Algorithms and Data Structures in Biology

Dynamic Programming Algorithms

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019

Dynamic Programming

- ▶ Up to now, we have analysed two different design strategies for algorithms:
 - ► Exhaustive Search
 - Correctness holds in a perfect sense, i.e., without any possibility of errors.
 - Complexity, at least in the worst case, can be very high, although branch-and-bound can be of help.
 - Greedy
 - Correctness only holds in an approximate sense, while bounds on the approximate ratio can sometime be given
 - Complexity is lower than in exhaustive search, although in general polynomial in the size of the input.
- ▶ A natural question: Is there a way to tame certain problems so as to remain low in complexity without losing correctness?

Dynamic Programming

▶ Up to now, we have analysed two different design strategies for algorithms:

► Exhaustive Search

- Correctness holds in a perfect sense, i.e., without any possibility of errors.
- ► Complexity, at least in the worst case, can be very high, although branch-and-bound can be of help.

- Correctness only holds in an approximate sense, while bounds on the approximate ratio can sometime be given.
- Complexity is lower than in exhaustive search, although in general polynomial in the size of the input.
- ▶ A natural question: Is there a way to tame certain problems so as to remain low in complexity without losing correctness?

Dynamic Programming

▶ Up to now, we have analysed two different design strategies for algorithms:

► Exhaustive Search

- Correctness holds in a perfect sense, i.e., without any possibility of errors.
- Complexity, at least in the worst case, can be very high, although branch-and-bound can be of help.

- ► Correctness only holds in an approximate sense, while bounds on the approximate ratio can sometime be given.
- Complexity is lower than in exhaustive search, although in general polynomial in the size of the input.
- ▶ A natural question: Is there a way to tame certain problems so as to remain low in complexity without losing correctness?

The Change Problem, Again!

Change Problem:

Convert some amount of money M into given denominations, using the smallest possible number of coins.

Input: An amount of money M, and an array of d denominations $\mathbf{c} = (c_1, c_2, \dots, c_d)$, in decreasing order of value $(c_1 > c_2 > \dots > c_d)$.

Output: A list of d integers i_1, i_2, \ldots, i_d such that $c_1i_1+c_2i_2+\cdots+c_di_d=M$, and $i_1+i_2+\cdots+i_d$ is as small as possible.

- ▶ We introduced an exhaustive search algorithm for this problem which, however, was very inefficient.
- ▶ The greedy algorithm we also introduced at the beginning of the course was however imprecise, at least in some cases

The Change Problem, Again!

Change Problem:

Convert some amount of money M into given denominations, using the smallest possible number of coins.

Input: An amount of money M, and an array of d denominations $\mathbf{c} = (c_1, c_2, \dots, c_d)$, in decreasing order of value $(c_1 > c_2 > \dots > c_d)$.

Output: A list of d integers i_1, i_2, \ldots, i_d such that $c_1i_1+c_2i_2+\cdots+c_di_d=M$, and $i_1+i_2+\cdots+i_d$ is as small as possible.

- ▶ We introduced an exhaustive search algorithm for this problem which, however, was very inefficient.
- ▶ The greedy algorithm we also introduced at the beginning of the course was however imprecise, at least in some cases.

The Structure of Optimal Solutions

- ▶ The key observation for understanding dynamic programming is the following: in a given problem, **optimal** solutions are recursively optimal.
- As an example, consider the Change Problem, with $\mathbf{c} = (1, 3, 7)$ and an optimal solution $\mathbf{i} = (i_1, i_2, i_3)$ for M = 77.
 - ▶ If $i_1 > 1$, then $(i_1 1, i_2, i_3)$ will be optimal for M 1 = 76. Otherwise, we could find a triple (j_1, j_2, j_3) for 76 such that $j_1 + j_2 + j_3 < i_1 1 + i_2 + i_3$ and $(j_1 + 1, j_2, j_3)$ would sum to something less than $i_1 + i_2 + i_3$, contradicting the optimality of \mathbf{i} .
 - Similarly if $i_2 > 1$ or $i_3 > 1$.
- ▶ In all these cases, the search for the optimal solution can be performed by looking at all possible sub-problems, then choosing the best solution.
 - ▶ In the example above, when asked to look for an optimal solution for M = 77, we could look for optimal solutions for 76, 74 or 70, and take "the best one".

