
Algorithms and Data Structures
in Biology

Exhaustive Search Algorithms

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019

The Exhaustive Search Paradigm

I Exhaustive Search algorithms, also called brute force
algorithms, are a sort of algorithms which:

I Which typically have high (most often, exponential)
complexity .

I But which are often relatively easy to be proved correct.
I The idea behind an exhaustive search algorithm is that,

whenever the problem can be seen as the problem of looking
for an element in a finite set:

I Having certain properties;
I or being the best according to a given notion of optimality;
I or cominations thereof.

I The complexity tend to be high, because the set we are
talking about, although finite, tends to be big, i.e., to have
exponential size.

The Exhaustive Search Paradigm

I Exhaustive Search algorithms, also called brute force
algorithms, are a sort of algorithms which:

I Which typically have high (most often, exponential)
complexity .

I But which are often relatively easy to be proved correct.
I The idea behind an exhaustive search algorithm is that,

whenever the problem can be seen as the problem of looking
for an element in a finite set:

I Having certain properties;
I or being the best according to a given notion of optimality;
I or cominations thereof.

I The complexity tend to be high, because the set we are
talking about, although finite, tends to be big, i.e., to have
exponential size.

Restriction Mapping

I Suppose you know the distances between all the exits along
a turnpike, and you want to reconstruct the map of the
turnpike.

I A similar problem occurs in genomics, where the turnpike is
a DNA strand, and the exits are the occurrence of a specific
sequence.

I A multiset is like a set, but allows for duplicate elements.
I The multisets {2, 2, 3, 4} and {2, 3, 4, 4} are different. When

seen as sets, they are instead the same.
I Given a set of points X, ∆(X) stands for the multiset of

distances between the points in X.

Restriction Mapping

I Suppose you know the distances between all the exits along
a turnpike, and you want to reconstruct the map of the
turnpike.

I A similar problem occurs in genomics, where the turnpike is
a DNA strand, and the exits are the occurrence of a specific
sequence.

I A multiset is like a set, but allows for duplicate elements.
I The multisets {2, 2, 3, 4} and {2, 3, 4, 4} are different. When

seen as sets, they are instead the same.
I Given a set of points X, ∆(X) stands for the multiset of

distances between the points in X.

The Partial Digest Problem

I The Partial Digest Problem consists in reconstruct X
from ∆X, keeping in mind that

I If X has n elements, ∆X has(
n

2

)
=

n(n− 1)

2

points
I There could be X 6= Y such that ∆X = ∆Y .

The Partial Digest Problem

I The Partial Digest Problem consists in reconstruct X
from ∆X, keeping in mind that

I If X has n elements, ∆X has(
n

2

)
=

n(n− 1)

2

points
I There could be X 6= Y such that ∆X = ∆Y .

The Trivial Brute Force Algorithm

Correctness and Complexity

I The correctness of the brute force algorithms can be
proved easily: of course among the (many) sequences
considered, there is the one generating L.

I There could be many, but of course we have

∆X = ∆(X ⊕ v)

where X ⊕ v = {x + v | x ∈ X}. As a consequence, it is safe
to take one of the points in X to be 0.

I About its complexity, the number of iterations of the
algorithm is the number of distinct ways one can pick n− 2
elements from a set of M − 1 elements is(

M − 1

n− 2

)
= O(Mn−2).

A Better Brute Force Algorithm
I One may wonder why the numbers x2, . . . , xn−1 are chosen

to be arbitrary numbers.
I Indeed, we can restrict them to be (distinct) elements of L,

because one of the extremes is chosen to be 0.
I The obtained algorithm examines(

|L|
n− 2

)
= O(n2n−4)

different sets of integers, since |L| = n(n−1)
2 .

A Better Brute Force Algorithm
I One may wonder why the numbers x2, . . . , xn−1 are chosen

to be arbitrary numbers.
I Indeed, we can restrict them to be (distinct) elements of L,

because one of the extremes is chosen to be 0.
I The obtained algorithm examines(

|L|
n− 2

)
= O(n2n−4)

different sets of integers, since |L| = n(n−1)
2 .

