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The Divide and Conquer Approach

I In the divide and conquer approach to algorithm design,
one:

I First partitions the underlying problem instance to two,
“smaller”, instances.

I Then solves them separately.
I Finally aggregates the results.

I This way of proceeding often leads to fast algorithms, or to
an improvement over existing algorithmic techniques.



An Efficient Sorting Algorithm



The Merge Routine



Analysing Merge Sort Runtime
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I All in all, the time complexity is thus O(n log n).
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A Closer Look at the Complexity of Global Alignment

I We already know that the the Global Alignment problem
can be effectively solved by way of dynamic
programming.

I One just to have to visit all nodes of the edit graph in an
appropriate order.

I For each node in the edit graph, just a constant amount of
work has to be done.

I If n and m are the length of the two strings involved, the
time complexity is easily seen to be O(nm).

I But how about the space complexity?
I The algorithm space consumption is itself O(nm).
I For each node of the edit graph (i, j), one should keep track

of the value si,j .



Subquadratic Space Complexity?

I Is it necessary to keep track of the entire matrix si,j?
I If we are only interested in the score of the optimal

alignment, we can just keep track, e.g., of the last column.

I But what if we are interested in computing the alignment
itself, namely the path in the edit graph having maximal
score?
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Subquadratic Space Complexity?

I If we also want to compute the path, and not just its score,
divide and conquer can come to the resque.

I We can reason as follows:
I First of all, focus on the middle column.
I Compute the maximal scores of the nodes in the middle

column in the edit graph.
I Compute the maximal scores of the nodes in the middle

column in the reversed edit graph
I An optimal path can be found through the node with

coordinates (i, m2 ) such that the sum of its two scores is
maximal.

I Then, look for an optimal path from the source to (i, m2 ),
for an optimal path from (i, m2 ) to the target.



The Algorithm



The Complexity of Path
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The Complexity of Path



The Complexity of Path

I Time Complexity
I The total area of the visited rectangle is, roughly, the

complexity of the algorithm.
I The complexity is thus proportional to:
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where a is the area of the whole rectangle, namely O(nm).
I Space Complexity

I Of course we need to compute some sij , many of them
repeatedly.

I At any moment in time, however, we need to keep track of
just a linear number of them.

I The space complexity is thus O(max{m,n}).



Block Alignments

I Is it possible to go beyond O(n2) when looking for efficient
algorithms for the global alignment problem of two strings
of equal length n?

I This is an extremely interesting, but still open, research
problem.

I Something can be definitely be said when the input strings
are divided into blocks.

I A string u is a t-block string if there is n such that

u = u1 · · ·un

and t divides n. A t-block strings can be seen as being
naturally divided into n

t blocks of length t
I A block alignment of two t-block strings u and v is an

alignment in which every block in one sequence is aligned
against a whole block with the other sequence, or inserted
or deleted as a whole.
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Block Alignments



The Block Alignment Problem



A Simple Algorithmic Solution
I One can consider each t× t block separately, and for each

of them solve the global alignment problem.
I Each of these mini-alignment problems can be solved in

time O(t2).
I Since, altogether, there are n

t ·
n
t , the overall complexity is

of course
n

t
· n
t
·O(t2) = O

(
n2 · t2

t2

)
= O(n2).

I This way, we can compute the score βi,j between the i-th
block of u and the j-th block of v

I Then, the results of the previous step can be aggregated on
block basis, by way of the following recurrence:

si,j = max


si−1,j − σblock
si,j−1 − σblock
si−1,j−1 + βi−1,j−1

where σblock is the penalty for inserting or deleting an entire
block.

I This second step has of course complexity O(n
2

t2 ).
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So What?

I The overall complexity of the just-sketched algorithm is
thus dominated by the first step, which takes O(n2) time.

I This is no better than the complexity of the usual dynamic
programming algorithm.

I This is unsurprising, but remarkable, because we are solving
a different problem anyway.

I In some cases, it makes sense to modify the algorithm in its
first part.

I Instead of solving n2

t2 mini-alignment problems, one for each
block, we solve all possible mini-alignment problems about
strings of length t.

I If the underlying alphabet is {A, T,C,G}, then there are
4t · 4t such problems.

I For certain values of t, this can makes a lot of sense.
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So What?

If t = log2 n
4 , then:

I The first step of the algorithm would take time

4t · 4t ·O(t2) = 4
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I The second step of the algorithm would instead take time
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I Overall, the complexity is dominated by the second step,
thus being O

(
n2

logn

)
.



Thank You!

Questions?


