
Algorithms and Data Structures
in Biology

Greedy Algorithms

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019

The Greedy Paradigm

I Greedy algorithms proceed by making choices which are
locally optimal.

I As such, greedy algorithms are not guaranteed to produce
the correct output.

I This way, however, greedy algorithms keep their complexity
under control.

I Very often, greedy algorithms for hard combinatorial
problems are known having polynomial time complexity.

I A typical example of a greedy algorithm is
BetterChange which, as know, does not necessarily
produce an optimal solution.

Genome Rearrangements

Modeling Genome Rearrangements

I The order of syntheny blocks in a piece of genome can be
represented by a permutation σ : {1, . . . , n} → {1, . . . , n},
itself representable as a sequence

π = π1 π2 · · · πn (1)

where π1, . . . , πn ∈ {1, . . . , n} are all distinct.
I A reversal ρ(i, j) (where 1 ≤ i < j ≤ n) has the effect of

reversing the order of

πi πi+1 · · · πj

trasforming π as in (1) into

π1 · · · πi−1 (πj πj−1 · · ·πi+1 πi) πj+1 · · ·πn

which we indicate as π · ρ.

Modeling Genome Rearrangements

I We could start from

π = 1 2 4 3 7 5 6

and apply to it the reversal ρ(3, 6) obtaining the sequence

π · ρ(3, 6) = 1 2 (5 7 3 4) 6

I Biologists are often interested in the most parsimonious
evolutionary scenario, in which a chromosome evolves into
another one by very few rearrangements, i.e., by very
few reversals.

Modeling Genome Rearrangements

I We could start from

π = 1 2 4 3 7 5 6

and apply to it the reversal ρ(3, 6) obtaining the sequence

π · ρ(3, 6) = 1 2 (5 7 3 4) 6

I Biologists are often interested in the most parsimonious
evolutionary scenario, in which a chromosome evolves into
another one by very few rearrangements, i.e., by very
few reversals.

Modeling Genome Rearrangements

I We could start from

π = 1 2 4 3 7 5 6

and apply to it the reversal ρ(3, 6) obtaining the sequence

π · ρ(3, 6) = 1 2 (5 7 3 4) 6

I Biologists are often interested in the most parsimonious
evolutionary scenario, in which a chromosome evolves into
another one by very few rearrangements, i.e., by very
few reversals.

The Reversal Distance and Sorting by Distance Problems

The Reversal Distance and Sorting by Distance Problems

Sorting by Distance
I The latter problem is a special case of the former, so

starting with it is a good idea.
I As the name implies, the sorting by distance problem is a

special case of the sorting problem, which is also an
optimization problem.

I What if we just produce in output a sequence of at most n
reversals, each of them bringing i to i-th position?

Sorting by Distance
I The latter problem is a special case of the former, so

starting with it is a good idea.
I As the name implies, the sorting by distance problem is a

special case of the sorting problem, which is also an
optimization problem.

I What if we just produce in output a sequence of at most n
reversals, each of them bringing i to i-th position?

Sorting by Distance
I The latter problem is a special case of the former, so

starting with it is a good idea.
I As the name implies, the sorting by distance problem is a

special case of the sorting problem, which is also an
optimization problem.

I What if we just produce in output a sequence of at most n
reversals, each of them bringing i to i-th position?

Sorting by Distance
I The latter problem is a special case of the former, so

starting with it is a good idea.
I As the name implies, the sorting by distance problem is a

special case of the sorting problem, which is also an
optimization problem.

I What if we just produce in output a sequence of at most n
reversals, each of them bringing i to i-th position?

Reversal Sort is not Always Correct

I It is easy to realize that
I the reversals produced in output by SimpleReversalSort

trasform the input into the identity permutation
I the number of such reversals is not always the minimum

I Consider, as an example

and compare it to

I More generally SimpleReversalSort when applied to
n 1 2 · · · (n− 1) produces n− 1 reversals, while such a
permutation can be ordered in just two steps.

