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The Divide and Conquer Approach

» In the divide and conquer approach to algorithm design,
one:
» First partitions the underlying problem instance to two,
“smaller”, instances.
» Then solves them separately.
» Finally aggregates the results.

» This way of proceeding often leads to fast algorithms, or to
an improvement over existing algorithmic techniques.



An Efficient Sorting Algorithm

MERGESORT(c)

O 0 N O U1 = W N -

n « size of ¢
if n=1
return c
left — list of first n/2 elements of ¢
right < list of last n — n/2 elements of ¢
sortedLeft «— MERGESORT(left)
sortedRight «— MERGESORT(right)
sortedList «— MERGE(sortedLeft, sortedRight)
return sortedList



The Merge Routine

MERGE(a, b)
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I e
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nl « sizeof a
n2 « sizeof b
Apl4+1 < O
bn2+1 — 0
i—1
j—1
for k< 1tonl+ n2
if a; < b;
Cl. < Qa;
i—i+1
else
C}C<—bj
Jje=i+1
return c



Analysing Merge Sort Runtime

T(n)=2T(n/2)+ cn
T1)=1
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Analysing Merge Sort Runtime

T(n)=2T(n/2)+ cn

T(1) =1
O(n) n
O(n) § §
o O(logn)
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» All in all, the time complexity is thus O(nlogn).




A Closer Look at the Complexity of Global Alignment

> We already know that the the Global Alignment problem
can be effectively solved by way of dynamic
programming.
» One just to have to visit all nodes of the edit graph in an
appropriate order.
» For each node in the edit graph, just a constant amount of
work has to be done.

» If n and m are the length of the two strings involved, the
time complexity is easily seen to be O(nm).
» But how about the space complexity?

» The algorithm space consumption is itself O(nm).
» For each node of the edit graph (i, j), one should keep track
of the value s; ;.
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Subquadratic Space Complexity?

» If we also want to compute the path, and not just its score,
divide and conquer can come to the resque.
» We can reason as follows:

» First of all, focus on the middle column.

» Compute the maximal scores of the nodes in the middle
column in the edit graph.

» Compute the maximal scores of the nodes in the middle
column in the reversed edit graph

» An optimal path can be found through the node with
coordinates (7, %) such that the sum of its two scores is
maximal.

» Then, look for an optimal path from the source to (i, %),
for an optimal path from (i, %) to the target.



The Algorithm

PATH(source, sink)
1 if source and sink are in consecutive columns

2 output longest path from source to sink

3 else

4 mid < middle vertex (i, %) with largest score length(i)
5 PATH(source, mid)

6 PATH(mid, sink)



The Complexity of PATH
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The Complexity of PATH

» Time Complexity
» The total area of the visited rectangle is, roughly, the
complexity of the algorithm.
» The complexity is thus proportional to:

a  a 1 1
—+—-4...=a(l+=4+-+4+...)=2
atg+ o+ a(+2+4+ ) =2a

where a is the area of the whole rectangle, namely O(nm).
» Space Complexity
» Of course we need to compute some s;;, many of them
repeatedly.
» At any moment in time, however, we need to keep track of
just a linear number of them.
» The space complexity is thus O(max{m,n}).
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Block Alignments

» Is it possible to go beyond O(n?) when looking for efficient
algorithms for the global alignment problem of two strings
of equal length n?

» This is an extremely interesting, but still open, research
problem.

» Something can be definitely be said when the input strings
are divided into blocks.

» A string u is a t-block string if there is n such that
u=uj- Uy

and t divides n. A t-block strings can be seen as being
naturally divided into % blocks of length ¢

» A block alignment of two t-block strings u and v is an
alignment in which every block in one sequence is aligned
against a whole block with the other sequence, or inserted
or deleted as a whole.



Block Alignments




The Block Alignment Problem

Block Alignment Problem:
Find the longest block path through an edit graph.

Input: Two sequences, u and v partitioned into blocks of
size t.

Output: The block alignment of u and v with the maximum
score (i.e., the longest block path through the edit graph).




A Simple Algorithmic Solution

» One can consider each t x t block separately, and for each
of them solve the global alignment problem.
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A Simple Algorithmic Solution

» One can consider each t x t block separately, and for each
of them solve the global alignment problem.
» Each of these mini-alignment problems can be solved in
time O(t?).
» Since, altogether, there are
of course

n.,

t

? . % L0(t?) =0 <n2t'2t2> = 0(n?).

» This way, we can compute the score §; ; between the i-th
block of u and the j-th block of v
» Then, the results of the previous step can be aggregated on
block basis, by way of the following recurrence:

%, the overall complexity is

Si—1,5 — Oblock
Si,j = Max q  Sij—1 — Tblock
Si—1,j—1+ Bi-1,j-1
where o is the penalty for inserting or deleting an entire

block.

» This second step has of course complexity O(?—j)
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So What?

» The overall complexity of the just-sketched algorithm is
thus dominated by the first step, which takes O(n?) time.

» This is no better than the complexity of the usual dynamic
programming algorithm.

» This is unsurprising, but remarkable, because we are solving
a different problem anyway.

» In some cases, it makes sense to modify the algorithm in its
first part.

» Instead of solving ?—22 mini-alignment problems, one for each
block, we solve all possible mini-alignment problems about
strings of length ¢.

» If the underlying alphabet is {A, T, C, G}, then there are
4t . 4% such problems.

» For certain values of ¢, this can makes a lot of sense.



So What?

Ift= logfn, then:
» The first step of the algorithm would take time

on logg n

4 4 . O(log2 n)
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» The second step of the algorithm would instead take time

o) (?22) -O(logn) = O <IOT;;2n> .

» Overall, the complexity is dominated by the second step,
thus being O <10gn)




Thank You!

(Questions?



