Algorithms and Data Structures in Biology **Greedy Algorithms**

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019

The Greedy Paradigm

- Greedy algorithms proceed by making choices which are locally optimal.
 - ▶ As such, greedy algorithms are *not* guaranteed to produce the correct output.
- ► This way, however, greedy algorithms keep their complexity under control.
 - Very often, greedy algorithms for hard combinatorial problems are known having polynomial time complexity.
- ▶ A typical example of a greedy algorithm is BetterChange which, as know, does not necessarily produce an optimal solution.

Genome Rearrangements

▶ The order of syntheny blocks in a piece of genome can be represented by a permutation $\sigma: \{1, ..., n\} \rightarrow \{1, ..., n\}$, itself representable as a sequence

$$\pi = \pi_1 \; \pi_2 \; \cdots \; \pi_n \tag{1}$$

where $\pi_1, \ldots, \pi_n \in \{1, \ldots, n\}$ are all distinct.

▶ A reversal $\rho(i, j)$ (where $1 \le i < j \le n$) has the effect of reversing the order of

$$\pi_i \ \pi_{i+1} \ \cdots \ \pi_j$$

trasforming π as in (1) into

$$\pi_1 \cdots \pi_{i-1} (\pi_j \pi_{j-1} \cdots \pi_{i+1} \pi_i) \pi_{j+1} \cdots \pi_n$$

which we indicate as $\pi \cdot \rho$.

▶ We could start from

$$\pi = 1 \ 2 \ 4 \ 3 \ 7 \ 5 \ 6$$

and apply to it the reversal $\rho(3,6)$ obtaining the sequence

$$\pi \cdot \rho(3,6) = 1\ 2\ (5\ 7\ 3\ 4)\ 6$$

▶ Biologists are often interested in the most *parsimonious* evolutionary scenario, in which a chromosome evolves into another one by **very few rearrangements**, i.e., by very few reversals.

▶ We could start from

$$\pi = 1243756$$

and apply to it the reversal $\rho(3,6)$ obtaining the sequence

$$\pi \cdot \rho(3,6) = 1\ 2\ (5\ 7\ 3\ 4)\ 6$$

▶ Biologists are often interested in the most *parsimonious* evolutionary scenario, in which a chromosome evolves into another one by **very few rearrangements**, i.e., by very few reversals.

▶ We could start from

$$\pi = 1243756$$

and apply to it the reversal $\rho(3,6)$ obtaining the sequence

$$\pi \cdot \rho(3,6) = 1\ 2\ (5\ 7\ 3\ 4)\ 6$$

▶ Biologists are often interested in the most *parsimonious* evolutionary scenario, in which a chromosome evolves into another one by **very few rearrangements**, i.e., by very few reversals.

The Reversal Distance and Sorting by Distance Problems

Reversal Distance Problem:

Given two permutations, find a shortest series of reversals that transforms one permutation into another.

Input: Permutations π and σ .

Output: A series of reversals $\rho_1, \rho_2, \dots, \rho_t$ transforming π into σ (i.e., $\pi \cdot \rho_1 \cdot \rho_2 \cdots \rho_t = \sigma$), such that t is minimum.

The Reversal Distance and Sorting by Distance Problems

Reversal Distance Problem:

Given two permutations, find a shortest series of reversals that transforms one permutation into another.

Input: Permutations π and σ .

Output: A series of reversals $\rho_1, \rho_2, \dots, \rho_t$ transforming π into σ (i.e., $\pi \cdot \rho_1 \cdot \rho_2 \cdots \rho_t = \sigma$), such that t is minimum.

Sorting by Reversals Problem:

Given a permutation, find a shortest series of reversals that transforms it into the identity permutation.

Input: Permutation π .

Output: A series of reversals $\rho_1, \rho_2, \dots, \rho_t$ transforming π into the identity permutation such that t is minimum.

- ▶ The latter problem is a *special case* of the former, so starting with it is a good idea.
- ▶ As the name implies, the sorting by distance problem is a special case of the sorting problem, which is also an optimization problem.
- What if we just produce in output a sequence of at most n reversals, each of them bringing i to i-th position?

- ▶ The latter problem is a *special case* of the former, so starting with it is a good idea.
- ▶ As the name implies, the sorting by distance problem is a special case of the sorting problem, which is also an optimization problem.
- \blacktriangleright What if we just produce in output a sequence of at most n reversals, each of them bringing i to i-th position?

