Algorithms and Data Structures
in Biology

Dynamic Programming Algorithms

Ugo Dal Lago

P4
ALMA MATER STUDIORUM. 7 jormoriques, 7 nothématiques

i/ UNIVERSITA DI BOLOGNA W

University of Bologna, Academic Year 2018,/2019

Dynamic Programming

» Up to now, we have analysed two different design strategies
for algorithms:
» Exhaustive Search
> Correctness holds in a perfect sense, i.e., without any
possibility of errors.
» Complerity, at least in the worst case, can be very high,
although branch-and-bound can be of help.

Dynamic Programming

» Up to now, we have analysed two different design strategies

for algorithms:
» Exhaustive Search
> Correctness holds in a perfect sense, i.e., without any

possibility of errors.
» Complerity, at least in the worst case, can be very high,

although branch-and-bound can be of help.
» Greedy

> Correctness only holds in an approximate sense, while
bounds on the approximate ratio can sometime be given.

» Complezity is lower than in exhaustive search, although in
general polynomial in the size of the input.

Dynamic Programming

» Up to now, we have analysed two different design strategies

for algorithms:
» Exhaustive Search
> Correctness holds in a perfect sense, i.e., without any

possibility of errors.
» Complerity, at least in the worst case, can be very high,

although branch-and-bound can be of help.
» Greedy
> Correctness only holds in an approximate sense, while
bounds on the approximate ratio can sometime be given.
» Complezity is lower than in exhaustive search, although in
general polynomial in the size of the input.

» A natural question: Is there a way to tame certain
problems so as to remain low in complexity without losing

correctness?

The Change Problem, Again!

Change Problem:
Convert some amount of money M into given denominations, using the
smallest possible number of coins.

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,c¢z,...,¢cd4), in decreasing order of value
(c1 >c2> -+ > ea)

Output: Alist of dintegers iy, i, . .., 14 such that ¢;i; +coia+
oo+ cgig = M, and iy + i3 + - - - + 14 is as small as possible.

The Change Problem, Again!

Change Problem:
Convert some amount of money M into given denominations, using the
smallest possible number of coins.

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,c¢z,...,¢cd4), in decreasing order of value
(c1 >c2> -+ > ea)

Output: Alist of dintegers iy, i, . .., 14 such that ¢;i; +coia+
oo+ cgig = M, and iy + i3 + - - - + 14 is as small as possible.

» We introduced an exhaustive search algorithm for this
problem which, however, was very inefficient.

» The greedy algorithm we also introduced at the beginning
of the course was however imprecise, at least in some cases.

The Structure of Optimal Solutions

» The key observation for understanding dynamic
programming is the following: in a given problem, optimal
solutions are recursively optimal.

The Structure of Optimal Solutions

» The key observation for understanding dynamic
programming is the following: in a given problem, optimal
solutions are recursively optimal.

» As an example, consider the Change Problem, with
c = (1,3,7) and an optimal solution i = (i1, i2,i3) for
M =177.
» If iy > 1, then (i1 — 1,49, i3) will be optimal for M — 1 = 76.
Otherwise, we could find a triple (j1, j2,j3) for 76 such that
J1+J2+ 73 <i1 — 1419 +i3 and (j1 + 1, j2,73) would sum
to something less than i + i3 + i3, contradicting the
optimality of i.
» Similarly if io > 1 or i3 > 1.

The Structure of Optimal Solutions

» The key observation for understanding dynamic
programming is the following: in a given problem, optimal
solutions are recursively optimal.

» As an example, consider the Change Problem, with
c = (1,3,7) and an optimal solution i = (i1, i2,i3) for
M =17

» If iy > 1, then (i1 — 1,49, i3) will be optimal for M — 1 = 76.
Otherwise, we could find a triple (j1, j2,j3) for 76 such that
J1+ja+Jj3 <i1 — 1 +ix +i3 and (j1 + 1, ja, j3) would sum
to something less than i + i3 + i3, contradicting the
optimality of i.

» Similarly if io > 1 or i3 > 1.

» In all these cases, the search for the optimal solution can be
performed by looking at all possible sub-problems,
then choosing the best solution.

» In the example above, when asked to look for an optimal

solution for M = 77, we could look for optimal solutions for
76, 74 or 70, and take “the best one”.