The Structure of Optimal Solutions

- ▶ The key observation for understanding dynamic programming is the following: in a given problem, **optimal** solutions are recursively optimal.
- As an example, consider the Change Problem, with $\mathbf{c} = (1, 3, 7)$ and an optimal solution $\mathbf{i} = (i_1, i_2, i_3)$ for M = 77.
 - ▶ If $i_1 > 1$, then $(i_1 1, i_2, i_3)$ will be optimal for M 1 = 76. Otherwise, we could find a triple (j_1, j_2, j_3) for 76 such that $j_1 + j_2 + j_3 < i_1 1 + i_2 + i_3$ and $(j_1 + 1, j_2, j_3)$ would sum to something less than $i_1 + i_2 + i_3$, contradicting the optimality of \mathbf{i} .
 - Similarly if $i_2 > 1$ or $i_3 > 1$.
- ▶ In all these cases, the search for the optimal solution can be performed by **looking at all possible sub-problems**, then choosing the best solution.
 - ▶ In the example above, when asked to look for an optimal solution for M = 77, we could look for optimal solutions for 76, 74 or 70, and take "the best one".

The Structure of Optimal Solutions

- ► The key observation for understanding dynamic programming is the following: in a given problem, **optimal** solutions are recursively optimal.
- As an example, consider the Change Problem, with $\mathbf{c} = (1, 3, 7)$ and an optimal solution $\mathbf{i} = (i_1, i_2, i_3)$ for M = 77.
 - ▶ If $i_1 > 1$, then $(i_1 1, i_2, i_3)$ will be optimal for M 1 = 76. Otherwise, we could find a triple (j_1, j_2, j_3) for 76 such that $j_1 + j_2 + j_3 < i_1 1 + i_2 + i_3$ and $(j_1 + 1, j_2, j_3)$ would sum to something less than $i_1 + i_2 + i_3$, contradicting the optimality of \mathbf{i} .
 - Similarly if $i_2 > 1$ or $i_3 > 1$.
- ▶ In all these cases, the search for the optimal solution can be performed by **looking at all possible sub-problems**, then choosing the best solution.
 - ▶ In the example above, when asked to look for an optimal solution for M = 77, we could look for optimal solutions for 76, 74 or 70, and take "the best one".

A Recursive Algorithm for the Change Problem

A Recursive Algorithm for the Change Problem


```
RECURSIVECHANGE(M, \mathbf{c}, d)

1 if M = 0

2 return 0

3 bestNumCoins \leftarrow \infty

4 for i \leftarrow 1 to d

5 if M \geq c_i

6 numCoins \leftarrow RECURSIVECHANGE(M - c_i, \mathbf{c}, d)

7 if numCoins + 1 < bestNumCoins

8 bestNumCoins \leftarrow numCoins + 1

9 return bestNumCoins
```

Strange Dejà Vu?

- ► The complexity of RecursiveChange can be easily seen to be exponential.
- ▶ Indeed, a call to the algorithm with first parameter equal to *M* would produce a pattern similar to the following one:

▶ This is not too different than the situation we got when we analysed the first variation on FIBONACCI. Is it possible to do apply the same trick?

Strange Dejà Vu?

- ► The complexity of RecursiveChange can be easily seen to be exponential.
- ▶ Indeed, a call to the algorithm with first parameter equal to *M* would produce a pattern similar to the following one:

▶ This is not too different than the situation we got when we analysed the first variation on FIBONACCI. Is it possible to do apply the same trick?

Strange Dejà Vu?

- ► The complexity of RecursiveChange can be easily seen to be exponential.
- ▶ Indeed, a call to the algorithm with first parameter equal to *M* would produce a pattern similar to the following one:

▶ This is not too different than the situation we got when we analysed the first variation on FIBONACCI. Is it possible to do apply the same trick?