- ▶ The latter problem is a *special case* of the former, so starting with it is a good idea.
- ▶ As the name implies, the sorting by distance problem is a special case of the sorting problem, which is also an optimization problem.
- \blacktriangleright What if we just produce in output a sequence of at most n reversals, each of them bringing i to i-th position?

- ▶ The latter problem is a *special case* of the former, so starting with it is a good idea.
- ▶ As the name implies, the sorting by distance problem is a special case of the sorting problem, which is also an optimization problem.
- \blacktriangleright What if we just produce in output a sequence of at most n reversals, each of them bringing i to i-th position?

```
SIMPLEREVERSALSORT(\pi)
1 for i \leftarrow 1 to n-1
2 j \leftarrow position of element i in \pi (i.e., \pi_j = i)
3 if j \neq i
4 \pi \leftarrow \pi \cdot \rho(i,j)
5 output \pi
6 if \pi is the identity permutation
7 return
```

Reversal Sort is not Always Correct

- ▶ It is easy to realize that
 - ▶ the reversals produced in output by SIMPLEREVERSALSORT trasform the input into the identity permutation
 - ▶ the number of such reversals is not always the minimum
- ► Consider, as an example

$$\underline{61}\,2\,3\,4\,5 \to 1\,\underline{62}\,3\,4\,5 \to 1\,2\,\underline{63}\,4\,5 \to 1\,2\,3\,\underline{64}\,5 \to 1\,2\,3\,4\,\underline{65} \to 1\,2\,3\,4\,5\,6$$

and compare it to

$$\underline{612345} \to \underline{54321}6 \to 123456.$$

More generally SIMPLEREVERSALSORT when applied to $n \ 1 \ 2 \cdots (n-1)$ produces n-1 reversals, while such a permutation can be ordered in just two steps.

Reversal Sort is not Always Correct

- ▶ It is easy to realize that
 - ▶ the reversals produced in output by SimpleReversalSort trasform the input into the identity permutation
 - ▶ the number of such reversals is not always the minimum
- ▶ Consider, as an example

$$\underline{61}\,2\,3\,4\,5 \to 1\,\underline{62}\,3\,4\,5 \to 1\,2\,\underline{63}\,4\,5 \to 1\,2\,3\,\underline{64}\,5 \to 1\,2\,3\,4\,\underline{65} \to 1\,2\,3\,4\,5\,6$$

and compare it to

$$\underline{612345} \to \underline{54321}6 \to 123456.$$

More generally SIMPLEREVERSALSORT when applied to $n \ 1 \ 2 \cdots (n-1)$ produces n-1 reversals, while such a permutation can be ordered in just two steps.

Reversal Sort is not Always Correct

- ► It is easy to realize that
 - ▶ the reversals produced in output by SimpleReversalSort trasform the input into the identity permutation
 - the number of such reversals is not always the minimum
- ▶ Consider, as an example

$$\underline{61}2345 \rightarrow 1\underline{62}345 \rightarrow 12\underline{63}45 \rightarrow 123\underline{64}5 \rightarrow 1234\underline{65} \rightarrow 123456$$

and compare it to

$$\underline{612345} \to \underline{54321}6 \to 123456.$$

More generally SIMPLEREVERSALSORT when applied to $n \ 1 \ 2 \cdots (n-1)$ produces n-1 reversals, while such a permutation can be ordered in just two steps.

Approximation Algorithms

- ► SIMPLEREVERSALSORT is a greedy algorithm, because it "solves" the underlying combinatorial problem by making some choices which are *locally* good, although being *globally* bad.
- ▶ It is also an **approximation algorithm**, namely an algorithm that gives an approximate solution to an optimization problem:
 - ▶ Although the output is *correct*, it does not have the *minimum* length.
- ▶ How could we evaluate the **quality** of an approximation algorithm?
 - ▶ We would like it to output solutions which, although not optimal, are not **too far** from being optimal.
 - ▶ But how could we measure the distance between any solution and the optimal one?

Approximation Algorithms

- ► SIMPLEREVERSALSORT is a greedy algorithm, because it "solves" the underlying combinatorial problem by making some choices which are *locally* good, although being *globally* bad.
- ▶ It is also an **approximation algorithm**, namely an algorithm that gives an approximate solution to an optimization problem:
 - ▶ Although the output is *correct*, it does not have the *minimum* length.
- How could we evaluate the quality of an approximation algorithm?
 - ▶ We would like it to output solutions which, although not optimal, are not **too far** from being optimal.
 - ▶ But how could we measure the distance between any solution and the optimal one?

