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The Exhaustive Search Paradigm

» Exhaustive Search algorithms, also called brute force
algorithms, are a sort of algorithms which:
» Which typically have high (most often, exponential)
complexity .
» But which are often relatively easy to be proved correct.



The Exhaustive Search Paradigm

» Exhaustive Search algorithms, also called brute force
algorithms, are a sort of algorithms which:

» Which typically have high (most often, exponential)
complexity .
» But which are often relatively easy to be proved correct.

» The idea behind an exhaustive search algorithm is that,
whenever the problem can be seen as the problem of looking
for an element in a finite set:

» Having certain properties;
» or being the best according to a given notion of optimality;
» or cominations thereof.

» The complexity tend to be high, because the set we are
talking about, although finite, tends to be big, i.e., to have
exponential size.



Restriction Mapping

» Suppose you know the distances between all the exits along
a turnpike, and you want to reconstruct the map of the
turnpike.

» A similar problem occurs in genomics, where the turnpike is
a DNA strand, and the exits are the occurrence of a specific
sequence.



Restriction Mapping

» Suppose you know the distances between all the exits along
a turnpike, and you want to reconstruct the map of the
turnpike.

» A similar problem occurs in genomics, where the turnpike is
a DNA strand, and the exits are the occurrence of a specific
sequence.

» A multiset is like a set, but allows for duplicate elements.

» The multisets {2,2,3,4} and {2,3,4,4} are different. When
seen as sets, they are instead the same.

» Given a set of points X, A(X) stands for the multiset of
distances between the points in X.
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(a) Complete digest.

(b) Partial digest.



The Partial Digest Problem

» The Partial Digest Problem consists in reconstruct X
from AX, keeping in mind that

» If X has n elements, AX has

n\ n(n—1)
2) 2
points

» There could be X # Y such that AX = AY.



The Partial Digest Problem

» The Partial Digest Problem consists in reconstruct X
from AX, keeping in mind that

» If X has n elements, AX has

n\ n(n—1)
2) 2
points

» There could be X # Y such that AX = AY.

Partial Digest Problem:
Given all pairwise distances between points on a line, reconstruct the
positions of those points.

Input: The multiset of pairwise distances L, containing (%)
integers.

Output: A set X, of n integers, such that AX = L




The Trivial Brute Force Algorithm

BRUTEFORCEPDP(L,n)
1 M «— maximum elementin L
2 for everysetofn —2integers0 <zy < --- <2, <M

3 X —A{0,29,...,2p-1,M}
4 Form AX from X

5 if AX =1L

6 return X

7 output “No Solution”



Correctness and Complexity

» The correctness of the brute force algorithms can be
proved easily: of course among the (many) sequences
considered, there is the one generating L.

» There could be many, but of course we have
AX =A(X @)
where X v ={x+v|x € X}. As a consequence, it is safe

to take one of the points in X to be 0.

» About its complexity, the number of iterations of the
algorithm is the number of distinct ways one can pick n — 2
elements from a set of M — 1 elements is

(M a 1> = O(M™2).

n—2



A Better Brute Force Algorithm

» One may wonder why the numbers zo, ..., x,_1 are chosen
to be arbitrary numbers.

» Indeed, we can restrict them to be (distinct) elements of L,
because one of the extremes is chosen to be 0.

> The obtained algorithm examines

(,1,) =t

different sets of integers, since |L| = %



A Better Brute Force Algorithm

» One may wonder why the numbers zo, ..., x,_1 are chosen
to be arbitrary numbers.

» Indeed, we can restrict them to be (distinct) elements of L,
because one of the extremes is chosen to be 0.

> The obtained algorithm examines

(,1,) =t

n(nfl).

different sets of integers, since |L| = =5

ANOTHERBRUTEFORCEPDP(L, n)
1 M +«— maximum elementin L
2 for everysetofn —2integers0 < xp < --- < x,—1 < M from L

3 X —{0,29,...,0p_1, M}
4 Form AX from X

5 if AX=1L

6 return X

7 output “No Solution”



An Incremental Strategy

L=1{2,3,578,10} X ={0}
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An Incremental Strategy

L=1{2,3,57178,10} X ={0}
L=1{2,35728 X ={0,10}
L={357 X = {0,2,10}



An Incremental Strategy

L=1{2,3,57,8,10}
L={2,3,5,7,8)
L=1{3571)

Impossible!