A Dynamic Programming Algorithm for the Change Problem

```
\begin{array}{lll} \mathrm{DPCHANGE}(M,\mathbf{c},d) \\ 1 & bestNumCoins_0 \leftarrow 0 \\ 2 & \mathbf{for} \ m \leftarrow 1 \ \mathbf{to} \ M \\ 3 & bestNumCoins_m \leftarrow \infty \\ 4 & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ d \\ 5 & \mathbf{if} \ m \geq c_i \\ 6 & \mathbf{if} \ bestNumCoins_{m-c_i} + 1 < bestNumCoins_m \\ 7 & bestNumCoins_m \leftarrow bestNumCoins_{m-c_i} + 1 \\ 8 & \mathbf{return} \ bestNumCoins_M \end{array}
```


Representing Grids

- ▶ A rectangle-shaped portion of Manhattan's map, together with the number of attractions on each boulevard's segment, can be seen as a *graph*.
 - ▶ For the moment, we do not know what a graph is, formally.
- ▶ Concretely, such a graph can be seen as a pair of $n \times m$ matrices:
 - A matrix \overrightarrow{w} which gives the number of attractions to the east-bound street from each coordinate.
 - A matrix \dot{w} which gives the number of attractions to the south-bound street from each coordinate.
- ▶ The **source** is the coordinate (0,0), while the **target** is the coordinate (n,m).
- ▶ A **path** is a sequence of moves in $\{S, E\}$ of length n + m, which encodes the route taken by the tourist.

Manhattan Tourist Problem:

Find a longest path in a weighted grid.

Input: A weighted grid *G* with two distinguished vertices: a *source* and a *sink*.

Output: A longest path in *G* from *source* to *sink*.

Exhaustive Search

- ▶ Enumerate all possible paths from the source to the sink
- ► The number of such paths become too large, even for moderately large graphs.

- ▶ Instead, we could build paths by reasoning locally, based on the weight of the outgoing edges.
- ▶ The approximation ratio of the obtained algorithm is very bad.

Manhattan Tourist Problem:

Find a longest path in a weighted grid.

Input: A weighted grid *G* with two distinguished vertices: a *source* and a *sink*.

Output: A longest path in *G* from *source* to *sink*.

► Exhaustive Search

- ▶ Enumerate all possible paths from the source to the sink
- ► The number of such paths become too large, even for moderately large graphs.

- ▶ Instead, we could build paths by reasoning locally, based on the weight of the outgoing edges.
- The approximation ratio of the obtained algorithm is very bad.

Manhattan Tourist Problem:

Find a longest path in a weighted grid.

Input: A weighted grid *G* with two distinguished vertices: a *source* and a *sink*.

Output: A longest path in *G* from *source* to *sink*.

► Exhaustive Search

- ▶ Enumerate all possible paths from the source to the sink
- ► The number of such paths become too large, even for moderately large graphs.

- ▶ Instead, we could build paths by reasoning locally, based on the weight of the outgoing edges.
- The approximation ratio of the obtained algorithm is very bad.

Dynamic Programming to the Rescue

```
MANHATTANTOURIST(\overset{\downarrow}{\mathbf{w}}, \overset{\rightarrow}{\mathbf{w}}, n, m)
 1 s_{0,0} \leftarrow 0
 2 for i \leftarrow 1 to n
                   s_{i,0} \leftarrow s_{i-1,0} + \overset{\downarrow}{w}_{i,0}
 4 for j \leftarrow 1 to m
 5 s_{0,i} \leftarrow s_{0,i-1} + \overrightarrow{w}_{0,i}
 6 for i \leftarrow 1 to n
                   for j \leftarrow 1 to m
                              s_{i,j} \leftarrow \max \left\{ \begin{array}{c} s_{i-1,j} + \overset{\downarrow}{w}_{i,j} \\ s_{i,j-1} + \overset{\downarrow}{w}_{i,j} \end{array} \right.
         return s_{n,m}
```

Dynamic Programming to the Rescue

- ► The complexity of MANHATTANTOURIST is polynomial in *n* and *m*.
 - ▶ More specifically, it is O(nm): for every pair of coordinates, we do a constant amount of work to find the optimal value of it.
- ► The correctness of the algorithm can be proved by giving an appropriate invariant:

$$(\forall i'.Longest(s_{i',0})) \land (\forall j'.Longest(s_{0,j'}))$$

$$(\forall 1 < i' < i.\forall j.Longest(s_{i',j})) \land (\forall 1 < j' \leq j.Longest(s_{i,j'}))$$

where $Longest(s_{k,h})$ means that $s_{k,h}$ contains the length of the longest path from $s_{k,h}$ to 0.