Reversal Sort is not Always Correct

I It is easy to realize that
I the reversals produced in output by SimpleReversalSort

trasform the input into the identity permutation
I the number of such reversals is not always the minimum

I Consider, as an example

and compare it to

I More generally SimpleReversalSort when applied to
n 1 2 · · · (n− 1) produces n− 1 reversals, while such a
permutation can be ordered in just two steps.

Reversal Sort is not Always Correct

I It is easy to realize that
I the reversals produced in output by SimpleReversalSort

trasform the input into the identity permutation
I the number of such reversals is not always the minimum

I Consider, as an example

and compare it to

I More generally SimpleReversalSort when applied to
n 1 2 · · · (n− 1) produces n− 1 reversals, while such a
permutation can be ordered in just two steps.

Approximation Algorithms

I SimpleReversalSort is a greedy algorithm, because it
“solves” the underlying combinatorial problem by making
some choices which are locally good, although being globally
bad.

I It is also an approximation algorithm, namely an
algorithm that gives an approximate solution to an
optimization problem:

I Although the output is correct, it does not have the
minimum length.

I How could we evaluate the quality of an approximation
algorithm?

I We would like it to output solutions which, although not
optimal, are not too far from being optimal.

I But how could we measure the distance between any
solution and the optimal one?

Approximation Algorithms

I SimpleReversalSort is a greedy algorithm, because it
“solves” the underlying combinatorial problem by making
some choices which are locally good, although being globally
bad.

I It is also an approximation algorithm, namely an
algorithm that gives an approximate solution to an
optimization problem:

I Although the output is correct, it does not have the
minimum length.

I How could we evaluate the quality of an approximation
algorithm?

I We would like it to output solutions which, although not
optimal, are not too far from being optimal.

I But how could we measure the distance between any
solution and the optimal one?

Approximation Ratios
I Given an approximation algorithm A and a problem

instance π, we define:
I The optimal value OPT (π) as the optimal value for the

problem instance π
I The approximation ratio of A on π as

AR(π) =
A(π)

OPT (π)
.

I The approximation ratio of A as A(π)/OPT (π) as the
function associating

max
|π|=n

AR(π) or min
|π|=n

AR(π)

to n (depending on the nature of the optimization problem).
I As an example, if A is SimpleReversalSort, then

max
|π|=n

AR(π) = max
|π|=n

A(π)
OPT (π)

≥ n− 1

2

Adjacencies, Breakpoints, and Strips

I In the following, it is convenient to reprsent a permutation
on {1, . . . , n} as a sequence π = π0 π1 · πnπn+1, where
π0 = 0 and πn+1 = n+ 1.

I Given such a π, a pair of neighboring elements πi, πi+1 (for
0 ≤ i ≤ n) is said to be:

I An adjacency if πi, πi+1 are consecutive numbers;
I A breakpoint otherwise.

I The sequence π can have any number of breakpoints,
indicated as b(π), included between 0 and n.

I In the identity permutation b(π) = 0.
I Any reverse can make b(π) to decrease by at most 2 (and,

indeed, d(π) ≥ b(π)
2 .

I A strip in π is any interval between two consecutive
breakpoints, i.e., any maximal segment of π without
breakpoints.

Adjacencies, Breakpoints, and Strips

I In the following, it is convenient to reprsent a permutation
on {1, . . . , n} as a sequence π = π0 π1 · πnπn+1, where
π0 = 0 and πn+1 = n+ 1.

I Given such a π, a pair of neighboring elements πi, πi+1 (for
0 ≤ i ≤ n) is said to be:

I An adjacency if πi, πi+1 are consecutive numbers;
I A breakpoint otherwise.

I The sequence π can have any number of breakpoints,
indicated as b(π), included between 0 and n.

I In the identity permutation b(π) = 0.
I Any reverse can make b(π) to decrease by at most 2 (and,

indeed, d(π) ≥ b(π)
2 .

I A strip in π is any interval between two consecutive
breakpoints, i.e., any maximal segment of π without
breakpoints.