An Incremental Strategy

L = {2, 3, 5, 7, 8, 10} X = {0}
L = {2, 3, 5, 7, 8} X = {0, 10}
L = {3, 5, 7} X = {0, 2, 10}
Impossible! X = {0, 2, 3, 10}
L = {3, 5, 7} X = {0, 2, 10}
∅ X = {0, 2, 7, 10}

An Incremental Strategy

L = {2, 3, 5, 7, 8, 10} X = {0}
L = {2, 3, 5, 7, 8} X = {0, 10}
L = {3, 5, 7} X = {0, 2, 10}
Impossible! X = {0, 2, 3, 10}
L = {3, 5, 7} X = {0, 2, 10}
∅ X = {0, 2, 7, 10}

An Incremental Strategy

L = {2, 3, 5, 7, 8, 10} X = {0}
L = {2, 3, 5, 7, 8} X = {0, 10}
L = {3, 5, 7} X = {0, 2, 10}
Impossible! X = {0, 2, 3, 10}
L = {3, 5, 7} X = {0, 2, 10}
∅ X = {0, 2, 7, 10}

An Incremental Strategy

L = {2, 3, 5, 7, 8, 10} X = {0}
L = {2, 3, 5, 7, 8} X = {0, 10}
L = {3, 5, 7} X = {0, 2, 10}
Impossible! X = {0, 2, 3, 10}
L = {3, 5, 7} X = {0, 2, 10}
∅ X = {0, 2, 7, 10}

An Incremental Strategy

L = {2, 3, 5, 7, 8, 10} X = {0}
L = {2, 3, 5, 7, 8} X = {0, 10}
L = {3, 5, 7} X = {0, 2, 10}
Impossible! X = {0, 2, 3, 10}
L = {3, 5, 7} X = {0, 2, 10}
∅ X = {0, 2, 7, 10}

An Incremental Strategy

L = {2, 3, 5, 7, 8, 10} X = {0}
L = {2, 3, 5, 7, 8} X = {0, 10}
L = {3, 5, 7} X = {0, 2, 10}
Impossible! X = {0, 2, 3, 10}
L = {3, 5, 7} X = {0, 2, 10}
∅ X = {0, 2, 7, 10}

A Practical Algorithm

Correctness and Complexity

I Place is the typical example of a so-called backtracking
algorithm: when we realize that some of the choices we
have previously done are wrong, we need to backtrack.

I The proof of correctness of this algorithm goes by
induction on |L|, but in order to prove it, we need to
strengthen the induction hypothesis, as usual.

I About its complexity, we can only say it remains
exponential in the worst case. The following recurrence
relation expresses the worst-case number of instructions:

T (n) ≤ 2T (n− 1) + cn

whose solution is an exponential (as in the case of Hanoi’s
towers.

Regulatory Motifs in DNA Sequences

I Suppose you have a long DNA sequence s, and you know
that some substring of length l occurs many times in the
string, perhaps slightly altered.

I There are many problems one could be interested at, and in
particular:
1. Finding where the occurrences of the substring are located.
2. Determining the substring itself.

I For the sake of simplicity, we assume that each occurrence
of the substring in s is in a difference region of s.

I As a consequence, we will work on sequences of strings,
rather than with strings.

Random Sequences

Implanting One Substring

Implanting One Substring

Implanting Approximate Substrings

How to even Formulate the Problem?

I Rather than directly looking for “approximate” occurrences
of a substring, we can define the score and consensus string
of any sequence of positions.

I Formally, given a t× n matrix, called DNA, and a natural
number l ≤ n, we can define:

I A sequence of starting positions as a sequence
s = (s1, s2, . . . , st) such that 1 ≤ si ≤ n− l.

I The profile matrix P(s) as the 4× l matrix of natural
numbers whose elements count the number of occurrences of
each DNA character in the matrix, starting at s. MP(s)(j)
is the largest count in column j in P(s).

I The consensus string for s is the most likely string of length
l, given s.

I The score of s is just
∑l

j=1 MP(s)(j), and is indicated as
Score(s,DNA).

How to even Formulate the Problem?

I Rather than directly looking for “approximate” occurrences
of a substring, we can define the score and consensus string
of any sequence of positions.

I Formally, given a t× n matrix, called DNA, and a natural
number l ≤ n, we can define:

I A sequence of starting positions as a sequence
s = (s1, s2, . . . , st) such that 1 ≤ si ≤ n− l.

I The profile matrix P(s) as the 4× l matrix of natural
numbers whose elements count the number of occurrences of
each DNA character in the matrix, starting at s. MP(s)(j)
is the largest count in column j in P(s).

I The consensus string for s is the most likely string of length
l, given s.

I The score of s is just
∑l

j=1 MP(s)(j), and is indicated as
Score(s,DNA).

String’s Superposition

The Alignment’s Matrix

Median Strings

I A concept which is very much related to that of motifs and
consensus strings is that of a median strings.

I Given two strings of the same length u and v, their
Hamming distance dH(u, v) is the number of positions at
which they differ.

I This can be generalised to the distance dH(u, s) between a
string u and a sequence of positions s = (s1, . . . , st).