Dynamic Programming to the Rescue

- ► The complexity of MANHATTANTOURIST is polynomial in *n* and *m*.
 - ▶ More specifically, it is O(nm): for every pair of coordinates, we do a constant amount of work to find the optimal value of it.
- ▶ The correctness of the algorithm can be proved by giving an appropriate invariant:

$$(\forall i'.Longest(s_{i',0})) \land (\forall j'.Longest(s_{0,j'}))$$

$$(\forall 1 < i' < i.\forall j.Longest(s_{i',j})) \land (\forall 1 < j' \leq j.Longest(s_{i,j'}))$$

where $Longest(s_{k,h})$ means that $s_{k,h}$ contains the length of the longest path from $s_{k,h}$ to 0.

But...

Directed Acyclic Graphs

- ▶ A directed graph is a pair G = (V, E) such that V is a finite set and $E \subseteq G \times G$ is the set of edges.
- ▶ **Example**: the pair $(\{1,2,3\},\{(1,2),(2,3),(1,3),(3,1)\})$ is a graph, which represented graphically as follows:

When (and if) the node identity is not important, we just omit the numbers:

- ▶ A path in a graph G = (V, E) is a sequence of *consecutive* edges (namely edges such that the target of the first is the source of the second).
- ▶ A directed graph is **acyclic** (or a DAG) when none of its paths is *cyclic*, namely none of its path starts and ends at the same node.

Directed Acyclic Graphs

- ▶ A directed graph is a pair G = (V, E) such that V is a finite set and $E \subseteq G \times G$ is the set of edges.
- ▶ **Example**: the pair $(\{1,2,3\},\{(1,2),(2,3),(1,3),(3,1)\})$ is a graph, which represented graphically as follows:

When (and if) the node identity is not important, we just omit the numbers:

- ▶ A path in a graph G = (V, E) is a sequence of *consecutive* edges (namely edges such that the target of the first is the source of the second).
- ▶ A directed graph is **acyclic** (or a DAG) when none of its paths is *cyclic*, namely none of its path starts and ends at the same node.

Weighted DAGs

- ▶ A DAG G = (V, E) is said to be weighted if every edge in $e \in E$ comes equipped with a nonnegative number w_e .
- ▶ To any path in a weighted DAG one can naturally associate its weight, namely the sum of the weights of all its edges.

- ▶ How could we solve this problem?
- ► Can we adapt the dynamic programming algorithm for the Manhattan Tourist problem to this new problem?

Weighted DAGs

- ▶ A DAG G = (V, E) is said to be weighted if every edge in $e \in E$ comes equipped with a nonnegative number w_e .
- ▶ To any path in a weighted DAG one can naturally associate its weight, namely the sum of the weights of all its edges.

Longest Path in a DAG Problem:

Find a longest path between two vertices in a weighted DAG.

Input: A weighted DAG *G* with *source* and *sink* vertices.

Output: A longest path in *G* from *source* to *sink*.

- ▶ How could we solve this problem?
- ► Can we adapt the dynamic programming algorithm for the Manhattan Tourist problem to this new problem?

Weighted DAGs

- ▶ A DAG G = (V, E) is said to be weighted if every edge in $e \in E$ comes equipped with a nonnegative number w_e .
- ▶ To any path in a weighted DAG one can naturally associate its weight, namely the sum of the weights of all its edges.

Longest Path in a DAG Problem:

Find a longest path between two vertices in a weighted DAG.

Input: A weighted DAG *G* with *source* and *sink* vertices.

Output: A longest path in *G* from *source* to *sink*.

- ▶ How could we solve this problem?
- ► Can we adapt the dynamic programming algorithm for the Manhattan Tourist problem to this new problem?

Dynamic Programming on DAGs

- ▶ Given a DAG G = (V, E) and a vertex $v \in V$, the predecessors of v are those vertexes w for which $(w, v) \in E$. The set of all predecessors of v is indicated as Predecessors(v).
- ▶ We could then solve the Longest Path Problem by computing the length of the path from the source to **any** vertex v using this equation:

$$s_v = \max_{w \in Predecessors(v)} (s_w + w_{w,v})$$

where $s_v = \infty$ if the $Predecessors(v) = \emptyset$.

- ▶ But then the question is: in which order should we compute the s_v ?
 - Any topological sort of the graph would be fine, where a topological sort of a graph G = (V, E) is any linear ordering of V which is compatible with E: if $(v, w) \in E$, then v < w.