A Recursive Algorithm for the Change Problem

77 76 75 J74 [73 [72 71 J70 Je9 J6s [o7]

[76 T75 T4 73 Tr2 71 J70 Je9 J6s 67]

[75 J7aJ73 Jr2 I 7t J70 Jeo Jos Jo67]

A Recursive Algorithm for the Change Problem

77 76 75 J74 [73 [72 71 J70 Je9 J6s [o7]

[76 T75 T4 73 Tr2 71 J70 Je9 J6s 67]

[75 J7aJ73 Jr2 I 7t J70 Jeo Jos Jo67]

RECURSIVECHANGE(M, ¢, d)
1 if M=0

2 return 0

3 bestNumCoins < oo

4 fori—1tod

5 if M > ¢

6 numCoins < RECURSIVECHANGE(M — ¢;, ¢, d)
7 if numCoins + 1 < best NumCoins

8 bestNumCoins «— numCoins + 1

9 return best NumCoins

Strange Deja Vu?

» The complexity of RECURSIVECHANGE can be easily seen
to be exponential.

Strange Deja Vu?

» The complexity of RECURSIVECHANGE can be easily seen
to be exponential.

» Indeed, a call to the algorithm with first parameter equal to
M would produce a pattern similar to the following one:

74

: / \ ™~ -
RN
68 72 74

Strange Deja Vu?

» The complexity of RECURSIVECHANGE can be easily seen
to be exponential.

» Indeed, a call to the algorithm with first parameter equal to
M would produce a pattern similar to the following one:

/7‘4\
: /\\5
A RN

68 72 74

» This is not too different than the situation we got when we
analysed the first variation on FIBONAcCCI. Is it possible to
do apply the same trick?

A Dynamic Programming Algorithm for the Change
Problem

DPCHANGE(M, ¢, d)

1 bestNumCoinsg + 0

2 for m«— 1to M

3 best NumCoins,, +— oo

4 for i — 1tod

5 if m > c¢;

6 if bestNumCoins,,_., + 1 < bestNumCoins,,

7 best NumCoinsy, «— bestNumCoinsy, ., + 1
8 return bestNumCoins

The Manhattan Tourist Problem

N

o

.

=

=

(\

Representing Grids

v

A rectangle-shaped portion of Manhattan’s map, together
with the number of attractions on each boulevard’s
segment, can be seen as a graph.

» For the moment, we do not know what a graph is, formally.
Concretely, such a graph can be seen as a pair of n X m
matrices:

» A matrix w which gives the number of attractions to the
east-bound street from each coordinate.

» A matrix 1%} which gives the number of attractions to the
south-bound street from each coordinate.
The source is the coordinate (0,0), while the target is the
coordinate (n,m).
A path is a sequence of moves in {S, E'} of length n 4+ m,
which encodes the route taken by the tourist.

The Manhattan Tourist Problem

Manbhattan Tourist Problem:
Find a longest path in a weighted grid.

Input: A weighted grid G with two distinguished vertices:
a source and a sink.

Output: A longest path in G from source to sink.

The Manhattan Tourist Problem

Manbhattan Tourist Problem:
Find a longest path in a weighted grid.

Input: A weighted grid G with two distinguished vertices:
a source and a sink.

Output: A longest path in G from source to sink.

» Exhaustive Search
» Enumerate all possible paths from the source to the sink
» The number of such paths become too large, even for
moderately large graphs.

The Manhattan Tourist Problem

Manbhattan Tourist Problem:
Find a longest path in a weighted grid.

Input: A weighted grid G with two distinguished vertices:
a source and a sink.

Output: A longest path in G from source to sink.

» Exhaustive Search

» Enumerate all possible paths from the source to the sink
» The number of such paths become too large, even for
moderately large graphs.
> Greedy
» Instead, we could build paths by reasoning locally, based on
the weight of the outgoing edges.

» The approximation ratio of the obtained algorithm is very
bad.

Dynamic Programming to the Rescue

l —
MANHATTANTOURIST(W, W, 1, m)
$0,0 < 0
for i<— 1lton

|
8;.0 < Si—1,0+ W50
for j— 1tom
-
80,5 < S0,4-1+ Wo,j
for i— 1lton

N ON Ol W N

for j — 1tom

|
S._ . w -
S; j < max i1yt "
Sij—11 Wi

o}

9 return s, .,

Dynamic Programming to the Rescue

» The complexity of MANHATTANTOURIST is polynomial in
n and m.

» More specifically, it is O(nm): for every pair of coordinates,
we do a constant amount of work to find the optimal value
of it.

Dynamic Programming to the Rescue

» The complexity of MANHATTANTOURIST is polynomial in
n and m.

» More specifically, it is O(nm): for every pair of coordinates,
we do a constant amount of work to find the optimal value
of it.