X = {0}
X = {0,10}
X ={0,2,10}

X ={0,2,3,10}



An Incremental Strategy

L=1{2,3,5"7,8,10}
L =412,3,5"738}

L =1{3,57}
Impossible!

L=1{3,57T)

X = {0}

X = {0,10}
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An Incremental Strategy

L=1{2,3,57,8,10}
L={2,3,5,7,8)

L =1{3,57}
Impossible!
L =1{3,57}
0

X = {0}

X = {0,10}

X = {0,2,10}
X ={0,2,3,10}
X = {0,2,10}

X = {0,2,7,10}



A Practical Algorithm

PARTIALDIGEST(L)

1 width «— Maximum elementin L
2 DELETE(width, L)

3 X « {0, width}

4 PLACE(L,X)

PLACE(L, X)
1 if Lisempty
output X
return
y — Maximum element in L
if A(y,X)CL
Add y to X and remove lengths A(y, X) from L
PLACE(L, X)
Remove y from X and add lengths A(y, X) to L
9 if A(width—y,X)C L

XN ONUl W

10 Add width — y to X and remove lengths A(width — y, X') from L
11 PLACE(L, X)
12 Remove width — y from X and add lengths A(width — y, X) to L

13 return



Correctness and Complexity

» Place is the typical example of a so-called backtracking
algorithm: when we realize that some of the choices we
have previously done are wrong, we need to backtrack.

» The proof of correctness of this algorithm goes by
induction on |L|, but in order to prove it, we need to
strengthen the induction hypothesis, as usual.

» About its complexity, we can only say it remains
exponential in the worst case. The following recurrence
relation expresses the worst-case number of instructions:

T(n)<2T'(n—1)+cn

whose solution is an exponential (as in the case of Hanoi’s
towers.



Regulatory Motifs in DNA Sequences

» Suppose you have a long DNA sequence s, and you know
that some substring of length [ occurs many times in the
string, perhaps slightly altered.

» There are many problems one could be interested at, and in
particular:

1. Finding where the occurrences of the substring are located.
2. Determining the substring itself.

» For the sake of simplicity, we assume that each occurrence

of the substring in s is in a difference region of s.

» As a consequence, we will work on sequences of strings,
rather than with strings.



Random Sequences

CGGGGCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAACCAAAGCGGACAAA
GGGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCTC
CTGCTGTACAACTGAGATCATGCTGCTTCAAC
TACATGATCTTTTGTGGATGAGGGAATGATGC



Implanting One Substring

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC



Implanting One Substring

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC



Implanting Approximate Substrings

CGGGGCTATcCAgCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAggGCAACTCCAAAGCGGACAAA
GGATGgAtCTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGAaGCAACCCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCtTGgAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCCcALTTTCAAC
TACATGATCTTTTGATGYgCACTTGGATGAGGGAATGATGC



How to even Formulate the Problem?

» Rather than directly looking for “approximate” occurrences
of a substring, we can define the score and consensus string
of any sequence of positions.



How to even Formulate the Problem?

» Rather than directly looking for “approximate” occurrences
of a substring, we can define the score and consensus string
of any sequence of positions.

» Formally, given a ¢ X n matrix, called DNA, and a natural
number [ < n, we can define:

> A sequence of starting positions as a sequence
s =1(81,82,...,8¢) such that 1 <s; <n—1.

» The profile matrix P(s) as the 4 x [ matrix of natural
numbers whose elements count the number of occurrences of
each DNA character in the matrix, starting at s. Mp(4)(j)
is the largest count in column j in P(s).

» The consensus string for s is the most likely string of length
l, given s.

» The score of s is just 22:1 Mp(s)(j), and is indicated as
Score(s, DNA).



String’s Superposition

CGGGGCTATcCAgCTGGGTCGTCACATTCCCCTT. . .
TTTGAGGGTGCCCAATAAggGCAACTCCAAAGCGGACAAA
GGATGgAtCTGATGCCGTTTGACGACCTA. ..
AAGGAaGCAACCCCAGGAGCGCCTTTGCTGG. . .
AATTTTCTAAAAAGATTATAATGTCGGTCCtTGgAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCCALTTTCAAC
TACATGATCTTTTGATGgCACTTGGATGAGGGAATGATGC



The Alignment’s Matrix
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Motif Finding Problem:
Given a set of DNA sequences, find a set of l-mers, one from each
sequence, that maximizes the consensus score.

