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Abstract—Cognification — the act of transforming ordinary
objects or processes into their intelligent counterparts through
Data Science and Artificial Intelligence — is a disruptive tech-
nology that has been revolutionizing disparate fields ranging
from corporate law to medical diagnosis. Easy access to massive
data sets, data analytics tools and High-Performance Computing
(HPC) have been fueling this revolution. In many ways, cognifi-
cation is similar to the electrification revolution that took place
more than a century ago when electricity became a ubiquitous
commodity that could be accessed with ease from anywhere in
order to transform mechanical processes into their electrical
counterparts. In this paper, we consider two particular forms
of distributed computing — Data Centers and HPC systems —
and argue that they are ripe for cognification of their entire
ecosystem, ranging from top-level applications down to low-level
resource and power management services. We present our vision
for what Cognified Distributed Computing might look like and
outline some of the challenges that need to be addressed and
new technologies that need to be developed in order to make
it a reality. In particular, we examine the role cognification can
play in tackling power consumption, resiliency and management
problems in these systems. We describe intelligent software-
based solutions to these problems powered by on-line predictive
models built from streamed real-time data. While we cast the
problem and our solutions in the context of large Data Centers
and HPC systems, we believe our approach to be applicable to
distributed computing in general. We believe that the traditional
systems research agenda has much to gain by crossing discipline
boundaries to include ideas and techniques from Data Science,
Machine Learning and Artificial Intelligence.

Index Terms—High-Performance Computing, Data Centers,
energy efficiency, resiliency, Data Science, Machine Learning,
Artificial Intelligence.

I. INTRODUCTION

Motivation: Data Centers and High-Performance Comput-

ing (HPC) systems have become indispensable for economic

growth and scientific progress in our modern society. Data

centers are the engines of the Internet that run e-commerce

sites, cloud-based services and social networks utilized by

billions of users each day. HPC systems, on the other hand,

have become fundamental “instruments” for driving scientific

discovery and industrial competitiveness — much like the

microscopes, telescopes and steam engines of the previous

century. Continued desire to achieve higher-fidelity simula-

tions, build better models and analyze greater quantities of data

put increasing demands for higher performance from these

systems. As the performance of HPC systems increases, the

value of the results they produce increases, enabling improved

techniques, policy decisions and manufacturing processes in

areas such as agriculture, engineering, transportation, materi-

als, energy, health care, security and the environment. Today,

HPC systems are also essential for achieving groundbreaking

results in basic sciences ranging from particle physics to

cosmology while touching genomics, pharmacology, neuro-

science, geology, material science, meteorology and climate

change in between [1]. Scaling current systems to meet

these challenges is being limited by considerations for power

consumption, heat dissipation, resiliency and management.

Brute-force scaling of current technologies to the required

performance levels would result in systems that consume as

much power as a small-size city, that fail every several minutes

and that are unmanageable.

Contributions: We believe that the traditional distributed

systems research agenda can benefit greatly by crossing dis-

cipline boundaries to include ideas and techniques from Data

Science, Machine Learning and Artificial Intelligence (AI). In

particular, we argue that Data Centers and High-Performance

Computing systems, which we collectively refer to as High-
Performance Distributed Computing (HPDC) systems, have

much to gain by incorporating data-driven, predictive and

proactive software technologies into various phases of their

operation. In support of our claim, we outline how these

technologies can be exploited to dramatically reduce power

consumption and significantly improve resiliency of future

HPDC systems. Furthermore, we show how the data-driven

predictive models built for energy efficiency and resiliency

can also become the building blocks of an innovative system

management platform built from open-source software pack-

ages. The biggest takeaway from our work is a perspective on

where and how data analytics should be positioned to have the

greatest impact in the general systems arena, and specifically

in HPDC systems.

Organization: The rest of the paper is organized as fol-

lows. In Section II we identify power consumption, re-

siliency and manageability as the main obstacles for achieving

ever-increasing performance in HPDC systems through ever-

increasing parallelism. In Section III we recall how availability

of massive data sets has led to significant advances in AI

by abandoning traditional rule-based techniques in favor of

data-driven techniques. We also introduce cognification as the

transformation of ordinary services into intelligent ones by

accessing the required data analytics and intelligence func-
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tions as commodities [2]. In Sections III-A and III-B we

review some of the more important data-driven predictive AI

technologies, such as Machine Learning, and show how they

can be used to build powerful predictive models for power

consumption and failures. In Section IV we present our vision

for a HPDC system that has been cognified through data-driven

dispatcher for increased energy efficiency (Section IV-A), just-

in-time check-pointing mechanism for increased resiliency

(Section IV-B) and predictive software tools for improved

system management (Section IV-C). Section V discusses the

remaining challenges that need to be solved in order to make

our vision a reality. Section VI concludes the paper.

II. CHALLENGES OF HIGH-PERFORMANCE DISTRIBUTED

COMPUTING

Future HPDC systems will achieve higher performance

through a combination of faster processors and massive paral-

lelism. With Moore’s Law having essentially reached its limit,

it is expected that continued die shrinking will deliver only

a small additional increase in performance. The rest of the

increase has to come from abandoning increased transistor

density and switching to increased core count, which implies

a substantial increase in the sockets count [3].

We argue that future HPDC systems have to be sustainable
so that they are able to provide high-performance computing

on a continual basis without interruptions. Achieving high per-

formance by increasing the number of cores (and consequently,

the number of sockets) presents two primary obstacles for

sustainability: power consumption and resiliency. Consider-

ations for the cost of power generation, power delivery and

chiller/cooler infrastructures put 30MW as a practical upper

limit for the power consumption of future HPDC systems [4].

