Algorithms and Data Structures for Biology
10 May 2019 — Lab Session

Ugo Dal Lago Thomas Leventis

1 Measuring Algorithmic Space Consumption

Sometimes, not only the time consumption, but also space consumption of your algorithms can
be of interest. In particular, two algorithms solving the same combinatorial problem and having
comparable time complexities, can have very different space consumption behaviours. As a con-
sequence, the first one could exhaust the available memory sooner than the other one. Analysing
the amount of space algorithms consume as a function of the input size can thus be useful in many
cases. Experimentally, thus at the level of the underlying Python implementation, this can be
done in many different ways, e.g.,

e The package memory-profiler can be used to count the amount of objects allocated on the
heap, and the total size of the heap for each code line. An executable mprof provided by
the package is particularly useful, in that it produces a graph of the memory consumption
as a function of time.

e Similarly, the package guppy can be used to take a snapshot of the heap, this way having an
idea of how large the heap is.

2 Comparison Analysis of Sorting Algorithms

We ask you to compare two sorting algorithms among those you know, e.g. Selection Sort, Merge
Sort or Bubble Sort.

e For both of them, measure their time consumption on random lists of natural numbers
(generate them as permutations) of size n = 1000m where m € {1,...,10}, and profile it by
way of cProfile.

e Analyse the space consumption of the two algorithms by way of mprof.

Try to answer the following question: is one of the algorithms always better than the other?
Is there a critical value n* of n such that for smaller values of n one algorithm outperforms the
other, while for bigger values of n?