Approximation Ratios

- ▶ Given an approximation algorithm \mathcal{A} and a problem instance π , we define:
 - ▶ The optimal value $OPT(\pi)$ as the optimal value for the problem instance π
 - ▶ The approximation ratio of A on π as

$$AR(\pi) = \frac{\mathcal{A}(\pi)}{OPT(\pi)}.$$

► The approximation ratio of \mathcal{A} as $\mathcal{A}(\pi)/OPT(\pi)$ as the function associating

$$\max_{|\pi|=n} AR(\pi) \text{ or } \min_{|\pi|=n} AR(\pi)$$

to n (depending on the nature of the optimization problem).

 \triangleright As an example, if \mathcal{A} is SimpleReversalSort, then

$$\max_{|\pi|=n} AR(\pi) = \max_{|\pi|=n} \frac{\mathcal{A}(\pi)}{OPT(\pi)} \ge \frac{n-1}{2}$$

Adjacencies, Breakpoints, and Strips

- ▶ In the following, it is convenient to represent a permutation on $\{1, \ldots, n\}$ as a sequence $\pi = \pi_0 \ \pi_1 \ \cdot \ \pi_n \pi_{n+1}$, where $\pi_0 = 0$ and $\pi_{n+1} = n+1$.
- ▶ Given such a π , a pair of neighboring elements π_i , π_{i+1} (for $0 \le i \le n$) is said to be:
 - An adjacency if π_i, π_{i+1} are consecutive numbers;
 - ▶ A breakpoint otherwise.
- ▶ The sequence π can have any number of breakpoints, indicated as $b(\pi)$, included between 0 and n.
 - ▶ In the identity permutation $b(\pi) = 0$.
 - Any reverse can make $b(\pi)$ to decrease by at most 2 (and, indeed, $d(\pi) \ge \frac{b(\pi)}{2}$.
- ▶ A strip in π is any interval between two consecutive breakpoints, i.e., any maximal segment of π without breakpoints.

Adjacencies, Breakpoints, and Strips

- ▶ In the following, it is convenient to represent a permutation on $\{1, \ldots, n\}$ as a sequence $\pi = \pi_0 \ \pi_1 \cdot \pi_n \pi_{n+1}$, where $\pi_0 = 0$ and $\pi_{n+1} = n+1$.
- ▶ Given such a π , a pair of neighboring elements π_i , π_{i+1} (for $0 \le i \le n$) is said to be:
 - ▶ An adjacency if π_i, π_{i+1} are consecutive numbers;
 - ▶ A **breakpoint** otherwise.
- ▶ The sequence π can have any number of breakpoints, indicated as $b(\pi)$, included between 0 and n.
 - ▶ In the identity permutation $b(\pi) = 0$.
 - Any reverse can make $b(\pi)$ to decrease by at most 2 (and, indeed, $d(\pi) \ge \frac{b(\pi)}{2}$.
- ▶ A **strip** in π is any interval between two consecutive breakpoints, i.e., any maximal segment of π without breakpoints.

Adjacencies, Breakpoints, and Strips

- We can take $b(\pi)$ as a measure of how far we are from the identity.
- ▶ This suggests the following algorithm:

```
BREAKPOINTREVERSALSORT(\pi)

1 while b(\pi) > 0

2 Among all reversals, choose reversal \rho minimizing b(\pi \cdot \rho)

3 \pi \leftarrow \pi \cdot \rho

4 output \pi

5 return
```

- ► There are several problems with BreakpointReversalSort:
 - ▶ Why does it *terminate*?
 - ▶ Can we give an *(over)estimate* to the number of iterations?

- We can take $b(\pi)$ as a measure of how far we are from the identity.
- ▶ This suggests the following algorithm:

```
BREAKPOINTREVERSALSORT(\pi)

1 while b(\pi) > 0

2 Among all reversals, choose reversal \rho minimizing b(\pi \cdot \rho)

3 \pi \leftarrow \pi \cdot \rho

4 output \pi

5 return
```

- ► There are several problems with BreakpointReversalSort:
 - ▶ Why does it *terminate*?
 - ▶ Can we give an (over)estimate to the number of iterations?