In other words, energy efficiency of current systems has

to increase by more than one order of magnitude to stay

within this limit when they are scaled to extreme performance

levels [5].

With everything else being equal, the failure rate of a

system is directly proportional to the number of sockets

used in its construction [6]. But everything is not equal:

future HPDC systems not only will have many more sockets,

they will also use advanced low-voltage technologies that are

much more prone to aging effects [7] together with system-

level performance and power modulation techniques, such as

Dynamic Voltage Frequency Scaling (DVFS), all of which

tend to increase failure rates [8]. Economic forces that push

for building systems out of commodity components aimed at

mass markets only add to the likelihood of more frequent

unmasked hardware failures. Finally, complex system soft-

ware, often built using open-source components to deal with

more complex and heterogeneous hardware, failure masking

and energy management, coupled with legacy applications will

significantly increase the potential for software errors [9].

It is estimated that complex applications may fail as fre-

quently as once every 30 minutes on future HPDC plat-

forms [10]. At these rates, failures will prevent applications

from making progress. Consequently, high performance, even

when achieved nominally, cannot be sustained for the duration

of most applications that are long running. Future HPDC

systems must include a combination of hardware and software

technologies that are capable of handling failures at accel-

erated rates from a broad set of sources [8]. Whether their

origin is software, hardware or environmental, we limit our

attention to those failures that result in computations simply

stopping. In other words, we assume that failures resulting in

silent data corruptions or computations that continue running

but perform incorrect actions or produce incorrect results are

extremely rare and can be ignored.

HPDC systems (especially Data Centers) evoke images of

warehouse-size structures filled with racks housing tens of

thousands of multi-core servers and storage devices, intercon-

nected through a variety of networking technologies [11]. In

HPDC systems, computing and networking are actually only

a small part of their infrastructure that also has to guarantee

electrical power, either from an external grid, from an on-site

generation plant, or both. Furthermore, the infrastructure has

to include subsystems for conditioning, storing and switching

power as well as complex thermal cooling/chiller systems to

dissipate the vast amount of heat that is produced. If in addition

to this hardware infrastructure, we also consider the intricate

tangles of advanced software that run their services and include

external factors such as human operators, we end up with

systems where interdependencies and interactions among a

very large number of components result in nonlinear behaviors

that are highly unpredictable and where small changes in one

part often have large and unintended consequences in other

distant parts. In short, attempts to manage HPDC systems

through traditional human operator-based mechanisms become

error prone at best, and impractical at worst. What is needed

is an intelligent management system that eliminates reliance

on human operators as much as possible for both routine

maintenance and problem avoidance/resolution.

Amidst the wealth of challenges that future HPDC systems

present, we limit our attention in this paper to the following

three that are central to sustainability:

• Energy efficiency: Improve the energy efficiency of

future HPDC systems so as to stay within the 30MW

limit for power consumption when they are scaled up for

high performance.

• Resiliency: Improve the resiliency of future HPDC sys-

tems by reducing the perceived failure rates to at most

once-per-week levels when they are scaled up for high

performance.

• Manageability: Improve management of future HPDC

systems by limiting reliance on human operators and

facilitating semi-autonomic control.

HPDC systems, in addition to being effective instruments

for cognifying other fields, are ripe for benefiting from cog-

nification themselves to solve many of their own challenges.

In a way, this is akin to “turning the microscope onto itself to

study the microscope”. Cognification of HPDC systems can

occur at any level of their programming workflow, all the way
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from top-level applications down to low-level system software.

In this paper, we examine how the system software of HPDC

systems can be cognified so as to render them sustainable. We

sketch solutions to the above challenges based on intelligent

and proactive software technologies for vastly reducing power

consumption and dramatically improving resiliency. Manage-

ability, on the other hand, requires developing intelligent

and proactive mechanisms for monitoring, controlling and

debugging systems and applications by both administrators and

users.

A. Energy Efficiency

In HPDC systems, energy efficiency can be approached at

many levels ranging from electronic circuits and packaging

innovations all the way up to scheduling, allocation and

compiling strategies. Energy efficiency at the system software

level has been typically delegated to the dispatcher component

that is concerned with which jobs to run next (scheduling) and

where to run them (allocation). An energy-aware dispatcher

can resolve decisions based on numerous techniques, including

consolidation, energy-aware scheduling, power capping and

DVFS, either separately or in combinations. The basic idea

behind consolidation is to gather many active jobs/threads on

a few physical nodes/cores so that idle nodes/cores can be

switched to low-power mode or powered off completely [12],

[13]. In making consolidation decisions, the dispatcher can

take into consideration not only the computational demands

of jobs but also their communication needs [14]. Furthermore,

power consumed by HPDC applications is often multidi-

mensional, nonlinear and has large dynamic range [12]. In

other words, power-aware allocation schemes have to consider

multiple measures for workloads (e.g., memory size in addition

to CPU utilization) and take into account the effects of

co-locating jobs on the same node. In large Data Centers,

consolidation has been facilitated to a large extent by the avail-

ability of virtualization [15] and container technologies such as

Docker [16] and Kubernetes [17]. The fact that container tech-

nologies are not as widespread in current HPC systems makes

consolidation less common as an energy efficiency mechanism

for them. Power capping is a technique where an energy-

aware scheduler selects the set of jobs to run such that their

cumulative power needs do not exceed a certain threshold [18].

It can be implemented using a variety of techniques such as

DVFS [14], [19], Machine Learning or hybrid optimization

techniques including Constraint Programming [20].