Adjacencies, Breakpoints, and Strips

0 2 1 3 4 5 8 7 6 9
Strips

Adjacencies

Breakpoints

Forcing b(π) to Decrease

I We can take b(π) as a measure of how far we are from the
identity.

I This suggests the following algorithm:

I There are several problems with
BreakpointReversalSort:

I Why does it terminate?
I Can we give an (over)estimate to the number of iterations?

Forcing b(π) to Decrease

I We can take b(π) as a measure of how far we are from the
identity.

I This suggests the following algorithm:

I There are several problems with
BreakpointReversalSort:

I Why does it terminate?
I Can we give an (over)estimate to the number of iterations?

Forcing b(π) to Decrease

I Answers to the questions above can be given by analysing
strips and in particular decreasing strips, rather than
breakpoints.

Theorem
If a permutation π contains a decreasing strip, then there is a
reversal ρ that decreases the number of breakpoints in π, that is
b(π · ρ) < b(π).

Forcing b(π) to Decrease

I Answers to the questions above can be given by analysing
strips and in particular decreasing strips, rather than
breakpoints.

Theorem
If a permutation π contains a decreasing strip, then there is a
reversal ρ that decreases the number of breakpoints in π, that is
b(π · ρ) < b(π).

Forcing b(π) to Decrease

I Answers to the questions above can be given by analysing
strips and in particular decreasing strips, rather than
breakpoints.

Theorem
If a permutation π contains a decreasing strip, then there is a
reversal ρ that decreases the number of breakpoints in π, that is
b(π · ρ) < b(π).

An Improved Greedy Algoritm

I Could we get an upper bound on the approximation ratio
for this algorithm?

Theorem
The algorithm ImprovedBreakpointReversalSort has an
approximation ratio of at most 4.

An Improved Greedy Algoritm

I Could we get an upper bound on the approximation ratio
for this algorithm?

Theorem
The algorithm ImprovedBreakpointReversalSort has an
approximation ratio of at most 4.

What About Motif Finding?

I A problem for which we have only given exhaustive search
algorithms is motif finding.

I We have also given branch-and-bound techniques for it, but
as we know, the complexity stays essentially the same.

I Could the greedy approach be applied to motif finding?
What can be greedy about the underlying combinatorial
problem?

I We could choose which positions are “the good ones” for the
first two strings, without looking at the other ones.

I Once a reference string has been choosen, the other strings
(from the third to the last) are considered one after
another, looking for kthe best position which maximizes the
partial score.

I The obtained algorithm works in polynomial time, but no
bound is known on its approximation ratio.

I The algorithm is however very useful in practice, being a
good compromise between performance and accuracy.

What About Motif Finding?

I A problem for which we have only given exhaustive search
algorithms is motif finding.

I We have also given branch-and-bound techniques for it, but
as we know, the complexity stays essentially the same.

I Could the greedy approach be applied to motif finding?
What can be greedy about the underlying combinatorial
problem?

I We could choose which positions are “the good ones” for the
first two strings, without looking at the other ones.

I Once a reference string has been choosen, the other strings
(from the third to the last) are considered one after
another, looking for kthe best position which maximizes the
partial score.

I The obtained algorithm works in polynomial time, but no
bound is known on its approximation ratio.

I The algorithm is however very useful in practice, being a
good compromise between performance and accuracy.

What About Motif Finding?

I A problem for which we have only given exhaustive search
algorithms is motif finding.

I We have also given branch-and-bound techniques for it, but
as we know, the complexity stays essentially the same.

I Could the greedy approach be applied to motif finding?
What can be greedy about the underlying combinatorial
problem?

I We could choose which positions are “the good ones” for the
first two strings, without looking at the other ones.

I Once a reference string has been choosen, the other strings
(from the third to the last) are considered one after
another, looking for kthe best position which maximizes the
partial score.

I The obtained algorithm works in polynomial time, but no
bound is known on its approximation ratio.

I The algorithm is however very useful in practice, being a
good compromise between performance and accuracy.

An Improved (but Greedy) Algorithm for Motif Finding

Thank You!

Questions?