» The correctness of the algorithm can be proved by giving
an appropriate invariant:

(Vi'.Longest(sy o)) A (Vj'.Longest(so j))
(V1 <4 <i.Vj.Longest(sy ;)) A (V1 < j' < j.Longest(s; j))

where Longest(sy,) means that sy 5 contains the length of
the longest path from sy 5 to 0.

But. ..

Directed Acyclic Graphs
» A directed graph is a pair G = (V, E) such that V is a
finite set and ¥ C G x G is the set of edges.
> Example: the pair ({1,2,3},{(1,2), (2,3), (1,3), (3,1)}) is
a graph, which represented graphically as follows:

0

Directed Acyclic Graphs

» A directed graph is a pair G = (V, E) such that V is a
finite set and ¥ C G x G is the set of edges.

» Example: the pair ({1,2,3},{(1,2),(2,3),(1,3),(3,1)}) is
a graph, which represented graphically as follows:

-0

When (and if) the node identity is not important, we just
omit the numbers:

00

» A path in a graph G = (V| E) is a sequence of consecutive
edges (namely edges such that the target of the first is the
source of the second).

» A directed graph is acyclic (or a DAG) when none of its
paths is cyclic, namely none of its path starts and ends at
the same node.

Weighted DAGs

» A DAG G = (V, E) is said to be weighted if every edge in
e € FE comes equipped with a nonnegative number we.

» To any path in a weighted DAG one can naturally associate
its weight, namely the sum of the weights of all its edges.

Weighted DAGs

» A DAG G = (V, E) is said to be weighted if every edge in
e € FE comes equipped with a nonnegative number we.

» To any path in a weighted DAG one can naturally associate
its weight, namely the sum of the weights of all its edges.

Longest Path in a DAG Problem:
Find a longest path between two vertices in a weighted DAG.

Input: A weighted DAG G with source and sink vertices.
Output: A longest path in G from source to sink.

Weighted DAGs

» A DAG G = (V, E) is said to be weighted if every edge in
e € FE comes equipped with a nonnegative number we.

» To any path in a weighted DAG one can naturally associate
its weight, namely the sum of the weights of all its edges.

Longest Path in a DAG Problem:
Find a longest path between two vertices in a weighted DAG.

Input: A weighted DAG G with source and sink vertices.
Output: A longest path in G from source to sink.

» How could we solve this problem?

» Can we adapt the dynamic programming algorithm for the
Manhattan Tourist problem to this new problem?

Dynamic Programming on DAGs

» Given a DAG G = (V, E) and a vertex v € V, the
predecessors of v are those vertexes w for which (w,v) € E.
The set of all predecessors of v is indicated as
Predecessors(v).

» We could then solve the Longest Path Problem by
computing the length of the path from the source to any
vertex v using this equation:

Sy = max (Sw + ww,v)
w€ Predecessors(v)

where s, = oo if the Predecessors(v) = ().
» But then the question is: in which order should we
compute the s,7
» Any topological sort of the graph would be fine, where a
topological sort of a graph G = (V| F) is any linear ordering
of V which is compatible with E: if (v,w) € E, then v < w.

Topological Sort on an Example Graph

T O

Topological Sort on an Example Graph

» One possible topological sort of the graph above is

2>4>3>1

Topological Sort on an Example Graph

B W
» One possible topological sort of the graph above is

2>4>3>1

» But are two more:

2>3>1>4 2>3>4>1

The Topological Sort on the Manhattan Tourist Problem

i bl s = —F=r =t
-7 A Rd e 2 /| /I
(] il Al = e el ,
- A1, 2121,
f y

NN

The Edit Distance

TG?ATAT

Y
TGCATA

}
TGCAT

M

ATGCAT
}

ATCCAT

ATCCCAT

delete last T

delete last A

insert A at the front

substitute C for G in the third position

insert a G before the last A

The Edit Distance

TGCATAT

I insert A at the front

ATGCATAT

| delete T in the sixth position

Y
ATG?AAT
substitute G for A in the fifth position

\
ATGCGAT

| substitute C for G in the third position

v
ATCCGAT

Alignment Matrices

Mismatches
v v TV Indels
—|T|G|C|A|T|A|T
A|T|C|CIG|—|A|T
[} A A 4

Matches

The Edit Graph

LN

The Edit Graph

» Could we apply the dynamic programming scheme we
already know to the edit graph?

» The key question, however, is how to defined the weights of
this graph, namely how to turn the graph into a weighted
DAG.

» Please observe that:

» Vertical and horizontal edges correspond to insertions and
deletions.

» Slanting edges correspond to matches and mismatches,
depending on the characters involved.

