
Algorithms and Data Structures
in Biology

Dynamic Programming Algorithms

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019



Dynamic Programming

I Up to now, we have analysed two different design strategies
for algorithms:

I Exhaustive Search
I Correctness holds in a perfect sense, i.e., without any

possibility of errors.
I Complexity, at least in the worst case, can be very high,

although branch-and-bound can be of help.
I Greedy

I Correctness only holds in an approximate sense, while
bounds on the approximate ratio can sometime be given.

I Complexity is lower than in exhaustive search, although in
general polynomial in the size of the input.

I A natural question: Is there a way to tame certain
problems so as to remain low in complexity without losing
correctness?



Dynamic Programming

I Up to now, we have analysed two different design strategies
for algorithms:

I Exhaustive Search
I Correctness holds in a perfect sense, i.e., without any

possibility of errors.
I Complexity, at least in the worst case, can be very high,

although branch-and-bound can be of help.
I Greedy

I Correctness only holds in an approximate sense, while
bounds on the approximate ratio can sometime be given.

I Complexity is lower than in exhaustive search, although in
general polynomial in the size of the input.

I A natural question: Is there a way to tame certain
problems so as to remain low in complexity without losing
correctness?



Dynamic Programming

I Up to now, we have analysed two different design strategies
for algorithms:

I Exhaustive Search
I Correctness holds in a perfect sense, i.e., without any

possibility of errors.
I Complexity, at least in the worst case, can be very high,

although branch-and-bound can be of help.
I Greedy

I Correctness only holds in an approximate sense, while
bounds on the approximate ratio can sometime be given.

I Complexity is lower than in exhaustive search, although in
general polynomial in the size of the input.

I A natural question: Is there a way to tame certain
problems so as to remain low in complexity without losing
correctness?



The Change Problem, Again!

I We introduced an exhaustive search algorithm for this
problem which, however, was very inefficient.

I The greedy algorithm we also introduced at the beginning
of the course was however imprecise, at least in some cases.



The Change Problem, Again!

I We introduced an exhaustive search algorithm for this
problem which, however, was very inefficient.

I The greedy algorithm we also introduced at the beginning
of the course was however imprecise, at least in some cases.



The Structure of Optimal Solutions
I The key observation for understanding dynamic

programming is the following: in a given problem, optimal
solutions are recursively optimal.

I As an example, consider the Change Problem, with
c = (1, 3, 7) and an optimal solution i = (i1, i2, i3) for
M = 77.

I If i1 > 1, then (i1 − 1, i2, i3) will be optimal for M − 1 = 76.
Otherwise, we could find a triple (j1, j2, j3) for 76 such that
j1 + j2 + j3 < i1 − 1 + i2 + i3 and (j1 + 1, j2, j3) would sum
to something less than i1 + i2 + i3, contradicting the
optimality of i.

I Similarly if i2 > 1 or i3 > 1.
I In all these cases, the search for the optimal solution can be

performed by looking at all possible sub-problems,
then choosing the best solution.

I In the example above, when asked to look for an optimal
solution for M = 77, we could look for optimal solutions for
76, 74 or 70, and take “the best one”.



The Structure of Optimal Solutions
I The key observation for understanding dynamic

programming is the following: in a given problem, optimal
solutions are recursively optimal.

I As an example, consider the Change Problem, with
c = (1, 3, 7) and an optimal solution i = (i1, i2, i3) for
M = 77.

I If i1 > 1, then (i1 − 1, i2, i3) will be optimal for M − 1 = 76.
Otherwise, we could find a triple (j1, j2, j3) for 76 such that
j1 + j2 + j3 < i1 − 1 + i2 + i3 and (j1 + 1, j2, j3) would sum
to something less than i1 + i2 + i3, contradicting the
optimality of i.

I Similarly if i2 > 1 or i3 > 1.
I In all these cases, the search for the optimal solution can be

performed by looking at all possible sub-problems,
then choosing the best solution.

I In the example above, when asked to look for an optimal
solution for M = 77, we could look for optimal solutions for
76, 74 or 70, and take “the best one”.



The Structure of Optimal Solutions
I The key observation for understanding dynamic

programming is the following: in a given problem, optimal
solutions are recursively optimal.

I As an example, consider the Change Problem, with
c = (1, 3, 7) and an optimal solution i = (i1, i2, i3) for
M = 77.

