
Algorithms and Data Structures
in Biology

Introduction to the Course

Ugo Dal Lago

University of Bologna, Academic Year 2018/2019



Section 1

Organization



Organization

I Webpage
I http://www.cs.unibo.it/~dallago/ADSB1819/

I Email
I ugo.dallago@unibo.it

I Office Hours
I Where: see http://www.cs.unibo.it/~dallago
I When: there is no fixed office hours, just write me an email

and we will fix an appointment.
I Teaching Assistant

I Thomas Leventis, thomas.leventis@irif.fr
I He takes care of the lab sessions.

http://www.cs.unibo.it/~dallago/ADSB1819/
ugo.dallago@unibo.it
http://www.cs.unibo.it/~dallago
thomas.leventis@irif.fr


Structure and Schedule

I First Module: Theory
I Monday 11.00am-1.00pm, Friday 9.00am-11.00am.
I The basics of the theory of algorithms, and some design

patterns: exhaustive search, dynamic programming, divide
et impera, etc.

I All lectures will be given by Ugo Dal Lago.
I Second Module: Lab

I Monday, 2.00pm-6.00pm.
I Performance evaluation of algorithms as implemented in the

Python programming language through the cProfile
library. You will also learn how to write a report by way of
the LATEX system.

I Initially, both teachers will be present at the lab, while later
on only Thomas Leventis will be there.



Textbooks and Exams

I Textbook
I The first module, being theoretical, requires a textbook.
I Neil C. Jones, Pavel A. Pevzner. An Introduction to

Bioinformatics Algorithms (Computational Molecular
Biology). The MIT Press. 2004.

I Exams
I The first module’s exam will be written, and will be given at

the end of the course.
I The second module’s exam will consist in three assignments,

that needs to be completed in a week each. In very
exceptional cases, in which students cannot complete one or
more assignments on time, the teachers will decide how to



Section 2

The “What” and the “Why”



The Course’s Objectives

I Problems and Algorithms
I Algorithms are the middle ground between problems and

programs.
I Measuring Algorithms’ Complexity

I Different algorithms (solving the same problem) may do so
quite differently.

I How should we decide which one of the possibly many
algorithms is the right one for our needs?

I How to Design Algorithms
I Although designing algorithmics requires a nontrivial dose

of creativity, there are a few recipes that work remarkably
well in many cases.

I We will learn a few of them.
I Proving Algorithms Correct

I Suppose you designed an algorithm for a



“Why Should I Learn Algorithmics?”

Problems in Genomics

Python Programs

..
.s
o
lv
es
..
.



“Why Should I learn Algorithmics?”

I The workflow you have in mind is, very likely, the following
one:
1. In my daily work as an expert in genomics, I stumble

upon a problem which seems to have a nice, nontrivial,
computational content.

2. I have some ideas about how to solve it via Python, but the
problem seems to be too complicated to be solved directly.

3. I thus look for a module which provides some dedicated
function solving the kind of problem I encountered. Hey!
There should be one, shouldn’t it?

4. Once I find it, I simply import the module, invoke the
function, and that’s it.

I But is all this going to always work?
I The set of problems you will encounter is not fixed once and

for all: it changes over time.
I You cannot just wait until someone implements a module

for you!



“Why Should I learn Algorithmics?”

I The workflow you have in mind is, very likely, the following
one:
1. In my daily work as an expert in genomics, I stumble

upon a problem which seems to have a nice, nontrivial,
computational content.

2. I have some ideas about how to solve it via Python, but the
problem seems to be too complicated to be solved directly.

3. I thus look for a module which provides some dedicated
function solving the kind of problem I encountered. Hey!
There should be one, shouldn’t it?

4. Once I find it, I simply import the module, invoke the
function, and that’s it.

I But is all this going to always work?
I The set of problems you will encounter is not fixed once and

for all: it changes over time.
I You cannot just wait until someone implements a module

for you!



“Why Should I learn Algorithmics?”

I The workflow you have in mind is, very likely, the following
one:
1. In my daily work as an expert in genomics, I stumble

upon a problem which seems to have a nice, nontrivial,
computational content.