Topological Sort on an Example Graph

▶ One possible topological sort of the graph above is

▶ But are two more:

$$2 > 3 > 1 > 4$$
 $2 > 3 > 4 >$

Topological Sort on an Example Graph

▶ One possible topological sort of the graph above is

▶ But are two more:

$$2 > 3 > 1 > 4$$
 $2 > 3 > 4 > 1$

Topological Sort on an Example Graph

▶ One possible topological sort of the graph above is

▶ But are two more:

$$2 > 3 > 1 > 4$$
 $2 > 3 > 4 > 1$

The Topological Sort on the Manhattan Tourist Problem

The Edit Distance

The Edit Distance

insert A at the front

delete T in the sixth position

substitute G for A in the fifth position

substitute C for G in the third position

Alignment Matrices

The Edit Graph

The Edit Graph

- ► Could we apply the dynamic programming scheme we already know to the edit graph?
- ▶ The key question, however, is how to defined the weights of this graph, namely how to turn the graph into a weighted DAG.
- ▶ Please observe that:
 - Vertical and horizontal edges correspond to insertions and deletions.
 - Slanting edges correspond to matches and mismatches, depending on the characters involved.

Longest Common Subsequence

Given two strings

$$\mathbf{v} = v_1 \cdots v_n \qquad \mathbf{w} = w_1 \cdots w_m$$

a **common subsequence** of ${\bf v}$ and ${\bf w}$ is a pair of sequences of positions

$$1 \le i_1 < i_2 < \ldots < i_k \le n$$
 $1 \le j_1 < j_2 < \ldots < j_k \le m$ such that $v_{i_t} = w_{j_t}$ for every $1 \le t \le k$.

Longest Common Subsequence

Given two strings

$$\mathbf{v} = v_1 \cdots v_n \qquad \mathbf{w} = w_1 \cdots w_m$$

a **common subsequence** of \mathbf{v} and \mathbf{w} is a pair of sequences of positions

$$1 \le i_1 < i_2 < \ldots < i_k \le n$$
 $1 \le j_1 < j_2 < \ldots < j_k \le m$
such that $v_{i_t} = w_{j_t}$ for every $1 \le t \le k$.

Longest Common Subsequence Problem:

Find the longest subsequence common to two strings.

Input: Two strings, **v** and **w**.

Output: The longest common subsequence of **v** and **w**.

How to Weight the Edit Graphs with LCS in Mind

A Dynamic Programming Algorithm for LCS

```
LCS(\mathbf{v}, \mathbf{w})
 1 for i \leftarrow 0 to n
s_{i,0} \leftarrow 0
3 for j \leftarrow 1 to m
4 s_{0,i} \leftarrow 0
5 for i \leftarrow 1 to n
                     for j \leftarrow 1 to m
                                s_{i,j} \leftarrow \max \left\{ \begin{array}{l} s_{i-1,j} \\ s_{i,j-1} \\ s_{i-1,i-1}+1, \quad \text{if } v_i = w_j \end{array} \right.
                                b_{i,j} \leftarrow \begin{cases} \text{"} \uparrow'' & \text{if } s_{i,j} = s_{i-1,j} \\ \text{"} \leftarrow'' & \text{if } s_{i,j} = s_{i,j-1} \\ \text{"} \uparrow''. & \text{if } s_{i,j} = s_{i-1,j-1} + 1 \end{cases}
         return (s_{n,m}, \mathbf{b})
```

A Dynamic Programming Algorithm for LCS

```
PRINTLCS(\mathbf{b}, \mathbf{v}, i, j)
  1 if i = 0 or j = 0
              return
  3 if b_{i,j} = " \setminus "
              PRINTLCS(\mathbf{b}, \mathbf{v}, i-1, j-1)
              print v_i
       else
              if b_{i,j} = "\uparrow"
                     PRINTLCS(\mathbf{b}, \mathbf{v}, i - 1, j)
  9
              else
                     PRINTLCS(\mathbf{b}, \mathbf{v}, i, j - 1)
10
```