I If i1 > 1, then (i1 − 1, i2, i3) will be optimal for M − 1 = 76.
Otherwise, we could find a triple (j1, j2, j3) for 76 such that
j1 + j2 + j3 < i1 − 1 + i2 + i3 and (j1 + 1, j2, j3) would sum
to something less than i1 + i2 + i3, contradicting the
optimality of i.

I Similarly if i2 > 1 or i3 > 1.
I In all these cases, the search for the optimal solution can be

performed by looking at all possible sub-problems,
then choosing the best solution.

I In the example above, when asked to look for an optimal
solution for M = 77, we could look for optimal solutions for
76, 74 or 70, and take “the best one”.



A Recursive Algorithm for the Change Problem



A Recursive Algorithm for the Change Problem



Strange Dejà Vu?

I The complexity of RecursiveChange can be easily seen
to be exponential.

I Indeed, a call to the algorithm with first parameter equal to
M would produce a pattern similar to the following one:

77

70 74 76

69 73 75
...

...
...

... 68 72 74...
...

...

I This is not too different than the situation we got when we
analysed the first variation on Fibonacci. Is it possible to
do apply the same trick?



Strange Dejà Vu?

I The complexity of RecursiveChange can be easily seen
to be exponential.

I Indeed, a call to the algorithm with first parameter equal to
M would produce a pattern similar to the following one:

77

70 74 76

69 73 75
...

...
...

... 68 72 74...
...

...

I This is not too different than the situation we got when we
analysed the first variation on Fibonacci. Is it possible to
do apply the same trick?



Strange Dejà Vu?

I The complexity of RecursiveChange can be easily seen
to be exponential.

I Indeed, a call to the algorithm with first parameter equal to
M would produce a pattern similar to the following one:

77

70 74 76

69 73 75
...

...
...

... 68 72 74...
...

...

I This is not too different than the situation we got when we
analysed the first variation on Fibonacci. Is it possible to
do apply the same trick?



A Dynamic Programming Algorithm for the Change
Problem



The Manhattan Tourist Problem



Representing Grids

I A rectangle-shaped portion of Manhattan’s map, together
with the number of attractions on each boulevard’s
segment, can be seen as a graph.

I For the moment, we do not know what a graph is, formally.
I Concretely, such a graph can be seen as a pair of n×m

matrices:
I A matrix

→
w which gives the number of attractions to the

east-bound street from each coordinate.
I A matrix

↓
w which gives the number of attractions to the

south-bound street from each coordinate.
I The source is the coordinate (0, 0), while the target is the

coordinate (n,m).
I A path is a sequence of moves in {S,E} of length n+m,

which encodes the route taken by the tourist.



The Manhattan Tourist Problem

I Exhaustive Search
I Enumerate all possible paths from the source to the sink
I The number of such paths become too large, even for

moderately large graphs.
I Greedy

I Instead, we could build paths by reasoning locally, based on
the weight of the outgoing edges.

I The approximation ratio of the obtained algorithm is very
bad.



The Manhattan Tourist Problem

I Exhaustive Search
I Enumerate all possible paths from the source to the sink
I The number of such paths become too large, even for

moderately large graphs.
I Greedy

I Instead, we could build paths by reasoning locally, based on
the weight of the outgoing edges.

I The approximation ratio of the obtained algorithm is very
bad.



The Manhattan Tourist Problem

I Exhaustive Search
I Enumerate all possible paths from the source to the sink
I The number of such paths become too large, even for

moderately large graphs.
I Greedy

I Instead, we could build paths by reasoning locally, based on
the weight of the outgoing edges.

I The approximation ratio of the obtained algorithm is very
bad.



Dynamic Programming to the Rescue



Dynamic Programming to the Rescue

I The complexity of ManhattanTourist is polynomial in
n and m.

I More specifically, it is O(nm): for every pair of coordinates,
we do a constant amount of work to find the optimal value
of it.

I The correctness of the algorithm can be proved by giving
an appropriate invariant:(

∀i′.Longest(si′,0)
)
∧
(
∀j′.Longest(s0,j′)

)(
∀1 < i′ < i.∀j.Longest(si′,j)

)
∧
(
∀1 < j′ ≤ j.Longest(si,j′)

)
where Longest(sk,h) means that sk,h contains the length of
the longest path from sk,h to 0.



Dynamic Programming to the Rescue

I The complexity of ManhattanTourist is polynomial in
n and m.

