
Algorithms and Data Structures
in Biology

Algorithms and Their Complexity

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019



Section 1

Defining The Algorithm



The Rock Pile Game

I Alice and Bob play a game, starting from two rock piles,
each containing 10 rocks.

I In turn Alice and Bob either pick one rock from one of the
two piles, or two rocks, one from each pile.

I Who wins? Whomever manage to remove the last pile.
I Alice starts.
I Is there a winning strategy?
I Bob realizes that if the rocks were just 2, he could easily

win, independently on Alice’s moves.
I But how about the general case?



The Rock Pile Game

I Alice and Bob play a game, starting from two rock piles,
each containing 10 rocks.

I In turn Alice and Bob either pick one rock from one of the
two piles, or two rocks, one from each pile.

I Who wins? Whomever manage to remove the last pile.
I Alice starts.
I Is there a winning strategy?
I Bob realizes that if the rocks were just 2, he could easily

win, independently on Alice’s moves.
I But how about the general case?



The Rock Pile Game

I Alice and Bob play a game, starting from two rock piles,
each containing 10 rocks.

I In turn Alice and Bob either pick one rock from one of the
two piles, or two rocks, one from each pile.

I Who wins? Whomever manage to remove the last pile.
I Alice starts.
I Is there a winning strategy?
I Bob realizes that if the rocks were just 2, he could easily

win, independently on Alice’s moves.
I But how about the general case?





But What if. . .

I What if the number of rocks we start from is higher than
10?

I And what if the number of piles is higher than 2?
I How could we determine the next move to make depending

on the current state of the game (i.e., number of piles,
number of rocks on each pile)?

I We are looking for an effective strategy for a combinatorial
game. In other words, we are solving a particular kind a
combinatorial problem.



But What if. . .

I What if the number of rocks we start from is higher than
10?

I And what if the number of piles is higher than 2?
I How could we determine the next move to make depending

on the current state of the game (i.e., number of piles,
number of rocks on each pile)?

I We are looking for an effective strategy for a combinatorial
game. In other words, we are solving a particular kind a
combinatorial problem.



Defining Combinatorial Problems

I A combinatorial problem is a unambiguous and precise
problem concerning the production of some outputs from
some inputs.

I The class of possible input must be clearly specified.
I Which output one gets from each input must itself be itself

specified without any ambiguity.
I Specifying how to obtain the output from the input is not

part of the problem’s definition.
I Example: The n× n rock pile problem

I Input: n, and a state (m, k).
I Output: a move that a player should make in (m, k) in order

to win, if possible.



Defining Algorithms
I An algorithm is a sequence of instructions that one

performs to solve a combinatorial problem.
I How should we specify an algorithm?

I We could be programming-language dependent.
I Or we could try to be more abstract.

I In this course, algorithms will be specified by way of
pseudocode, namely by a notation which can be easily
translated to concrete programming languages, including
Python.

I We will not follow specific rules as for how pseudocode is
specified. Rather, we will fit it to our needs whenever
possible.

I One should be precise without being formal.
I The following basic requirements should be satisfied:

determinism, finiteness, unambiguity.
I There are certain constructions which are very common in

pseudocode.



















Algorithm Correctness

I Are we sure that USChange indeed solves the
combinatorial problem it is supposed to solve, namely that
it is correct?

I There are two ways one can use to convince herself of the
correctness of an algorithm:
1. Testing the algorithm.

I Just check that the algorithm transforms inputs to outputs
correctly.

I This is an experimental methodology.
I It is impossible to test an algorithm on all of the input

instances.
2. Proving the algorithm correct.

I One needs to find a mathematical proof of the fact that the
algorithm indeed does what it is supposed to do.

I This is an analytical methodology.
I Computer science has devised along the years so many

methodology for proving algorithms correct.







Ouch!

I Unfortunately, algorithm BetterChange is simply
incorrect, although being a generalisation of a correct
algorithm.