B. Resiliency

Like energy efficiency, resiliency in HPDC systems can be

confronted at many levels ranging from error correcting codes

at the electronics level up to fault-tolerant algorithms at the

application level. Process-level or hardware-level replication

is an often-employed technique to increase resilience in Data

Centers. It is less common in HPC systems for several rea-

sons. First, failure independence, which is the foundation for

replication is difficult to satisfy in HPC systems which tend

to be more tightly coupled. Second, replication often incurs

high overhead in order to guarantee replica equivalence de-

spite non-determinism in applications. Finally, hardware-level

replication contributes to increasing socket counts and power

consumption, which are already at elevated levels in HPC

systems. Among the many software-based resiliency mech-

anism that exist, check-point/restart is by far the most widely

available (being included in popular systems like Charm++ and

AMPI) and widely used in current HPC systems [6]. Check-

pointing consists of taking a snapshot of the application in

execution and saving it on nonvolatile media (usually a parallel

file system). When a failure occurs, the application is restarted

from the last check-point found on nonvolatile media (after

moving it to main memory) and the application continues until

the next check-point.

A number of challenges need to be resolved to make check-

point/restart a viable technique for increased resiliency in

future HPDC systems. Check-pointing and restarting can be

made automatic and transparent to applications by initiating

them pro-actively through a system software layer as in

BLCR [21]. While this removes a big burden from users,

it comes at the cost of increasing overhead since the state

that is saved and restored to/from nonvolatile memory cannot

exploit application semantics (to reduce its size) and has to

include the entire application state [9], [10]. The challenge

is to maintain the convenience of system-initiated check-

pointing at a cost comparable to user-initiated check-pointing.

Too frequent check-pointing with high overhead can slow

down applications to a crawl and can also be detrimental for

energy efficiency. “Optimal” values for check-point intervals

can be computed based on averages for inter-failure times

and check-pointing costs [22]. In future HPDC systems with

high failure rates and large check-point/restart times, there

is a real risk that the mechanism degenerate into a “pure

overhead” scheme performing only check-points/restarts and

no useful computation [23]. Under these conditions, failure

masking through replication becomes a viable option as a

resiliency mechanism. The challenge is to devise dynamic and

adaptive algorithms for adjusting the check-point interval and

for switching between check-point/restart and replication as

the appropriate resiliency mechanism.

C. Manageability

From the point of view of system administrators, current

HPDC management tools are limited essentially to resource

allocation, scheduling and monitoring tasks. Although a num-

ber of efforts for building more-innovative monitoring and

management platforms exist [24], [25], they lack predictive

or social capabilities, do not provide control actions and are

based on rather simple interaction models. Thus, many of the

difficult management tasks rest on the shoulders of operators.

From an end-user’s point of view, systems such as Compute
Manager from PBS Works1 for job submission recreate the

“batch processing” experience of early computing with no

interactive control and debugging capabilities.

1https://www.altair.com/compute-manager/
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What is needed is a management software platform that can

facilitate semi-automatic control of HPDC systems with little

or no human intervention. The platform should make use of

the proactive and predictive software technologies developed

for energy efficiency and resilience while at the same time

should be open, extensible and social so that it can be used

by both HPDC system administrators and end-users.

III. THE POWER OF DATA

In a growing number of areas where experimentation is

either impossible, dangerous or costly, computing is often the

only viable alternative towards confirming existing theories

or devising new ones. The resulting computational scientific
discovery is typically model-based: as a first step, a mathemat-

ical model of whatever it is that is being studied is built and

then the model is solved numerically or through simulations.

This approach, which remains one of the main pillars of

scientific discovery, is conditioned on our ability to construct

mathematical models relating the dependent variables (out-

puts) to the independent variables (inputs) of the process

under study. Recent years have witnessed an emerging trend

that abandons this model-based computational approach and

replaces it with a data-driven approach seeking correlations

that may exist among huge volumes of data collected from

observing actual inputs and outputs of processes [26]. The big

advantage of the data-driven approach is its ability to uncover

interesting insights and properties of processes without having

to construct cause-effect mathematical models, which typically

require a complete understanding of their inner workings.

The data-driven approach outlined above can be used to

build an intelligence component in the form of a predictive
computational model, to be integrated into the system or

service to be cognified. In addition to uncovering hidden

correlations among historical archived data and gaining knowl-

edge about the past, the predictive model allows reasoning

about future or unseen states. Moreover, building the predictive

models in an on-line manner driven by streamed data (rather

than the traditional off-line approach driven by archived data)

opens up the possibility of cognified services that can enact
control actions on the system in real-time so as to keep

their executions along desirable trajectories. In the following,

we outline some of the AI technologies that are relevant

for cognification and discuss their use in building predictive

models for power consumption and failures in HPDC systems.

A. Machine Learning, Deep Learning and Other Predictive
Technologies

AI research, which had been stagnant for several decades

has been rejuvenated recently mainly due to the shift from

a rule-based approach to a data-driven approach powered by

Machine Learning technologies [27]. Early demonstration of

the enormous gains possible with data were recommender
systems [28]. These systems, which are now pervasive on

the Internet, are based on classifier algorithms that can infer

preferences of humans directly from data without actually

modeling human behavior. Advanced classifiers trained with

huge amounts of data have made enormous progress in many

other fields including image recognition [29], medical diagno-

sis [30], mortgage appraisals [31], speech recognition [32],

archeology [33] and machine translation [34] without any

knowledge of the inner workings of the processes being

considered.