I More specifically, it is O(nm): for every pair of coordinates,
we do a constant amount of work to find the optimal value
of it.

I The correctness of the algorithm can be proved by giving
an appropriate invariant:(

∀i′.Longest(si′,0)
)
∧
(
∀j′.Longest(s0,j′)

)(
∀1 < i′ < i.∀j.Longest(si′,j)

)
∧
(
∀1 < j′ ≤ j.Longest(si,j′)

)
where Longest(sk,h) means that sk,h contains the length of
the longest path from sk,h to 0.



But. . .



Directed Acyclic Graphs
I A directed graph is a pair G = (V,E) such that V is a

finite set and E ⊆ G×G is the set of edges.
I Example: the pair ({1, 2, 3}, {(1, 2), (2, 3), (1, 3), (3, 1)}) is

a graph, which represented graphically as follows:

1 2 3

When (and if) the node identity is not important, we just
omit the numbers:

I A path in a graph G = (V,E) is a sequence of consecutive
edges (namely edges such that the target of the first is the
source of the second).

I A directed graph is acyclic (or a DAG) when none of its
paths is cyclic, namely none of its path starts and ends at
the same node.



Directed Acyclic Graphs
I A directed graph is a pair G = (V,E) such that V is a

finite set and E ⊆ G×G is the set of edges.
I Example: the pair ({1, 2, 3}, {(1, 2), (2, 3), (1, 3), (3, 1)}) is

a graph, which represented graphically as follows:

1 2 3

When (and if) the node identity is not important, we just
omit the numbers:

I A path in a graph G = (V,E) is a sequence of consecutive
edges (namely edges such that the target of the first is the
source of the second).

I A directed graph is acyclic (or a DAG) when none of its
paths is cyclic, namely none of its path starts and ends at
the same node.



Weighted DAGs

I A DAG G = (V,E) is said to be weighted if every edge in
e ∈ E comes equipped with a nonnegative number we.

I To any path in a weighted DAG one can naturally associate
its weight, namely the sum of the weights of all its edges.

I How could we solve this problem?
I Can we adapt the dynamic programming algorithm for the

Manhattan Tourist problem to this new problem?



Weighted DAGs

I A DAG G = (V,E) is said to be weighted if every edge in
e ∈ E comes equipped with a nonnegative number we.

I To any path in a weighted DAG one can naturally associate
its weight, namely the sum of the weights of all its edges.

I How could we solve this problem?
I Can we adapt the dynamic programming algorithm for the

Manhattan Tourist problem to this new problem?



Weighted DAGs

I A DAG G = (V,E) is said to be weighted if every edge in
e ∈ E comes equipped with a nonnegative number we.

I To any path in a weighted DAG one can naturally associate
its weight, namely the sum of the weights of all its edges.

I How could we solve this problem?
I Can we adapt the dynamic programming algorithm for the

Manhattan Tourist problem to this new problem?



Dynamic Programming on DAGs

I Given a DAG G = (V,E) and a vertex v ∈ V , the
predecessors of v are those vertexes w for which (w, v) ∈ E.
The set of all predecessors of v is indicated as
Predecessors(v).

I We could then solve the Longest Path Problem by
computing the length of the path from the source to any
vertex v using this equation:

sv = max
w∈Predecessors(v)

(sw + ww,v)

where sv =∞ if the Predecessors(v) = ∅.
I But then the question is: in which order should we

compute the sv?
I Any topological sort of the graph would be fine, where a

topological sort of a graph G = (V,E) is any linear ordering
of V which is compatible with E: if (v, w) ∈ E, then v < w.



Topological Sort on an Example Graph

1 2 3 4

I One possible topological sort of the graph above is

2 > 4 > 3 > 1

I But are two more:

2 > 3 > 1 > 4 2 > 3 > 4 > 1



Topological Sort on an Example Graph

1 2 3 4

I One possible topological sort of the graph above is

2 > 4 > 3 > 1

I But are two more:

2 > 3 > 1 > 4 2 > 3 > 4 > 1



Topological Sort on an Example Graph

1 2 3 4

I One possible topological sort of the graph above is

2 > 4 > 3 > 1

I But are two more:

2 > 3 > 1 > 4 2 > 3 > 4 > 1



The Topological Sort on the Manhattan Tourist Problem



The Edit Distance



The Edit Distance



Alignment Matrices

T− G C A T A T

A T C C G − A T

Indels

Mismatches

Matches



The Edit Graph



The Edit Graph

I Could we apply the dynamic programming scheme we
already know to the edit graph?

