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The Greedy Paradigm

I Greedy algorithms proceed by making choices which are
locally optimal.

I As such, greedy algorithms are not guaranteed to produce
the correct output.

I This way, however, greedy algorithms keep their complexity
under control.

I Very often, greedy algorithms for hard combinatorial
problems are known having polynomial time complexity.

I A typical example of a greedy algorithm is
BetterChange which, as know, does not necessarily
produce an optimal solution.
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Modeling Genome Rearrangements

I The order of syntheny blocks in a piece of genome can be
represented by a permutation σ : {1, . . . , n} → {1, . . . , n},
itself representable as a sequence

π = π1 π2 · · · πn (1)

where π1, . . . , πn ∈ {1, . . . , n} are all distinct.
I A reversal ρ(i, j) (where 1 ≤ i < j ≤ n) has the effect of

reversing the order of

πi πi+1 · · · πj

trasforming π as in (1) into

π1 · · · πi−1 (πj πj−1 · · ·πi+1 πi) πj+1 · · ·πn

which we indicate as π · ρ.



Modeling Genome Rearrangements

I We could start from

π = 1 2 4 3 7 5 6

and apply to it the reversal ρ(3, 6) obtaining the sequence

π · ρ(3, 6) = 1 2 (5 7 3 4) 6

I Biologists are often interested in the most parsimonious
evolutionary scenario, in which a chromosome evolves into
another one by very few rearrangements, i.e., by very
few reversals.
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Sorting by Distance
I The latter problem is a special case of the former, so

starting with it is a good idea.
I As the name implies, the sorting by distance problem is a

special case of the sorting problem, which is also an
optimization problem.

I What if we just produce in output a sequence of at most n
reversals, each of them bringing i to i-th position?
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Reversal Sort is not Always Correct

I It is easy to realize that
I the reversals produced in output by SimpleReversalSort

trasform the input into the identity permutation
I the number of such reversals is not always the minimum

I Consider, as an example

and compare it to

I More generally SimpleReversalSort when applied to
n 1 2 · · · (n− 1) produces n− 1 reversals, while such a
permutation can be ordered in just two steps.
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Approximation Algorithms

I SimpleReversalSort is a greedy algorithm, because it
“solves” the underlying combinatorial problem by making
some choices which are locally good, although being globally
bad.

I It is also an approximation algorithm, namely an
algorithm that gives an approximate solution to an
optimization problem:

I Although the output is correct, it does not have the
minimum length.

I How could we evaluate the quality of an approximation
algorithm?

I We would like it to output solutions which, although not
optimal, are not too far from being optimal.

I But how could we measure the distance between any
solution and the optimal one?
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Approximation Ratios
I Given an approximation algorithm A and a problem

instance π, we define:
I The optimal value OPT (π) as the optimal value for the

problem instance π
I The approximation ratio of A on π as

AR(π) =
A(π)

OPT (π)
.

I The approximation ratio of A as A(π)/OPT (π) as the
function associating

max
|π|=n

AR(π) or min
|π|=n

AR(π)

to n (depending on the nature of the optimization problem).
I As an example, if A is SimpleReversalSort, then

max
|π|=n

AR(π) = max
|π|=n

A(π)
OPT (π)

≥ n− 1

2



Adjacencies, Breakpoints, and Strips

I In the following, it is convenient to reprsent a permutation
on {1, . . . , n} as a sequence π = π0 π1 · πnπn+1, where
π0 = 0 and πn+1 = n+ 1.

I Given such a π, a pair of neighboring elements πi, πi+1 (for
0 ≤ i ≤ n) is said to be:

I An adjacency if πi, πi+1 are consecutive numbers;
I A breakpoint otherwise.

I The sequence π can have any number of breakpoints,
indicated as b(π), included between 0 and n.

I In the identity permutation b(π) = 0.
I Any reverse can make b(π) to decrease by at most 2 (and,

indeed, d(π) ≥ b(π)
2 .

I A strip in π is any interval between two consecutive
breakpoints, i.e., any maximal segment of π without
breakpoints.
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Forcing b(π) to Decrease

I We can take b(π) as a measure of how far we are from the
identity.

I This suggests the following algorithm:

I There are several problems with
BreakpointReversalSort:

I Why does it terminate?
I Can we give an (over)estimate to the number of iterations?
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Forcing b(π) to Decrease

I Answers to the questions above can be given by analysing
strips and in particular decreasing strips, rather than
breakpoints.

Theorem
If a permutation π contains a decreasing strip, then there is a
reversal ρ that decreases the number of breakpoints in π, that is
b(π · ρ) < b(π).
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An Improved Greedy Algoritm

I Could we get an upper bound on the approximation ratio
for this algorithm?

Theorem
The algorithm ImprovedBreakpointReversalSort has an
approximation ratio of at most 4.
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What About Motif Finding?

I A problem for which we have only given exhaustive search
algorithms is motif finding.

I We have also given branch-and-bound techniques for it, but
as we know, the complexity stays essentially the same.

I Could the greedy approach be applied to motif finding?
What can be greedy about the underlying combinatorial
problem?

I We could choose which positions are “the good ones” for the
first two strings, without looking at the other ones.

I Once a reference string has been choosen, the other strings
(from the third to the last) are considered one after
another, looking for kthe best position which maximizes the
partial score.

I The obtained algorithm works in polynomial time, but no
bound is known on its approximation ratio.

I The algorithm is however very useful in practice, being a
good compromise between performance and accuracy.
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An Improved (but Greedy) Algorithm for Motif Finding



Thank You!

Questions?