I Consider the case in whih c = (25, 20, 10, 5) and the amount
of money M is 40. The algorithm would return the list
1, 0, 1, 1, while there is a shorter one, namely 0, 2, 1, 1.

I What’s the deep reason why the algorithm is not correct?
I Sometime, if one is not sure about the correctenss of the

algorithm she has in mind, it is better to start with an
algorithm which is trivially correct, although having
perhaps other problems. . .





Direct Proofs of Correctness

I Sometimes, the correctness of an algorithm can be proved
by simply observing some simple facts, without any
complicated mathematical arguments.

I This is the case of the algorithm BruteForceChange:
I Any correct solution, and in particular, the optimal one,

can be seen as a sequence between (0, . . . , 0) to
(M/c1 . . . ,M/cd).

I The algorithm, simply, consider all such sequences one after
the other.

I At any iteration, the algorithm checks that the considered
sequence indeed sums up to M .

I It also keep track of the best sequence, namely the one with
the fewest coins. This is done by two variables,
smallestNumberOfCoins and BestChange. These are
updated only when appropriate.



The Hanoi Puzzle

I One piece at a time.
I Never a larger piece stands above a smaller piece.



The Hanoi Puzzle

I One piece at a time.
I Never a larger piece stands above a smaller piece.







Proving the Correctness of Recursive Algorithms

I Recursively defined algorithm, like HanoiTowers, are
particularly fit to be proved correct.

I The proof follows the structure of the algorithm, and
consists in proving that:
1. Base Case. Whenever the algorithm does not make any

recursive call, it is correct.
2. Inductive Case. If the algorithm do make recursive calls,

it is correct provided all the recursive calls are themselves
correct.

I It is of course crucial, in the inductive case, that the fact all
the recursive calls are correct (called the inductive
hypothesis) is sufficient to prove the algorithm correct.

I Sometime this is not the case, and it is thus necessary to
prove a stronger claim.



Proving the Correctness of HanoiTowers

I We can start by proving that
HanoiTowers(n, fromPeg , toPeg) correctly solves the
Hanoi Problem, by induction on n

1. The base case is easy.
2. The inductive case fails, because the statement is too weak.

I We need a stronger statement, namely that
HanoiTowers(n, fromPeg , toPeg) correctly moves n
(stacked) disks in fromPeg to toPeg whenever all the other
disks in the three Peg are correctly stacked and of size
higher than n.
1. In this case, one can easily see that the inductive case

works, too.



Proving the Correctness of HanoiTowers

I We can start by proving that
HanoiTowers(n, fromPeg , toPeg) correctly solves the
Hanoi Problem, by induction on n

1. The base case is easy.
2. The inductive case fails, because the statement is too weak.

I We need a stronger statement, namely that
HanoiTowers(n, fromPeg , toPeg) correctly moves n
(stacked) disks in fromPeg to toPeg whenever all the other
disks in the three Peg are correctly stacked and of size
higher than n.
1. In this case, one can easily see that the inductive case

works, too.









Correctness through Invariants

I The correctness of RecursiveFibonacci is very easy to
be proved, since the algorithm’s structure perfectly matches
the definition of Fibonacci numbers.

I There is not so much left to be proved.
I The algorithm Fibonacci, is not recursive but rather

iterative. Its proof of correctness is more delicate.
I We need to find a statement, called an invariant, which is

true before the first iteration of the for loop, which stays
true after the execution of any such iteration, and which
implies the correctness of the algorithm as a whole.

I In our case such a statement can be

∀j < i.Fj is a the j-th Fibonacci number.

I Could we find something slightly weaker?
I Why using Fibonacci, then? Simply because it is more

efficient!



Correctness through Invariants

I The correctness of RecursiveFibonacci is very easy to
be proved, since the algorithm’s structure perfectly matches
the definition of Fibonacci numbers.

I There is not so much left to be proved.
I The algorithm Fibonacci, is not recursive but rather

iterative. Its proof of correctness is more delicate.
I We need to find a statement, called an invariant, which is

true before the first iteration of the for loop, which stays
true after the execution of any such iteration, and which
implies the correctness of the algorithm as a whole.