I The total distance between a string u and a t× n matrix
DNA is defined as

TotalDistance(u,DNA) = min
s

dH(u, s)

I When looking for a string (approximately) occurring in
DNA, one can simply look for a u minimizing
TotalDistance(u,DNA).

Motif Finding vs. Median Strings

Motif Finding vs. Median Strings

Motif Finding vs. Median Strings

Motif Finding vs. Median Strings

Two Brute Force Algorithms

I In the Motif Finding problem, we could proceed by
considering all possible positions s, and computing its
score.

I The number of those strings is (n− l + 1)t.
I In the Median String problem, we could instead proceed

by considering all possible 4l possible strings, computing for
each of it its total total distance to DNA.

I The number of those strings is 4l.
I Can we do better than that? Can we perform significantly

less operations than the one given by the bounds above?
I It is not clear how one can achieve that: we need to

consider all positions, and all strings, respectively.

Two Brute Force Algorithms

I In the Motif Finding problem, we could proceed by
considering all possible positions s, and computing its
score.

I The number of those strings is (n− l + 1)t.
I In the Median String problem, we could instead proceed

by considering all possible 4l possible strings, computing for
each of it its total total distance to DNA.

I The number of those strings is 4l.
I Can we do better than that? Can we perform significantly

less operations than the one given by the bounds above?
I It is not clear how one can achieve that: we need to

consider all positions, and all strings, respectively.

Two Brute Force Algorithms

I In the Motif Finding problem, we could proceed by
considering all possible positions s, and computing its
score.

I The number of those strings is (n− l + 1)t.
I In the Median String problem, we could instead proceed

by considering all possible 4l possible strings, computing for
each of it its total total distance to DNA.

I The number of those strings is 4l.
I Can we do better than that? Can we perform significantly

less operations than the one given by the bounds above?
I It is not clear how one can achieve that: we need to

consider all positions, and all strings, respectively.

A Brute-Force Algorithm for the Motif Finding Problem

A Brute-Force Algorithm for the Median String Problem

Strings as Tuples

Trees

I The way we see strings as tuples enables us to see the
explore the space of all strings of a given length as the
leaves of a tree.

Trees

I The way we see strings as tuples enables us to see the
explore the space of all strings of a given length as the
leaves of a tree.

Trees

I Trees are pervasive in computer science, and the branching
analogue of sequences, which are instead linear.

I The kind of trees we are interested at here are such that all
leaves have the same height h, and all nodes have either a
fixed number k of children or no children at all.

I The total number of leaves is precisely hk in this case.

Traveling Inside a Tree

I Visiting all the leaves in a tree is thus a way to enumerate
all the strings of a certain length in a given alphabet.

I How could we jump from a given leaf to “the next one”?

Traveling Inside a Tree

I Visiting all the leaves in a tree is thus a way to enumerate
all the strings of a certain length in a given alphabet.

I How could we jump from a given leaf to “the next one”?

Traveling Inside a Tree

I Visiting all the leaves in a tree is thus a way to enumerate
all the strings of a certain length in a given alphabet.

I How could we jump from a given leaf to “the next one”?

A New Way of Formulating the Brute Force Algorithm

Visiting the Whole Tree

I Now, suppose we want to visit the whole tree, rather than
just its leaves.

I We would like to first visit a node, then the sub-tree rooted
at its left, and then the sub-tree rooted at its right.

Visiting the Whole Tree

I Now, suppose we want to visit the whole tree, rather than
just its leaves.

I We would like to first visit a node, then the sub-tree rooted
at its left, and then the sub-tree rooted at its right.

Visiting the Whole Tree

I How could we find the next vertex in the tree (as opposed
to the next leaf in the tree?

I If you are at a level i, there are cases in which you want to
go down, and cases in which you need to go up.

I i is the level of the tree in
which you currently are;

I L is the height of the tree;
I k is the size of the

underlying set.

Visiting the Whole Tree

I How could we find the next vertex in the tree (as opposed
to the next leaf in the tree?

I If you are at a level i, there are cases in which you want to
go down, and cases in which you need to go up.

I i is the level of the tree in
which you currently are;

I L is the height of the tree;
I k is the size of the

underlying set.

Visiting The Whole Tree

I If you just replace NextLeaf by NextVertex, one gets
an algorithm which is not particularly clever, because it
also visits the internal nodes.

An Interesting Tree

Avoiding Useless Work

I With Score(s, i,DNA),
we compute the score of
the first i positions in i;

I The score of the other
ones can be at most
(t− i) · l.

I As a consequence, if
optimisticScore is
strictly less than
bestScore, we can bypass
the tree rooted at the
current node.

I Branch and Bound techniques can be quite effective,
although the worst-case complexity stays exponential.

Thank You!

Questions?