Longest Common Subsequence

» Given two strings
V=010, W =Wy Wy

a common subsequence of v and w is a pair of sequences
of positions

1<y <9<... <z <n 1§j1<j2<...<jk§m

such that v;, = wj, for every 1 <t < k.

Longest Common Subsequence

» Given two strings
V=010, W =Wy Wy

a common subsequence of v and w is a pair of sequences
of positions

1<y <9<... <z <n 1§j1<j2<...<jk§m

such that v;, = wj, for every 1 <t < k.

Longest Common Subsequence Problem:
Find the longest subsequence common to two strings.

Input: Two strings, v and w.

Output: The longest common subsequence of v and w.

How to Weight the Edit Graphs with LCS in Mind

—_—— @ ——>

—) — @ ——

—_—— @ —

—_—— @ —>

—_—) —> @ —>

— Y > @ —>

—_—— @ —

e

—_—

—_—

—_—

—_—

—_—

—_—

—_—

—_—

—_—

—_—

—_—

—_— —>

—_—

—_—

—_—

—_—

—_—

—_—

—_—

—_—

A Dynamic Programming Algorithm for LCS

LCS(v,w)
1 for i<~ Oton
2 83,0 < 0
3 for j«— 1ltom
4 80,5 < 0
5 for i< 1ton
6 for j— 1tom
Si—1,5
7 8ij < MaxX < S;j—1
Si—1,5-1+1, ifv, = w;
“ TH if Sij = Si—1,5
b@j — o if Sij = Sij—1
N ifs =sim-1 + 1

®

9 return (s, ,, b)

A Dynamic Programming Algorithm for LCS

PRINTLCS(b, v, i, 7)
1 if i=0o0rj=0

2 return
3 if b ; = “
4 PRINTLCS(b,v,i — 1,5 — 1)
5 print v;
6 else
7 if b;; ="“1"
8 PRINTLCS(b,v,i — 1,)
9 else
10 PRINTLCS(b, v,7,j — 1)

Back to the Edit Distance

» How should we weight the edit graph while trying to
compute the edit distance between two strings?

Back to the Edit Distance

» How should we weight the edit graph while trying to
compute the edit distance between two strings?
> Clearly:

» Indels should cost 1.
» Mismatches should cost 1.
» Matches should cost 0.

Back to the Edit Distance

» How should we weight the edit graph while trying to
compute the edit distance between two strings?
> Clearly:
» Indels should cost 1.
» Mismatches should cost 1.
» Matches should cost 0.
» But this implies that computing the edit distance is a
minimization rather than a maximization problem.

» The crucial recurrence is the following one:

si—15+1
Sij—1 t 1
Si—1,5—-1 if U = Wy
Si—15-1+1 if v; # W

Sij = min

Global Sequence Alignment

» Sometimes, it makes a lot of sense to stipulate that certain
edit operations have a different score than others.
» This can be modeled by a function

§:XU{-}xZU{-} > Rsg

which gives the score of any column in the alignment
matrix.

Global Sequence Alignment

» Sometimes, it makes a lot of sense to stipulate that certain
edit operations have a different score than others.
» This can be modeled by a function

§:XU{-}xZU{-} > Rsg

which gives the score of any column in the alignment
matrix.

Global Alignment Problem:
Find the best alignment between two strings under a given scoring
matrix.

Input: Strings v, w and a scoring matrix d.

Output: An alignment of v and w whose score (as defined
by the matrix 0) is maximal among all possible alignments
of vand w.

Global Sequence Alignment

Si—1,5 + 0(vi, —)
Sij =max < §;j-1+0(—, w;)
Si—1,j-1 1 (v, wj)

Other Forms of Alignment

» There are at least three forms of alignment other than the
global one.
1. Local Alignment Problem
» You are not looking for an alignment of the two string, but
of segments of those.
2. Alignment with Gap Penalties
> Sometimes, there can be huge gaps between strings, and
having a (negative) score which is linear in the length of
the gap is an overkill.
3. Multiple Alignment
» Alignmentd between not two but many strings could
possibly be looked for.

Other Forms of Alignment

» There are at least three forms of alignment other than the
global one.
1. Local Alignment Problem

» You are not looking for an alignment of the two string, but
of segments of those.

2. Alignment with Gap Penalties

> Sometimes, there can be huge gaps between strings, and
having a (negative) score which is linear in the length of
the gap is an overkill.

3. Multiple Alignment
» Alignmentd between not two but many strings could
possibly be looked for.
» In all these cases, the dynamic programming recipe can be
applied, although the underlying edit graph needs to be
adapted.

Thank You!

(Questions?