▶ Answers to the questions above can be given by analysing strips and in particular *decreasing* strips, rather than breakpoints.

Theorem

If a permutation π contains a decreasing strip, then there is a reversal ρ that decreases the number of breakpoints in π , that is $b(\pi \cdot \rho) < b(\pi)$.

$$\begin{array}{lll} (\underbrace{0}_{} \underbrace{8}_{} \underbrace{2}_{} \underbrace{7}_{} \underbrace{6}_{} \underbrace{5}_{} \underbrace{1}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{9}_{}) & b(\pi) = 6 \\ (\underbrace{0}_{} \underbrace{2}_{} \underbrace{8}_{} \underbrace{7}_{} \underbrace{6}_{} \underbrace{5}_{} \underbrace{1}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{9}_{}) & b(\pi) = 5 \\ (\underbrace{0}_{} \underbrace{2}_{} \underbrace{3}_{} \underbrace{4}_{} \underbrace{1}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 3 \\ (\underbrace{0}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{2}_{} \underbrace{1}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 2 \\ (\underbrace{0}_{} \underbrace{1}_{} \underbrace{2}_{} \underbrace{3}_{} \underbrace{4}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 0 \\ \end{array}$$

▶ Answers to the questions above can be given by analysing strips and in particular *decreasing* strips, rather than breakpoints.

Theorem

If a permutation π contains a decreasing strip, then there is a reversal ρ that decreases the number of breakpoints in π , that is $b(\pi \cdot \rho) < b(\pi)$.

$$\begin{array}{lll} (\underbrace{0}_{} \underbrace{8}_{} \underbrace{2}_{} \underbrace{7}_{} \underbrace{6}_{} \underbrace{5}_{} \underbrace{1}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{9}_{}) & b(\pi) = 6 \\ (\underbrace{0}_{} \underbrace{2}_{} \underbrace{8}_{} \underbrace{7}_{} \underbrace{6}_{} \underbrace{5}_{} \underbrace{1}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{9}_{}) & b(\pi) = 5 \\ (\underbrace{0}_{} \underbrace{2}_{} \underbrace{3}_{} \underbrace{4}_{} \underbrace{1}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 3 \\ (\underbrace{0}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{2}_{} \underbrace{1}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 2 \\ (\underbrace{0}_{} \underbrace{1}_{} \underbrace{2}_{} \underbrace{3}_{} \underbrace{4}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 0 \\ \end{array}$$

▶ Answers to the questions above can be given by analysing strips and in particular *decreasing* strips, rather than breakpoints.

Theorem

If a permutation π contains a decreasing strip, then there is a reversal ρ that decreases the number of breakpoints in π , that is $b(\pi \cdot \rho) < b(\pi)$.

$$\begin{array}{lll} (\underbrace{0}_{} \underbrace{8}_{} \underbrace{2}_{} \underbrace{7}_{} \underbrace{6}_{} \underbrace{5}_{} \underbrace{1}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{9}_{}) & b(\pi) = 6 \\ (\underbrace{0}_{} \underbrace{2}_{} \underbrace{8}_{} \underbrace{7}_{} \underbrace{6}_{} \underbrace{5}_{} \underbrace{1}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{9}_{}) & b(\pi) = 5 \\ (\underbrace{0}_{} \underbrace{2}_{} \underbrace{3}_{} \underbrace{4}_{} \underbrace{1}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 3 \\ (\underbrace{0}_{} \underbrace{4}_{} \underbrace{3}_{} \underbrace{2}_{} \underbrace{1}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 2 \\ (\underbrace{0}_{} \underbrace{1}_{} \underbrace{2}_{} \underbrace{3}_{} \underbrace{4}_{} \underbrace{5}_{} \underbrace{6}_{} \underbrace{7}_{} \underbrace{8}_{} \underbrace{9}_{}) & b(\pi) = 0 \\ \end{array}$$

An Improved Greedy Algoritm

```
\begin{array}{lll} \text{IMPROVEDBREAKPOINTREVERSALSORT}(\pi) \\ 1 & \textbf{while} & b(\pi) > 0 \\ 2 & \textbf{if} & \pi \text{ has a decreasing strip} \\ 3 & \text{Among all reversals, choose reversal } \rho \text{ minimizing } b(\pi \cdot \rho) \\ 4 & \textbf{else} \\ 5 & \text{Choose a reversal } \rho \text{ that flips an increasing strip in } \pi \\ 6 & \pi \leftarrow \pi \cdot \rho \\ 7 & \textbf{output } \pi \\ 8 & \textbf{return} \end{array}
```

► Could we get an upper bound on the approximation ratio for this algorithm?