2. I have some ideas about how to solve it via Python, but the
problem seems to be too complicated to be solved directly.

3. I thus look for a module which provides some dedicated
function solving the kind of problem I encountered. Hey!
There should be one, shouldn’t it?

4. Once I find it, I simply import the module, invoke the
function, and that’s it.

I But is all this going to always work?
I The set of problems you will encounter is not fixed once and

for all: it changes over time.
I You cannot just wait until someone implements a module

for you!



“Why Should I Learn Algorithmics?”

Problems in Genomics

Combinatorial Problems

Algorithms

Python Programs

..
.s
ol
ve
s
or

im
p
le
m
en
t.
..



An Example: a Problem from Genomics

I Suppose you want to verify whether a strand of DNA you
obtained from a database contains (or not, and how many
times) a sub-strand which looks similar to a given sequence
of interest, for example

AACTTCGG

I In other words, we not only want to look for exact
occurrences of the sequence, but also for approximate ones,
like the following:

AACTCGG AACTCCGG AATCTTCGG



An Example: a Problem from Genomics

I Suppose you want to verify whether a strand of DNA you
obtained from a database contains (or not, and how many
times) a sub-strand which looks similar to a given sequence
of interest, for example

AACTTCGG

I In other words, we not only want to look for exact
occurrences of the sequence, but also for approximate ones,
like the following:

AACTCGG AACTCCGG AATCTTCGG



An Example: Approximate String Matching
I Given an alphabet Σ = {a1, . . . , an}, the expression Σ∗

indicates the set of all finite sequences of elements from Σ,
called strings from Σ.

I Examples of strings from {0, 1} are:

ε 0101 00000 1 01101001

I Given two strings s, t ∈ Σ∗, their edit distance δ(s, t) is
minimum number of insertions, erasure and modifications
(of simbols from Σ) necessary to turn s into t. As an
example

0001010→ 000010→ 000000→ 1000000

δ(00010101, 1000000) ≤ 3

I Approximate String Matching (ASM)
I Input: two strings s, t and a natural number n.
I Output: all the substrings s1, . . . , sk of s such that
δ(si, t) ≤ n.



An Example: Approximate String Matching
I Given an alphabet Σ = {a1, . . . , an}, the expression Σ∗

indicates the set of all finite sequences of elements from Σ,
called strings from Σ.

I Examples of strings from {0, 1} are:

ε 0101 00000 1 01101001

I Given two strings s, t ∈ Σ∗, their edit distance δ(s, t) is
minimum number of insertions, erasure and modifications
(of simbols from Σ) necessary to turn s into t. As an
example

0001010→ 000010→ 000000→ 1000000

δ(00010101, 1000000) ≤ 3

I Approximate String Matching (ASM)
I Input: two strings s, t and a natural number n.
I Output: all the substrings s1, . . . , sk of s such that
δ(si, t) ≤ n.



An Example: Approximate String Matching
I Given an alphabet Σ = {a1, . . . , an}, the expression Σ∗

indicates the set of all finite sequences of elements from Σ,
called strings from Σ.

I Examples of strings from {0, 1} are:

ε 0101 00000 1 01101001

I Given two strings s, t ∈ Σ∗, their edit distance δ(s, t) is
minimum number of insertions, erasure and modifications
(of simbols from Σ) necessary to turn s into t. As an
example

0001010→ 000010→ 000000→ 1000000

δ(00010101, 1000000) ≤ 3

I Approximate String Matching (ASM)
I Input: two strings s, t and a natural number n.
I Output: all the substrings s1, . . . , sk of s such that
δ(si, t) ≤ n.



Combinatorial Problems

I Approximate string matching is a typical example of a
combinatorial problem.

I It generalises, thus helping to solve, the problem from
genomics we mentioned a few slides ago.

I It is dubbed combinatorial, because it is formulated in
the language of finite structures, and in particular as a
problem on strings.

I We of course can try to solve the problem by directly
writing some Python code, or by looking at a module
providing a function which fits our needs.

I We could instead look at the problem in a principled way,
and look for an algorithm which efficiently solves the ASM
problem.

I This is what we will do in this course.



Thank You!

Questions?


	Organization
	The ``What'' and the ``Why''