I The key question, however, is how to defined the weights of
this graph, namely how to turn the graph into a weighted
DAG.

I Please observe that:
I Vertical and horizontal edges correspond to insertions and

deletions.
I Slanting edges correspond to matches and mismatches,

depending on the characters involved.



Longest Common Subsequence

I Given two strings

v = v1 · · · vn w = w1 · · ·wm

a common subsequence of v and w is a pair of sequences
of positions

1 ≤ i1 < i2 < . . . < ik ≤ n 1 ≤ j1 < j2 < . . . < jk ≤ m

such that vit = wjt for every 1 ≤ t ≤ k.



Longest Common Subsequence

I Given two strings

v = v1 · · · vn w = w1 · · ·wm

a common subsequence of v and w is a pair of sequences
of positions

1 ≤ i1 < i2 < . . . < ik ≤ n 1 ≤ j1 < j2 < . . . < jk ≤ m

such that vit = wjt for every 1 ≤ t ≤ k.



How to Weight the Edit Graphs with LCS in Mind



A Dynamic Programming Algorithm for LCS



A Dynamic Programming Algorithm for LCS



Back to the Edit Distance

I How should we weight the edit graph while trying to
compute the edit distance between two strings?

I Clearly:
I Indels should cost 1.
I Mismatches should cost 1.
I Matches should cost 0.

I But this implies that computing the edit distance is a
minimization rather than a maximization problem.

I The crucial recurrence is the following one:

si,j = min


si−1,j + 1
si,j−1 + 1
si−1,j−1 if vi = wj

si−1,j−1 + 1 if vi 6= wj



Back to the Edit Distance

I How should we weight the edit graph while trying to
compute the edit distance between two strings?

I Clearly:
I Indels should cost 1.
I Mismatches should cost 1.
I Matches should cost 0.

I But this implies that computing the edit distance is a
minimization rather than a maximization problem.

I The crucial recurrence is the following one:

si,j = min


si−1,j + 1
si,j−1 + 1
si−1,j−1 if vi = wj

si−1,j−1 + 1 if vi 6= wj



Back to the Edit Distance

I How should we weight the edit graph while trying to
compute the edit distance between two strings?

I Clearly:
I Indels should cost 1.
I Mismatches should cost 1.
I Matches should cost 0.

I But this implies that computing the edit distance is a
minimization rather than a maximization problem.

I The crucial recurrence is the following one:

si,j = min


si−1,j + 1
si,j−1 + 1
si−1,j−1 if vi = wj

si−1,j−1 + 1 if vi 6= wj



Global Sequence Alignment
I Sometimes, it makes a lot of sense to stipulate that certain

edit operations have a different score than others.
I This can be modeled by a function

δ : Σ ∪ {−} × Σ ∪ {−} → R≥0
which gives the score of any column in the alignment
matrix.



Global Sequence Alignment
I Sometimes, it makes a lot of sense to stipulate that certain

edit operations have a different score than others.
I This can be modeled by a function

δ : Σ ∪ {−} × Σ ∪ {−} → R≥0
which gives the score of any column in the alignment
matrix.



Global Sequence Alignment

si,j = max


si−1,j + δ(vi,−)
si,j−1 + δ(−, wj)
si−1,j−1 + δ(vi, wj)



Other Forms of Alignment

I There are at least three forms of alignment other than the
global one.
1. Local Alignment Problem

I You are not looking for an alignment of the two string, but
of segments of those.

2. Alignment with Gap Penalties
I Sometimes, there can be huge gaps between strings, and

having a (negative) score which is linear in the length of
the gap is an overkill.

3. Multiple Alignment
I Alignmentd between not two but many strings could

possibly be looked for.

I In all these cases, the dynamic programming recipe can be
applied, although the underlying edit graph needs to be
adapted.



Other Forms of Alignment

I There are at least three forms of alignment other than the
global one.
1. Local Alignment Problem

I You are not looking for an alignment of the two string, but
of segments of those.

2. Alignment with Gap Penalties
I Sometimes, there can be huge gaps between strings, and

having a (negative) score which is linear in the length of
the gap is an overkill.

3. Multiple Alignment
I Alignmentd between not two but many strings could

possibly be looked for.

I In all these cases, the dynamic programming recipe can be
applied, although the underlying edit graph needs to be
adapted.



Thank You!

Questions?