One technology that has had an important role in these

success stories is Deep Learning (DL). DL is based on Deep
Neural Networks (DNNs) that are Artificial Neural Networks
with a large number of hidden layers and that are trained

with a Back-propagation algorithm adjusted for the large

network size. Some of the network types that have been

considered include Convolutional, Recurrent and Autoencoder

Neural Networks. The power of DNNs rest in their ability

to automatically build features from the data by mapping the

input into larger dimensions at the various network layers.

These features are then employed to solve the classification

task at hand. This technology, although not new, has benefited

enormously from big-data tools that have made large volumes

of data easily accessible and easy to process. Another factor

contributing to the enormous success of DL is widespread

access to high-performance parallel processing in the form of

multi-core CPUs and special-purpose GPUs [35], [36].

B. Predictive Models for Power Consumption, Workloads and
Failures

A first step in the cognification process is building predictive

models at different levels of an HPDC system. Among the

possible behaviors to be modeled, we consider power con-

sumption, workload and failures. Below we review some of the

recent work in building predictive models for these behaviors

based on data collected from real systems.

1) Power Consumption: Power monitoring, modeling and

optimization have been areas of intense research activity in

recent years. Modern computing units embed advanced control

mechanisms such as Dynamic Voltage Frequency Scaling that

seek to optimize performance and can affect power levels,

making modeling problematic even for a single computational

unit [37]. Several models trying to explain the relation between

frequency, load, hardware counters and power for single units

have been introduced for multicore CPUs [38], [39] and

GPUs [40]. The success of modeling power varies widely

depending on the workload, with errors between 3.65% and

14.4% for CPUs, and between 1.7% and 27.7% for GPUs.

These errors are only expected to grow when multiple units

have to be combined, as will be the case for future HPDC

systems.

Some recent work has focused on modeling job or appli-

cation power consumption. Performance counters are used to

model application power on HPC platforms platforms by [41]

and power used by CUDA kernels in [42]. These methods

require instrumenting the applications to extract signatures and

performance counters.

The models cited above are able to compute power con-

sumption by reading various performance counters during

an execution, however they are not able to predict power
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Fig. 1. Modeling system level power by integrating three different models,
represented as stars in the figure: prediction of job power consumption using
SVR models, prediction of job length through a data-driven heuristic and a
linear model mapping computing unit power to system level power.

consumption prior to an execution. For the purposes of

cognification, advance prediction is essential. This can be

achieved by using only workload measures to predict power,

as is done in [43], [44], [45]. Recently, we introduced a

model [46] to predict job power consumption for a hybrid

HPC system, Eurora [5]. This HPC system employs CPUs,

GPUs and MIC technology to achieve low power consumption.

Such heterogeneity in resources is a typical feature of modern

HPDC systems, and makes power modeling more challenging.

The predictive model we presented is fully data driven —

no assumptions about the model structure nor additional

instrumentation of application code are required. The only

application-aware feature is the job name, making our method

easily applicable to any system even when application code

is not available. The power of our prediction derives from

user history rather than from application counters, and our

results show that when enough data is available, excellent

predictive behavior can be achieved. We employ a multiple-

Support Vector Regression (SVR) model to estimate job power

as a function of time — we predict power profiles rather than

an averages for the power consumed per job. When comparing

the multiple-SVR approach to an Enhanced Average Model
(EAM) where power depends only on the number of compo-

nents used, SVR outperforms EAM for most users, obtaining

good prediction (error under 20% or R2 ≤ 0.5) for 80% of

the users analyzed. For the rest of the users, indications are

that modeling power is affected by noise. An important aspect

of our model is the fact that we take into account the effect

of colocating jobs on the same node. This means that we can

predict how different resource allocation schemes affect job

power, in order to optimize allocation.

Our approach to predicting job power is intended to be used

in real-time, where predictions are made as new jobs arrive at

the scheduler. On-line use consists of training the model for

each user, then applying it to real-time data. Periodically, the

model is updated by incorporating recent data into the training

dataset. We expect monthly model updates to be sufficient in

order to capture changes in job structure.

While individual job power consumption is important,

power consumption at the system level is also of interest.

Recent work at Google [47] describes the use of Artificial

Neural Networks to model Power Usage Effectiveness using a

mixture of workload and cooling features. We have recently

introduced a model of total system power for the Eurora

HPC system [48]. Our predictive model consists of three

components, displayed as stars in Figure 1. First, power

consumption of jobs is predicted from workload data using

the aforementioned SVR approach. Second, we introduce a

simple heuristic that enables data-driven prediction of job

duration (see section III-B2), which allows us to estimate

which jobs will run in the system at a future time. The two

predictions are then combined to estimate the power used

by computing units. Third, we develop a relation between

power used by computing units and the total system power,

including networking, IO system and other elements, using a

linear model. The 3-component model takes as input workload

parameters, namely job names and resources allocated to each

job. The approach achieves very good results in predicting

system level power with errors under 5%. Figure 2 shows the

predicted and real power consumption of the system during a

one-week period. The methodology can be easily applied to

other systems since the data types used (workload measures

only) are generally available in most HPDC systems.

2) Workloads: Workload prediction is another important

concern for cognification of HPDC systems. One aspect of

workloads that can be predicted and that can have an impact

on management of HPC systems is job duration. This can

be achieved by monitoring jobs once they start, recording

performance counters and estimating remaining duration based

on them [49], [50]. A different approach is to build a predictive

algorithm based on past job history only. We recently devel-

oped such a data-driven heuristic to predict job length [51] that

uses only general job information that is available just before a

job is started, hence it is much more flexible. We predict job

durations in Eurora, the same HPDC system as above. The

heuristic exploits time locality of job durations for individual

users that was observed in the Eurora workload. Specifically,

it has been observed that consecutive jobs by the same user

tend to have similar durations, especially when they have the

Fig. 2. Power predictions obtained by the model described in Figure 1.
The model was applied to log data from Eurora, a hybrid HPC system. The
plot includes measured and predicted power consumption during a one-week
period [48]. Prediction results are very good, with mean error under 5%.
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same profile (job name, resources requested, queue, etc). From

time to time, a switch to a different duration is observed,

which could happen, for example, when the user changes input

datasets or the algorithm itself. Using this observation, we

devised a set of rules to apply in order to predict job durations.

