
7
    sortedList \leftarrow MERGE(sortedLeft, sortedRight)
8
    return sortedList
9
```

The Merge Routine

```
MERGE(\mathbf{a}, \mathbf{b})
  1 n1 \leftarrow \text{size of a}
  2 n2 \leftarrow \text{size of } \mathbf{b}
  3 a_{n1+1} \leftarrow \infty
  4 b_{n2+1} \leftarrow \infty
  5 \quad i \leftarrow 1
  6 j \leftarrow 1
  7 for k \leftarrow 1 to n1 + n2
  8 if a_i < b_j
                    c_k \leftarrow a_i
                    i \leftarrow i + 1
10
11 else
12
                    c_k \leftarrow b_i
                     j \leftarrow j + 1
13
14
       return c
```

Analysing Merge Sort Runtime

$$T(n) = 2T(n/2) + cn$$
$$T(1) = 1$$

ightharpoonup All in all, the time complexity is thus $O(n \log n)$.

Analysing Merge Sort Runtime

$$T(n) = 2T(n/2) + cn$$
$$T(1) = 1$$

 \blacktriangleright All in all, the time complexity is thus $O(n \log n)$.

Analysing Merge Sort Runtime

$$T(n) = 2T(n/2) + cn$$
$$T(1) = 1$$

▶ All in all, the time complexity is thus $O(n \log n)$.

A Closer Look at the Complexity of Global Alignment

- ▶ We already know that the Global Alignment problem can be effectively solved by way of **dynamic programming**.
 - ▶ One just to have to visit all nodes of the edit graph in an appropriate order.
 - ▶ For each node in the edit graph, just a constant amount of work has to be done.
- ▶ If n and m are the length of the two strings involved, the time complexity is easily seen to be O(nm).
- ▶ But how about the *space complexity*?
 - ▶ The algorithm space consumption is itself O(nm).
 - For each node of the edit graph (i, j), one should keep track of the value $s_{i,j}$.

- ▶ Is it necessary to keep track of the *entire* matrix $s_{i,j}$?
- ▶ If we are only interested in the *score* of the optimal alignment, we can just keep track, e.g., of the *last column*

▶ But what if we are interested in computing the alignment itself, namely the path in the edit graph having maximal score?

- ▶ Is it necessary to keep track of the *entire* matrix $s_{i,j}$?
- ▶ If we are only interested in the *score* of the optimal alignment, we can just keep track, e.g., of the *last column*.

▶ But what if we are interested in computing the alignment itself, namely the path in the edit graph having maximal score?

- ▶ Is it necessary to keep track of the *entire* matrix $s_{i,j}$?
- ▶ If we are only interested in the *score* of the optimal alignment, we can just keep track, e.g., of the *last column*.

▶ But what if we are interested in computing the alignment itself, namely the path in the edit graph having maximal score?

- ▶ If we also want to compute the path, and not just its score, divide and conquer can come to the resque.
- ▶ We can reason as follows:
 - ▶ First of all, focus on the middle column.
 - Compute the maximal scores of the nodes in the middle column in the edit graph.
 - ► Compute the maximal scores of the nodes in the middle column in the *reversed* edit graph
 - ▶ An optimal path can be found through the node with coordinates $(i, \frac{m}{2})$ such that the sum of its two scores is maximal.
 - ▶ Then, look for an optimal path from the source to $(i, \frac{m}{2})$, for an optimal path from $(i, \frac{m}{2})$ to the target.

The Algorithm

```
PATH(source, sink)

1 if source and sink are in consecutive columns

2 output longest path from source to sink

3 else

4 mid \leftarrow middle \ vertex \ (i, \frac{m}{2}) \ with \ largest \ score \ length(i)