Theorem

The algorithm ImprovedBreakpointReversalSort has an approximation ratio of at most 4.

An Improved Greedy Algoritm

```
IMPROVEDBREAKPOINTREVERSALSORT(\pi)

1 while b(\pi) > 0

2 if \pi has a decreasing strip

3 Among all reversals, choose reversal \rho minimizing b(\pi \cdot \rho)

4 else

5 Choose a reversal \rho that flips an increasing strip in \pi

6 \pi \leftarrow \pi \cdot \rho

7 output \pi

8 return
```

► Could we get an upper bound on the approximation ratio for this algorithm?

Theorem

The algorithm ImprovedBreakpointReversalSort has an approximation ratio of at most 4.

What About Motif Finding?

- ▶ A problem for which we have only given exhaustive search algorithms is *motif finding*.
 - ▶ We have also given branch-and-bound techniques for it, but as we know, the complexity stays essentially the same.
- ► Could the *greedy approach* be applied to motif finding? What can be greedy about the underlying combinatorial problem?
 - ▶ We could choose which positions are "the good ones" for *the* first two strings, without looking at the other ones.
 - ▶ Once a reference string has been choosen, the other strings (from the third to the last) are considered one after another, looking for kthe best position which maximizes the partial score.
- ▶ The obtained algorithm works in polynomial time, but no bound is known on its approximation ratio.
 - ▶ The algorithm is however very useful in practice, being a good compromise between *performance* and *accuracy*.

What About Motif Finding?

- ▶ A problem for which we have only given exhaustive search algorithms is *motif finding*.
 - ▶ We have also given branch-and-bound techniques for it, but as we know, the complexity stays essentially the same.
- ▶ Could the *greedy approach* be applied to motif finding? What can be greedy about the underlying combinatorial problem?
 - ▶ We could choose which positions are "the good ones" for *the* first two strings, without looking at the other ones.
 - ▶ Once a reference string has been choosen, the other strings (from the third to the last) are considered one after another, looking for kthe best position which maximizes the partial score.
- ▶ The obtained algorithm works in polynomial time, but no bound is known on its approximation ratio.
 - ▶ The algorithm is however very useful in practice, being a good compromise between *performance* and *accuracy*.

What About Motif Finding?

- ▶ A problem for which we have only given exhaustive search algorithms is *motif finding*.
 - ▶ We have also given branch-and-bound techniques for it, but as we know, the complexity stays essentially the same.
- ▶ Could the *greedy approach* be applied to motif finding? What can be greedy about the underlying combinatorial problem?
 - ▶ We could choose which positions are "the good ones" for *the* first two strings, without looking at the other ones.
 - ▶ Once a reference string has been choosen, the other strings (from the third to the last) are considered one after another, looking for kthe best position which maximizes the partial score.
- ▶ The obtained algorithm works in polynomial time, but no bound is known on its approximation ratio.
 - ► The algorithm is however very useful in practice, being a good compromise between *performance* and *accuracy*.

An Improved (but Greedy) Algorithm for Motif Finding

```
GREEDYMOTIFSEARCH(DNA, t, n, l)
     bestMotif \leftarrow (1, 1, \dots, 1)
 2 s \leftarrow (1, 1, ..., 1)
 3 for s_1 \leftarrow 1 to n-l+1
           for s_2 \leftarrow 1 to n-l+1
 5
                if Score(s, 2, DNA) > Score(bestMotif, 2, DNA)
 6
                      BestMotif_1 \leftarrow s_1
                      BestMotif_2 \leftarrow s_2
    s_1 \leftarrow BestMotif_1
 9 s_2 \leftarrow BestMotif_2
10
     for i \leftarrow 3 to t
11
           for s_i \leftarrow 1 to n-l+1
12
                if Score(s, i, DNA) > Score(bestMotif, i, DNA)
13
                      bestMotif_i \leftarrow s_i
14
           s_i \leftarrow bestMotif_i
15
     return bestMotif
```

Thank You!

Questions?