We record job profiles for users, and their last durations. When

a new job arrives in the system, we look for a job with the

same or similar profile, and consider its duration to be also the

duration of the new job. If no past profile is similar enough,

the predicted duration is the wall-time of the job. In case a

match is found, the wall-time is used as an upper bound for

the predicted duration. This heuristic was shown to give very

good results, with an average prediction error of 40 minutes

over all jobs in the system.

3) Failures: Failure prediction is fundamental for system

management and resiliency in HPDC systems [52]. It has been

an active research area [53] and numerous failure prediction

methods for single machines, clusters, application servers, file

systems, hard drives, email servers and clients, etc. have been

developed over the years. More recent studies concentrate on

larger-scale distributed systems such as HPC and Data Centers

for cloud computing.

Of particular interest for cognification are job failure pre-

dictions that can lead to economizing resources, as well as

prediction of component failures (such as computing nodes).

Job failures in a cloud setting have been studied by various

authors [54], [55], using techniques such as the naive Bayes
Classifier and Principal Component Analysis. The methods

achieve good results on jobs from different application set-

tings, with true positive rates above 80% and false positive

rates under 30%. For node failures, a recent study of the

Blue Waters HPC installation at Argonne National Laboratory

achieved predictions with 60% TPR and 85% precision [56].

Recently we have presented a study of node failures for

Data Centers based on log data from a Google cluster [57].

The dataset contains workload and scheduler events emitted

by the Borg cluster management system [25] in a cluster of

over 12,000 nodes during a one-month period [58], [59]. We

employed BigQuery [60], a big data tool from the Google

Cloud Platform that allows SQL-like queries to be run on

massive data, to perform an exploratory feature analysis. This

step generated a large number of features at various levels of

aggregation suitable for use in a Machine Learning classifier.

The use of BigQuery has allowed us to complete the analysis

for large amounts of data(table sizes up to 12TB containing

over 100 billion rows) in reasonable amounts of time.

The failure prediction problem was formulated as a classifi-

cation task: decide whether a machine in the cluster will fail or

not in the next 24 hours. We employed an ensemble of Random
Forest (RF) classifiers to solve the problem. RF were employed

due to their proven suitability in situations were the number

of features is large [61] and the classes are “unbalanced” [62]

such that one of the classes consists mainly of “rare events”

that occur with very low frequency. Although individual RF

were better than other classifiers that were considered in our

initial tests, they still exhibited limited predictive power, which

Fig. 3. Predictive power for classification of node failures in a Google
cluster trace [57]. The log data released by Google was divided into 15
benchmarks (ten days of training data, one day of test data), and the plot
shows Area-Under-the-ROC (AUROC) and Area-Under-the-Precision-Recall
(AUPR) curves for each benchmark. Predictive power varies for different
benchmarks, however AUROC values always stay above 0.76 and AUPR stay
above 0.38.

prompted us to pursue an ensemble approach. While individual

trees in RF are based on subsets of features, we used a

combination of bagging and data subsampling to build the RF

ensemble and tailor the methodology to this particular dataset.

To test our classifier in different settings, we split the

available data into 15 benchmarks, each benchmark including

10 day of training data and one day of test data (with one

day in between, so that train and test data do not overlap at

all, given that we are predicting failures in windows of 24

hours). Figure 3 summarizes the results obtained, evaluating

the model on each benchmark in terms of Area-Under-the-
ROC (AUROC) curve and Area-Under-the-Precision-Recall
(AUPR) curve. These show that we had very good predictive

power on some days, and moderate on others, with AUROC

values varying between 0.76 and 0.97 and AUPR values

between 0.38 and 0.87. This corresponded to true positive rates

in the range 27%-88% and precision values between 50% and

72% at a false positive rate of 5%. In other words, this means

that in the worst case, we were able to identify 27% of failures,

while if a data point was classified as a failure, we could have

50% confidence that we were looking at a real failure. For the

best case, we were able to identify almost 90% of failures and

72% of instances classified as failures corresponded to real

failures. All this, at the cost of having a 5% false alarm rate.

Again, the method we presented is very suitable for on-line

use. A new model can be trained every day using the last

12 days of logs. This is the scenario we simulated when we

created the 15 test benchmarks. The model would be trained
with 10 days of data and tested on the next non-overlapping

day, exactly like in the benchmarks. Then, it would be applied
for one day to predict future failures. The next day a new

model would be obtained from new data. Each time, only the

last 12 days of data would be used rather than increasing the

amount of training data. This would account for the fact that

the system itself and the workload can change over time, so
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old data may not be representative of current system behavior.

This would ensure that the model is up-to-date with the current

system state. Testing on one non-overlapping day is required

for live use for two reasons. First, part of the test data is used

to build the ensemble (prediction-weighted voting). Secondly,

the true positive rates and precision values on test data can

help system administrators make decisions on the criticality
of the predicted failure when the model is applied.