5 PATH(source, mid)

6 PATH(mid, sink)
```


► Time Complexity

- ► The total area of the visited rectangle is, roughly, the complexity of the algorithm.
- ▶ The complexity is thus proportional to:

$$a + \frac{a}{2} + \frac{a}{4} + \dots = a(1 + \frac{1}{2} + \frac{1}{4} + \dots) = 2a$$

where a is the area of the whole rectangle, namely O(nm).

Space Complexity

- Of course we need to compute some s_{ij} , many of them repeatedly.
- ▶ At any moment in time, however, we need to keep track of just a linear number of them.
- ▶ The space complexity is thus $O(\max\{m, n\})$.

Block Alignments

- ▶ Is it possible to go beyond $O(n^2)$ when looking for efficient algorithms for the global alignment problem of two strings of equal length n?
 - ▶ This is an extremely interesting, but still open, research problem.
- ▶ Something can be definitely be said when the input strings are divided into *blocks*.
 - ightharpoonup A string **u** is a *t-block* string if there is *n* such that

$$\mathbf{u} = u_1 \cdots u_n$$

- and t divides n. A t-block strings can be seen as being naturally divided into $\frac{n}{t}$ blocks of length t
- ▶ A block alignment of two t-block strings **u** and **v** is an alignment in which every block in one sequence is aligned against a whole block with the other sequence, or inserted or deleted as a whole.

Block Alignments

- ▶ Is it possible to go beyond $O(n^2)$ when looking for efficient algorithms for the global alignment problem of two strings of equal length n?
 - ▶ This is an extremely interesting, but still open, research problem.
- ► Something can be definitely be said when the input strings are divided into *blocks*.
 - ightharpoonup A string **u** is a *t-block* string if there is *n* such that

$$\mathbf{u} = u_1 \cdots u_n$$

and t divides n. A t-block strings can be seen as being naturally divided into $\frac{n}{t}$ blocks of length t

▶ A block alignment of two t-block strings **u** and **v** is an alignment in which every block in one sequence is aligned against a whole block with the other sequence, or inserted or deleted as a whole.

Block Alignments

The Block Alignment Problem

Block Alignment Problem:

Find the longest block path through an edit graph.

Input: Two sequences, \mathbf{u} and \mathbf{v} partitioned into blocks of size t.

Output: The block alignment of u and v with the maximum score (i.e., the longest block path through the edit graph).

A Simple Algorithmic Solution

- ▶ One can consider each $t \times t$ block separately, and for each of them solve the global alignment problem.
 - ▶ Each of these mini-alignment problems can be solved in time $O(t^2)$.
 - ▶ Since, altogether, there are $\frac{n}{t} \cdot \frac{n}{t}$, the overall complexity is of course

$$\frac{n}{t} \cdot \frac{n}{t} \cdot O(t^2) = O\left(\frac{n^2 \cdot t^2}{t^2}\right) = O(n^2).$$

- ▶ This way, we can compute the score $\beta_{i,j}$ between the *i*-th block of **u** and the *j*-th block of **v**
- ► Then, the results of the previous step can be aggregated on block basis, by way of the following recurrence:

$$s_{i,j} = \max \begin{cases} s_{i-1,j} - \sigma_{block} \\ s_{i,j-1} - \sigma_{block} \\ s_{i-1,j-1} + \beta_{i-1,j-1} \end{cases}$$

where σ_{block} is the penalty for inserting or deleting an entire block

▶ This second step has of course complexity $O(\frac{n^2}{t^2})$.

A Simple Algorithmic Solution

- \blacktriangleright One can consider each $t \times t$ block separately, and for each of them solve the global alignment problem.
 - ▶ Each of these mini-alignment problems can be solved in time $O(t^2)$.
 - ▶ Since, altogether, there are $\frac{n}{t} \cdot \frac{n}{t}$, the overall complexity is of course

$$\frac{n}{t} \cdot \frac{n}{t} \cdot O(t^2) = O\left(\frac{n^2 \cdot t^2}{t^2}\right) = O(n^2).$$

- ▶ This way, we can compute the score $\beta_{i,j}$ between the *i*-th block of **u** and the *j*-th block of **v**
- ► Then, the results of the previous step can be aggregated on block basis, by way of the following recurrence:

$$s_{i,j} = \max \begin{cases} s_{i-1,j} - \sigma_{block} \\ s_{i,j-1} - \sigma_{block} \\ s_{i-1,j-1} + \beta_{i-1,j-1} \end{cases}$$

where σ_{block} is the penalty for inserting or deleting an entire block.

▶ This second step has of course complexity $O(\frac{n^2}{t^2})$.

So What?

- ▶ The overall complexity of the just-sketched algorithm is thus dominated by the first step, which takes $O(n^2)$ time.
 - ► This is *no better* than the complexity of the usual dynamic programming algorithm.
 - ▶ This is unsurprising, but remarkable, because we are solving a different problem anyway.
- ▶ In some cases, it makes sense to modify the algorithm in its first part.
 - ▶ Instead of solving $\frac{n^2}{t^2}$ mini-alignment problems, one for each block, we solve all **possible** mini-alignment problems about strings of length t.
 - ▶ If the underlying alphabet is $\{A, T, C, G\}$, then there are $4^t \cdot 4^t$ such problems.
 - \triangleright For certain values of t, this can make a lot of sense.

So What?

- ▶ The overall complexity of the just-sketched algorithm is thus dominated by the first step, which takes $O(n^2)$ time.
 - ▶ This is *no better* than the complexity of the usual dynamic programming algorithm.
 - ▶ This is unsurprising, but remarkable, because we are solving a different problem anyway.
- ▶ In some cases, it makes sense to modify the algorithm in its first part.
 - ▶ Instead of solving $\frac{n^2}{t^2}$ mini-alignment problems, one for each block, we solve **all possible** mini-alignment problems about strings of length t.
 - ▶ If the underlying alphabet is $\{A, T, C, G\}$, then there are $4^t \cdot 4^t$ such problems.
 - \triangleright For certain values of t, this can make a lot of sense.

So What?

If $t = \frac{\log_2 n}{4}$, then:

► The first step of the algorithm would take time

$$4^{t} \cdot 4^{t} \cdot O(t^{2}) = 4^{\frac{\log_{2} n}{4}} \cdot 4^{\frac{\log_{2} n}{4}} \cdot O(\log^{2} n)$$

$$= (2^{\log_{2} n})^{\frac{1}{2}} \cdot (2^{\log_{2} n})^{\frac{1}{2}} \cdot O(\log^{2} n)$$

$$= n^{\frac{1}{2}} \cdot n^{\frac{1}{2}} \cdot O(\log^{2} n) = O(n \log^{2} n)$$

▶ The **second step** of the algorithm would instead take time

$$O\left(\frac{n^2}{t^2}\right) \cdot O(\log n) = O\left(\frac{n^2}{\log n}\right).$$

• Overall, the complexity is dominated by the second step, thus being $O\left(\frac{n^2}{\log n}\right)$.

Thank You!

Questions?