I In our case such a statement can be

∀j < i.Fj is a the j-th Fibonacci number.

I Could we find something slightly weaker?
I Why using Fibonacci, then? Simply because it is more

efficient!



Correctness through Invariants

I The correctness of RecursiveFibonacci is very easy to
be proved, since the algorithm’s structure perfectly matches
the definition of Fibonacci numbers.

I There is not so much left to be proved.
I The algorithm Fibonacci, is not recursive but rather

iterative. Its proof of correctness is more delicate.
I We need to find a statement, called an invariant, which is

true before the first iteration of the for loop, which stays
true after the execution of any such iteration, and which
implies the correctness of the algorithm as a whole.

I In our case such a statement can be

∀j < i.Fj is a the j-th Fibonacci number.

I Could we find something slightly weaker?
I Why using Fibonacci, then? Simply because it is more

efficient!



Another Example



Another Example



Fast and Slow Algorithms

I Different (correct) algorithms for the same problem can
behave very differently when implemented as programs,
even when using the same programming language and the
same machine.

I One can take much longer than the other to be executed!
I The amount of memory one algorithm needs is perhaps

much larger then the one the other needs.
I We will see in the Lab Module that a purely empirical

approach to the benchmarking of algorithms makes a lot of
sense.

I Benchmarking, being genuinely experimental, cannot
however be exhaustive. Could we rather proceed
analitically?



Fast and Slow Algorithms

I Different (correct) algorithms for the same problem can
behave very differently when implemented as programs,
even when using the same programming language and the
same machine.

I One can take much longer than the other to be executed!
I The amount of memory one algorithm needs is perhaps

much larger then the one the other needs.
I We will see in the Lab Module that a purely empirical

approach to the benchmarking of algorithms makes a lot of
sense.

I Benchmarking, being genuinely experimental, cannot
however be exhaustive. Could we rather proceed
analitically?



Fast and Slow Algorithms

I Different (correct) algorithms for the same problem can
behave very differently when implemented as programs,
even when using the same programming language and the
same machine.

I One can take much longer than the other to be executed!
I The amount of memory one algorithm needs is perhaps

much larger then the one the other needs.
I We will see in the Lab Module that a purely empirical

approach to the benchmarking of algorithms makes a lot of
sense.

I Benchmarking, being genuinely experimental, cannot
however be exhaustive. Could we rather proceed
analitically?



Measuring an Algorithm’s Complexity

I With the (time) complexity of a given algorithm, A what
we mean is an abstract measure of the execution time of A.

I An algorithm’s complexity, being a model, is measured
following a number of principles, namely the model’s
axioms:
1. The complexity of A is simply the number of basic

instructions which are executed when A is run on any of its
instances. Each instruction costs the same.

2. Since the number of instructions A executes may vary
depending on the input, one expresses A’s complexity as a
function of some parameters of the input (typically, its
size).

3. In doing so, one is allowed to slightly overapproximate
the amount of instructions involved in A’s execution, for the
sake of having simple expressions.

4. Multiplicative and additive constants are typically elided
themselves, and only the asymptotic behaviour of the
involved functions matters.



Asymptotic Notation

I A function f : N→ N is O(g) if there are positive real
constants c and x0 such that f(x) ≤ c · g(x) for all values of
x ≥ x0.

I Example: the function n 7→ 3 · n2 + 4 · n is O(n2), but also
O(n3), and certainly O(2n). It is not, however, O(n).

I A function f : N→ N is Ω(g) if there are positive real
constants c and x0 such that f(x) ≥ c · g(x) for all values of
x ≥ x0.

I Example: the function n 7→ 3 · n2 + 4 · n is Ω(n2), but also
Ω(n), but not Ω(n3).

I A function f is Θ(g) if f is both O(g) and Ω(g).



O(4n)

O(n2)



O(4n)

O(n2)



Thank You!

Questions?


	Defining The Algorithm