Predicting failures in advance can help reduce resource

wastage by modifying the resource allocation decisions dy-

namically. This is in itself an extensive research area, but

a simple technique could be to quarantine nodes that are

predicted to fail by not submitting any new jobs to them for

some period of time. If consecutive failure alarms continue

to appear, the quarantine period is extended until either the

alarms stop or the node fails. We simulated such an approach.

For better precision, we quarantine a node only if at two

consecutive time points the node is predicted to fail. While a

node is in quarantine, all tasks that would have otherwise run

on that node need to be redirected. Among redirected tasks,

some would have finished before the node failure, others would

have been interrupted. We call the latter recovered tasks,

since their interruption was avoided by proactively redirecting

them. The aim of our proactive approach is to maximize the

number of recovered tasks (the gain) while minimizing the

number of redirected tasks (the cost). The two objectives are

contradictory: the number of recovered tasks grows as the

number of redirected tasks increases, so there is a tradeoff

between the cost and the gain. With the predictions obtained

by our RF approach, we showed that we can recover close

to 1000 tasks using 800 CPU hours during the 15 days of

prediction, which is about 50% of the resources that would be

saved with a perfect prediction.

IV. COGNIFIED HIGH-PERFORMANCE DISTRIBUTED

COMPUTING

In this Section we sketch the architecture of a HPDC system

that has been cognified to include the data-driven predictive

software technologies described above in its dispatcher, check-

point/restart and management functions. In what follows, we

briefly discuss each one of these functions in light of the

advantages offered by prediction.

A. Data-Driven Dispatching

Energy efficiency at the system software level in HPDC

systems is typically delegated to the dispatcher component

that is concerned with which jobs to run next (scheduling) and

where to run them (allocation). Predictive models discussed

earlier can be included in the dispatcher to achieve power

and failure awareness as well as optimizing overall system

performance. Specifically, the scheduler component can ensure

power awareness through power capping and power reduction.

Power capping can be achieved by including a constraint

within the CP model specifying the threshold for total system

power that cannot be exceeded. Being able to predict future

system power accurately, the power capping constraint can

precisely model the total system power. Power reduction, on

the other hand, can be achieved by including total system

power as part of the objective function, which then has to

be minimized. The same job can consume different amounts

of power depending on when it starts, what resources it uses

and what resources it shares with other jobs, which will all

be taken into account by both the scheduler and the allocator

components of the dispatcher. To allow this, it is important

that the predictive models for power include features related

to shared resources.

Workload predictions, in particular job durations, are impor-

tant for allocation since they provide a way to estimate which

jobs will be in the system in the near future. Job duration

predictions are useful also when trying to estimate future

power consumption by summing the power consumption of

all running jobs. CPU and memory size predictions can be

used to optimize resource usage and minimize power by

selecting jobs with vastly different profiles for co-location. For

example, we can expect lower power consumption and better

throughput when memory-intensive jobs are co-located with

CPU-intensive jobs.

Failure awareness of the dispatcher can be achieved through

several allocation decisions. First, resources can be ranked

based on their predicted failure probability so that the next

allocated resource is always the one that is considered least

likely to fail. In this way, the allocator can avoid assigning new

jobs to nodes that are likely to fail in the near future. Second,

when replication is in use for resiliency, the dispatcher can try

to locate replicas of a job on nodes that exhibit the greatest

failure independence with the original node, as measured by

predicted failure correlations between them.

B. Just-in-Time Check-Pointing

Check-pointing algorithms periodically save the state of a

job to non volatile memory so that the job can be restarted

from the last valid state in case of a failure. Prediction

of failures can be integrated into this strategy by adjusting

the time intervals between successive check-points. Cognified

HPDC systems can make use of failure predictors that provide

a probability of failure within a future time window, rather

than a simple yes/no answer. The failure probability can

be estimated using Bayesian classifiers, or artificial neural

networks with a Softmax activation function at the output

layer, or by transforming the yes/no classification problem

into a regression problem. In the just-in-time check pointing

scheme we propose, the failure probability is used as a weight

in calculating the next time-to-check-point for the job. If the

failure prediction accuracy is sufficiently high and if we can

obtain good estimates for the time required to complete a

check-point, we can time proactive check-points to complete

shortly before failures occur, justifying the name just-in-time.

To guard against underestimating failure probabilities, inter-

check-point times can be bounded by forcing check-points at

a fixed (low) rate even when very low failure probabilities are

predicted.
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Fig. 4. Streamed data monitoring framework based on open-source software
packages including Apache Spark for cluster computing, Apache Cassandra
for database storage, Apache MLib for machine learning libraries, Grafana
for data analytics and visualization, Apache Streaming and Message Queuing
Telemetry Transport (MQTT) for communicating with sensors. The external
interface is through Apache Kafka Publish/Subscribe service.

As the mean inter-failure time approaches the time re-

quired for check-point/restarts, the system begins to spend

most of its time check-pointing and restarting instead of

performing useful computation. Under these conditions, we

must abandon check-point/restart and switch to failure mask-

ing through replication as the resiliency mechanism. Current

HPDC systems are rich in inherent hardware redundancy in

the form of multiple cores, CPUs, MICs and GPUs that can

be exploited to achieve replication of jobs without increasing

socket counts or costs. The challenge is guaranteeing failure

independence among the replicas through intelligent allocation

decisions. What are needed are adaptive, hybrid mechanisms

that select automatically between just-in-time check-pointing

and replication while dynamically adjusting the check-point

interval and the number of activated replicas.

Yet another important piece of information that can increase

system resiliency is the predicted job duration. For jobs that

started recently and that are expected to take a long time to

complete, a failure prediction even with modest probability

may provoke a migration decision immediately to a safer node.

