
Algorithms and Data Structures for Biology

13 May 2019 — Lab Session

Ugo Dal Lago Thomas Leventis

This assignment will be the second one to be marked. Please carefully read the instruction
below before starting to work on the assignment

1 Instructions

This assignment must be completed individually, by May 27th 2019 at 23.59 CET. To complete
the assignment, you need to send the following to the email addresses ugo.dallago@unibo.it

and thomas.leventis@irif.fr:

• One Python file named FIRSTNAME LASTNAME.py, with the code you have developed.

• One PDF file name FIRSTNAME LASTNAME.pdf, preferably produced by way of LATEX, in-
cluding a description of the algorithms you designed, the Python code you wrote, and the
experimental results.

The email should have the following subject: “[ADSB] Assignment II”.

2 The Problem

We want to deal with the following problem. Suppose you are the head of just-launched genomics
research lab, and you need to decide which ones (between many) software packages to buy. After
some analysis, you conclude that the market offers n software packages, each of them with a price
of Pi Euros, and offering some functionalities: unfortunately, not all packages are equivalent! We
can model the functionalities your lab needs as a set A = {a1, . . . , am} where each ai is distinct.
As an example a1 could be some form of genome sequencing, while a2 could be a 3D molecule
rendering. Each software package thus offers a set of functionalities Si ⊆ A. As an example, we
could have that

P3 = 156 S3 = {a1, a3, a4}

meaning that the third package costs 156 Euros, and offers the functionalities a1, a3 and a4. Your
goal, of course, is to decide which software packages you want to buy, so that all functionalities
are somehow covered by at least one of the software packages you buy. Moreover, you want to do
that minimizing the price.

This assignment asks you to:

• model the problem described above as a combinatorial optimization problem, abstracting
away from unessential details. In doing so, try to turn your problem into one the algorithmics
literature is already aware of, by doing some online search.

• Think about exact, but also approximate greedy solutions to the problem. In doing so, you
are encouraged to actively look for such solutions rather than developing them from scratch,
since the literature on the subject is rich.

• Implement the exact and approximate greedy algorithms you designed in Python.

1



• Run your algorithm(s) on the problem instances you can find before the end of this week
from the course’s webpage. Use this opportunity to check that the approximatio ratio of
your greedy solutions (if any) is within the bounds you expected.

• Finally use cProfile to experimentally test the runtime of your program on the instances
above.

2