Input: A ¢ xn matrix of DN A, and [, the length of the pattern
to find.

Output: An array of ¢ starting positions s = (s1,s2,...,5t)
maximizing Score(s, DN A).




Median Strings

v

A concept which is very much related to that of motifs and
consensus strings is that of a median strings.
Given two strings of the same length u and v, their
Hamming distance dg(u,v) is the number of positions at
which they differ.
» This can be generalised to the distance dg(u, s) between a
string u and a sequence of positions s = (s1,...,5t).

The total distance between a string v and a ¢ X n matrix
DNA is defined as

TotalDistance(u, DNA) = mindg (u, s)
S

When looking for a string (approximately) occurring in
DNA, one can simply look for a 4 minimizing
TotalDistance(u, DNA).



Median String Problem:
Given a set of DNA sequences, find a median string.

Input: A ¢ x n matrix DN A, and /, the length of the pattern
to find.

Output: A string v of [ nucleotides that minimizes
Total Distance(v, DN A) over all strings of that length.




Motif Finding vs. Median Strings

dr(w,s) =t — Score(s, DN A).



Motif Finding vs. Median Strings

dp(w,s) = It — Score(s, DN A).

di(w,s) = min dp(v,8) = It — Score(s, DN A)
all choices of v



Motif Finding vs. Median Strings

dp(w,s) = It — Score(s, DN A).

di(w,s) = dp(v,8) = It — Score(s, DN A)

min
all choices of v

min min dg(v,s) =1t — max Score(s, DN A).
all choices of s all choices of v all choices of s



Motif Finding vs. Median Strings
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Two Brute Force Algorithms

» In the Motif Finding problem, we could proceed by
considering all possible positions s, and computing its
score.

» The number of those strings is (n — 1 + 1)*.
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considering all possible positions s, and computing its
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> In the Median String problem, we could instead proceed
by considering all possible 4! possible strings, computing for
each of it its total total distance to DNA.

» The number of those strings is 4'.



Two Brute Force Algorithms

» In the Motif Finding problem, we could proceed by
considering all possible positions s, and computing its
score.

» The number of those strings is (n — 1 + 1)*.

> In the Median String problem, we could instead proceed
by considering all possible 4! possible strings, computing for
each of it its total total distance to DNA.

» The number of those strings is 4'.

» Can we do better than that? Can we perform significantly
less operations than the one given by the bounds above?

» It is not clear how one can achieve that: we need to
consider all positions, and all strings, respectively.



A Brute-Force Algorithm for the Motif Finding Problem

BRUTEFORCEMOTIFSEARCH(DN A, t, n, ()

1 bestScore — 0

2 for each (s1,...,s) from (1,....,1)to(n—1+1,....,n—1+1)
3 if Score(s, DN A) > bestScore

4 bestScore < Score(s, DN A)

5 bestMotif — (s, 52,...,5¢)

6 return bestMotif



A Brute-Force Algorithm for the Median String Problem

BRUTEFORCEMEDIANSEARCH(DN A, t, n, 1)

1 bestWord — AAA---AA

2 bestDistance — oo

3 for each I-mer word from AAA..Ato TTT..T

4 if TOTALDISTANCE(word, DN A) < bestDistance
5 bestDistance < TOTALDISTANCE (word, DN A)
6 bestW ord «— word
7 return bestWord



Strings as Tuples

AA--. AA (1,1,...,1,1)
AA... AT (1,1,...,1,2)
AA--- AG (1,1,...,1,3)
AA--- AC (1,1,...,1,4)
AA--- TA (1,1,...,2,1)
AA-.- TT (1,1,...,2,2)
AA.-.- TG (1,1,...,2,3)
AA...- TC (1,1,...,2,4)
CC--- GG 4,4,...,3,3)
CC.--- GC 4,4,...,3,4)
CC.-- CA 4,4,...,4,1)
CC--- CT (4,4,...,4,2)
CC--- CG (4,4,...,4,3)
CC--- CC 4,4,...,4,4)



Trees

» The way we see strings as tuples enables us to see the
explore the space of all strings of a given length as the
leaves of a tree.



Trees

» The way we see strings as tuples enables us to see the
explore the space of all strings of a given length as the
leaves of a tree.