Back to the Edit Distance

- ► How should we **weight** the edit graph while trying to compute the edit distance between two strings?
- ► Clearly:
 - ▶ Indels should cost 1.
 - ▶ Mismatches should cost 1.
 - ► Matches should cost 0.
- ▶ But this implies that computing the edit distance is a *minimization* rather than a *maximization* problem.
- ▶ The crucial recurrence is the following one:

$$s_{i,j} = \min \left\{ egin{array}{ll} s_{i-1,j} + 1 & & & \\ s_{i,j-1} + 1 & & & \\ s_{i-1,j-1} & & ext{if } v_i = w_j \\ s_{i-1,j-1} + 1 & & ext{if } v_i
eq w_j \end{array}
ight.$$

Back to the Edit Distance

- ▶ How should we **weight** the edit graph while trying to compute the edit distance between two strings?
- ► Clearly:
 - ▶ Indels should cost 1.
 - ▶ Mismatches should cost 1.
 - ▶ Matches should cost 0.
- ▶ But this implies that computing the edit distance is a *minimization* rather than a *maximization* problem.
- ▶ The crucial recurrence is the following one:

$$s_{i,j} = \min \left\{ egin{array}{ll} s_{i-1,j} + 1 & & & \\ s_{i,j-1} + 1 & & & \\ s_{i-1,j-1} & & ext{if } v_i = w_j \\ s_{i-1,j-1} + 1 & & ext{if } v_i
eq w_j \end{array}
ight.$$

Back to the Edit Distance

- ▶ How should we **weight** the edit graph while trying to compute the edit distance between two strings?
- ► Clearly:
 - ▶ Indels should cost 1.
 - ▶ Mismatches should cost 1.
 - ▶ Matches should cost 0.
- ▶ But this implies that computing the edit distance is a *minimization* rather than a *maximization* problem.
- ► The crucial recurrence is the following one:

$$s_{i,j} = \min \begin{cases} s_{i-1,j} + 1 \\ s_{i,j-1} + 1 \\ s_{i-1,j-1} & \text{if } v_i = w_j \\ s_{i-1,j-1} + 1 & \text{if } v_i \neq w_j \end{cases}$$

Global Sequence Alignment

- ▶ Sometimes, it makes a lot of sense to stipulate that certain edit operations have a different score than others.
- ▶ This can be modeled by a function

$$\delta: \Sigma \cup \{-\} \times \Sigma \cup \{-\} \to \mathbb{R}_{\geq 0}$$

which gives the score of any column in the alignment matrix.

Global Sequence Alignment

- ▶ Sometimes, it makes a lot of sense to stipulate that certain edit operations have a different score than others.
- ▶ This can be modeled by a function

$$\delta: \Sigma \cup \{-\} \times \Sigma \cup \{-\} \to \mathbb{R}_{\geq 0}$$

which gives the score of any column in the alignment matrix.

Global Alignment Problem:

Find the best alignment between two strings under a given scoring matrix.

Input: Strings \mathbf{v} , \mathbf{w} and a scoring matrix δ .

Output: An alignment of \mathbf{v} and \mathbf{w} whose score (as defined by the matrix δ) is maximal among all possible alignments of \mathbf{v} and \mathbf{w} .

Global Sequence Alignment

$$s_{i,j} = \max \begin{cases} s_{i-1,j} + \delta(v_i, -) \\ s_{i,j-1} + \delta(-, w_j) \\ s_{i-1,j-1} + \delta(v_i, w_j) \end{cases}$$

Other Forms of Alignment

▶ There are at least three forms of alignment other than the global one.

1. Local Alignment Problem

You are not looking for an alignment of the two string, but of segments of those.

2. Alignment with Gap Penalties

▶ Sometimes, there can be huge gaps between strings, and having a (negative) score which is linear in the length of the gap is an overkill.

3. Multiple Alignment

- Alignmentd between not two but many strings could possibly be looked for.
- ▶ In all these cases, the dynamic programming recipe can be applied, although the underlying edit graph needs to be adapted.

Other Forms of Alignment

▶ There are at least three forms of alignment other than the global one.

1. Local Alignment Problem

You are not looking for an alignment of the two string, but of segments of those.

2. Alignment with Gap Penalties

▶ Sometimes, there can be huge gaps between strings, and having a (negative) score which is linear in the length of the gap is an overkill.

3. Multiple Alignment

- Alignmentd between not two but many strings could possibly be looked for.
- ▶ In all these cases, the dynamic programming recipe can be applied, although the underlying edit graph needs to be adapted.

Thank You!

Questions?