Conversely, for a job that is expected to finish soon, the system

may decide to continue its execution on the current node

(without any action) even if a significant failure probability

is predicted for the node.

C. Predictive System Management

Cognification of HPDC system software is not only essential

for sustainability, it is also enables a radically new form of

HPDC management. We envision a management platform that

is open and extensible with modern social features, driven by

predictive models built from streamed data. In the following,

we briefly outline our vision for the architecture of such a

management platform and describe some interesting usage

scenarios.

The platform can be built on top of a streamed data
monitoring framework, such as the one described in [24].

The framework, illustrated in Figure 4, is based on Apache
Spark cluster computing and Apache Cassandra database

open-source software platforms and streams data derived from

a collection of sensors at various system levels using Apache
Spark Streaming. Using the framework involves instrumenting

the monitored system with sensors and installing the client

layer of the Message Queuing Telemetry Transport (MQTT)

Publish/Subscribe protocol, while on a service node installing

the MQTT broker and Apache Spark software packages. The

monitoring framework advertises to the world a Publish ser-

vice to which clients can Subscribe to receive data pertaining

to the sensors they are interested in.

The architecture of the management software platform we

envision is illustrated in Figure 5. At the lowest layer it

includes a Publish/Subscribe interface to be implemented

using Apache Kafka for communicating with the monitoring

framework. The lowest layer also includes a Streamed Data
Filtering module that implements Sensor Fusion functions

on data being received from the monitoring framework. The

platform uses predictions to project the system into the future

and to devise preventive actions based on control mechanisms

in case of possible future anomalies. Detecting anomalous

behavior is viewed as a big data classification problem and is

tackled using DL techniques for recognizing outliers among

cluster patterns arising in streamed data from a multitude of

origins. Responding to anomalies is also driven by DL tech-

nologies inspired by move generators in two-person games.

A fundamental piece of the architecture is a graphical user

interface to implement a route planner metaphor not unlike

Fig. 5. Predictive system management platform. At the heart of the platform
are predictive models for workload, power and failures that are built and
trained using on-line streamed data. The Anomaly Detector component that
sits on top of the predictive models is built using Databricks Deep Learning
Pipelines, which is an implementation of Google TensorFlow technology on
Apache Spark ML Pipelines. The Action Generator component, which is also
driven by DL technology, interfaces with the cognified dispatcher and check-
pointing systems.
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Google Maps or its crowd-sourced counterpart, Waze.

We envision two different usage scenarios for this platform.

In the first case, a system administrator is presented a global

view of the system indicating the actual loads at various

system resources (analogs of vehicle traffic on a transportation

map) along with other measures such as power consumption,

temperatures, queue lengths and job delays. The platform also

signals possible anomalous situations in the current system

state and suggests preventive actions that can be initiated by

the administrator (e.g., check-pointing, replication, migration,

consolidation). An innovative aspect of the system is the ability

for the administrator to switch to a crystal ball view where

the system metrics no longer correspond to now but reflect

some time in the future. In presenting this view, the platform

invokes its predictive capabilities for anticipating not only

future workloads but also possible failures, along with their

likelihood quantified as probabilities. In the second usage

scenario, the management service is invoked by an end-user

(with appropriate privileges) to guide the execution of her jobs.

In this case, the service displays different options for executing

a job that she is submitting (analogs of alternate routes for

traveling from point A to point B on a map). The options are

computed based on predictions of the job’s demands along

with predictions for future system states (including failures).

For each option, she is given estimates for various metrics

such as time-to-completion, cost and energy consumed. The

time-to-completion estimate takes into consideration proba-

bility of failures during the job execution and anticipated

system actions such as check-point/restart. Depending on her

privileges, the user may be given the option to select an

alternative execution path for her job or alternative system

responses to potential anomalies, sorted by their “popularity”.

A recommendation engine powered by DL technology is

included to incorporate innovative “social” features and learn

from the choices made by other users so as to empower

wisdom-of-the-crowd.

V. REMAINING CHALLENGES

To realize the vision presented in this paper, further progress

in a number of technical areas is necessary. We discuss some

of them briefly in what follows.

Prediction: The trend in prediction is towards on-line tech-

niques based on streamed data since they allow not only

generating predictions, but more importantly, allow acting

on them in real-time [63]. Being able to generate accurate

predictions in real-time based on high-volume and high-

velocity data that is being streamed is challenging. It requires

developing novel methods for on-line training and advanced

data management techniques for minimizing the delay when

making real-time predictions in live systems. It also requires

devising adaptive mechanisms for throttling the volume and

velocity of streamed data utilizing feedback from Machine
Learning algorithms to limit storage needs. Developing an

on-line prediction framework and using it to build predictive

models with recall over 80% and precision over 90% for

classification tasks and error under 5% for regression tasks

in HPDC systems remains an ambitious objective.

Resiliency, energy efficiency: Existing software-based tech-

niques for resiliency and energy efficiency in HPDC systems

act in isolation as if the two properties are independent, when

in fact they are often intertwined [64]. What is lacking is

a holistic approach to these problems through a cognified

dispatcher that can make intelligent and proactive decisions

driven by a suite of predictive models. Only in this manner

can we hope to navigate the complex trade-off space between

resiliency and energy efficiency. For example, powering nodes

on-and-off frequently to save energy can be detrimental for re-

siliency, while frequent check-pointing for increased resiliency

can be detrimental for energy efficiency. How to effectively

utilize information provided by different predictive models in

making dispatching decisions with multi-dimensional objec-

tive functions remains a challenge.