Trees

» Trees are pervasive in computer science, and the branching
analogue of sequences, which are instead linear.

» The kind of trees we are interested at here are such that all
leaves have the same height h, and all nodes have either a
fized number k of children or no children at all.

» The total number of leaves is precisely A* in this case.



Traveling Inside a Tree

> Visiting all the leaves in a tree is thus a way to enumerate
all the strings of a certain length in a given alphabet.
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Traveling Inside a Tree

> Visiting all the leaves in a tree is thus a way to enumerate
all the strings of a certain length in a given alphabet.

» How could we jump from a given leaf to “the next one”?

NEXTLEAF(a, L, k) ALLLEAVES(L, k)

1 fori— Ltol 1 a«—(1,...,1)

2 if a; <k 2 while forever

3 a; — a; +1 3 output a

4 return a 4 a «— NEXTLEAF(a, L, k)
5 a; — 1 5 if a=(1,1,...,1)

6 returna 6 return



A New Way of Formulating the Brute Force Algorithm

BRUTEFORCEMOTIFSEARCHAGAIN(DN A, t,n,l)
s (1,1,...,1)
bestScore «— Score(s, DN A)
while forever
s « NEXTLEAF(s,t,n — 1+ 1)
if Score(s, DNA) > bestScore
bestScore — Score(s, DN A)
bestMotif «— (s1,89,...,5;)
if s=(1,1,....1)
return bestMotif

O 00 NI O Ul = W N =



Visiting the Whole Tree

» Now, suppose we want to visit the whole tree, rather than
just its leaves.

» We would like to first visit a node, then the sub-tree rooted
at its left, and then the sub-tree rooted at its right.
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Visiting the Whole Tree

» How could we find the next vertez in the tree (as opposed
to the next leaf in the tree?

» If you are at a level 4, there are cases in which you want to
go down, and cases in which you need to go up.



Visiting the Whole Tree

» How could we find the next vertez in the tree (as opposed
to the next leaf in the tree?

» If you are at a level 4, there are cases in which you want to
go down, and cases in which you need to go up.

NEXTVERTEX(a, ¢, L, k)

; if lzL 1 » ¢ is the level of the tree in
i+l .

3 return (a,i + 1) which you currently are;

4 else . .

5 for j— Ltol » L is the height of the tree;

6 if aj <k » k is the size of the

7 uj — uj + 1 .

3 return (a, }) underlying set.

9 return (a,0)



Visiting The Whole Tree

» If you just replace NEXTLEAF by NEXTVERTEX, one gets
an algorithm which is not particularly clever, because it
also visits the internal nodes.

SIMPLEMOTIFSEARCH(DN A, t,n,l)
s—(1,..., 1)
bestScore «— 0
i—1
while i >0
if i<t
(s,4) < NEXTVERTEX(s, ,t,n — [ + 1)
else
if Score(s, DNA) > bestScore
9 bestScore — Score(s, DNA)
10 bestMotif «— (s, s2,...,5¢)
11 (s,i) < NEXTVERTEX(s, i, t,n — [+ 1)
12 return bestMotif

® N U W N



An Interesting Tree

2415 3 20 4 510 6 3 8 16 4 3 1 1 2 1 1517 21 23 15 27 30 26 18 19



Avoiding Useless Work

> With SCORE(s, i, DNA),
BRANCHANDBOUNDMOTIFSEARCH (DN A, t,n,1)
1 se(1...,1) we compute the score of

2 Destiieore =0 the first i positions in ¢;
3 1

4 while i >0

s » The score of the other
6 optimisticScore — Score(s,i, DNA) + (t — i) -1 ones can be at most

7 if optimisticScore < bestScore .

8 (s,4) — BYPASS(s, i, l,n — 1 +1) (t - 7’) L.

9 else .

10 (s.4) — NEXTVERTEX(s,7,f,1 — [ + 1) > As a consequence, if

11 else ;, S ata H

12 if Score(s, DN A) > bestScore OP%ZmZStZCSCOTe 18

13 bestScore — Score(s) strictly less than

14 bestMotif «— (s1,s2,...,5/)

15 (s.i) < NEXTVERTEX(s,i,t,n — 1+ 1) bestScore, we can bypass
16  return bestMotif the tree rooted at the

current node.

» Branch and Bound techniques can be quite effective,
although the worst-case complexity stays exponential.



Thank You!

(Questions?