Deep Learning: The vision presented uses DL technologies

for predicting HPDC system behavior, for detecting anomalies

in HPDC operations and for formulating corrective actions as

part of a management platform. Unlike typical DL applications

such as image recognition or machine translation that can rely

on huge corpuses of data for training, anomaly detection in

HPDC systems typically has to contend with smaller training

sets since anomalies in HPDC systems, by definition, are rare

and generate strong class imbalance problems. An additional

issue is the structure of the feature space for sensor data,

where many features can have zero values (e.g., resource usage

for hybrid HPDC systems). While use of DL for detecting

anomalies is relatively straightforward since it can be cast

as a classification problem, use of DL for building predictive

models requires solving regression problems. Thus, we need

to progress beyond the state-of-the-art in DL technologies

to develop new techniques by designing training algorithms

that do not require huge data sets and that are suitable for

applying DL to regression problems. One possibility is to

seamlessly apply traditional regression methods on features

extracted by under-complete stacked de-noising auto encoders

or convolutional deep networks from time series data. Deep

networks provide a concise description of the time series, but

still enable regression methods to work on more informative,

non-linear correlations extracted from raw data.

System management: Current system management tools

are limited essentially to resource allocation, scheduling and

monitoring. They lack predictive or social capabilities, do not

provide control actions and are based on simple interaction

models. The vision we presented in this paper goes well

beyond the state-of-the-art and takes HPDC management

systems to a whole new level by incorporating advanced

predictive powers, social features empowering wisdom-of-

the-crowd and unprecedented control, all delivered within a

software tool featuring a modern user interface and advanced

graphical capabilities.
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VI. CONCLUSIONS

We have presented our vision for cognifying distributed

systems in order to render their future development sustainable

in terms of scale and computing power. Achieving this vision

requires embracing new fields such as data science, machine

learning and artificial intelligence. Specifically, data-driven

predictive models of system behavior need to be developed

for building intelligent systems to operate and maintain future

distributed systems. We have identified where and how data

analytics needs to be positioned for cognification to have

maximal impact on three areas: energy efficiency, resiliency

and manageability. For each area, we defined predictive mod-

els that can be built and integrated at various levels of the

distributed system. These include power, workload and failure

predictions that can help cognify job dispatching, fault tol-

erance mechanisms such as check-pointing, and management

tools in general. In the case of management, we sketched the

architecture of an intelligent platform that integrates all three

components.

We have underlined research directions along with the corre-

sponding challenges that need to be pursued to make our vision

a reality. For on-line construction of data-driven predictive

models, the challenges are in processing huge amounts of

data at high resolution, without imposing significant overhead

on the monitored system. Current machine learning methods

need to be optimized for on-line use and the scope of novel

techniques such as Deep Learning needs to be extended to

this application domain. As for building intelligent software

for management of distributed systems, what is missing is an

integration step where various components are made to act in

unison based on models built from data originating at different

sources.

We believe that solutions to other well-known problems

in distributed computing, such as coordination, consensus

and replicated data management, can also benefit from being

cognified. Consistent replication of data spanning multiple data

centers is a common technique for satisfying the extreme scale

and reliability requirements of data managed by the likes of

Google [65] and Amazon [66]. Consensus is an important

abstraction for guaranteeing replica consistency [67]. It is well

known that consensus cannot be solved in asynchronous dis-

tributed systems without a form of failure detector [68]. Fail-

ure detection is also critical for determining the performance

of the resulting solutions for consensus [69]. An interesting

open question is the relation between our predictive models

for failures and failure detectors that have been proposed

in the context of consensus. We believe that being able to

anticipate failures in advance, and not just detect them when

they occur, can prove to be very useful in devising better

consensus protocols.

ACKNOWLEDGMENT

A. Sı̂rbu acknowledges support from the European Union

project SoBigData Research Infrastructure — Big Data and
Social Mining Ecosystem under the INFRAIA-H2020 Program

(Grant Agreement 654024). BigQuery analysis was carried out

through a generous Cloud Credits grant from Google.

REFERENCES

[1] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina et al., “The opportunities and
challenges of exascale computing,” Summary Report of the Advanced
Scientific Computing Advisory Committee (ASCAC) Subcommittee, pp.
1–77, 2010.

[2] K. Kelly, The inevitable: understanding the 12 technological forces that
will shape our future. Penguin, 2017.

[3] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in International Conference on High Performance Comput-
ing for Computational Science. Springer, 2010, pp. 1–25.

[4] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,
N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero et al., “Scaling
the power wall: a path to exascale,” in High Performance Computing,
Networking, Storage and Analysis, SC14: International Conference for.
IEEE, 2014, pp. 830–841.

[5] A. Bartolini, M. Cacciari, C. Cavazzoni, G. Tecchiolli, and L. Benini,
“Unveiling eurora—thermal and power characterization of the most
energy-efficient supercomputer in the world,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 2014,
pp. 1–6.

[6] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing frontiers
and innovations, vol. 1, no. 1, pp. 5–28, 2014.

[7] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale
computing study: Technology challenges in achieving exascale systems,”
Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[8] S. Hukerikar and C. Engelmann, “Resilience design patterns: A
structured approach to resilience at extreme scale,” arXiv preprint
arXiv:1708.07422, 2017.

[9] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Application monitoring
and checkpointing in hpc: looking towards exascale systems,” in Pro-
ceedings of the 50th Annual Southeast Regional Conference. ACM,
2012, pp. 262–267.

[10] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173, 2014.

[11] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[12] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement
of hpc applications,” in Proceedings of the 22nd annual international
conference on Supercomputing. ACM, 2008, pp. 175–184.
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