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1 | INTRODUCTION

| Ozalp Babaoglu?

Summary

Power consumption of current High Performance Computing systems has to be reduced by
at least one order of magnitude before they can be scaled up towards ExaFLOP performance.
While we can expect novel hardware technologies and architectures to contribute towards
this goal, significant advances have to come also from software technologies such as proactive
and power-aware scheduling, resource allocation, and fault-tolerant computing. Development of
these software technologies in turn relies heavily on our ability to model and accurately predict
power consumption in large computing systems. In this paper, we present a data-driven model of
power consumption for a hybrid supercomputer (which held the top spot in the Green500 ranking
inJune 2013) that combines CPU, GPU, and MIC technologies to achieve high levels of energy effi-
ciency. Our model takes as input workload characteristics—the number and location of resources
that are used by each job at a certain time—and calculates a predicted power consumption at the
system level. The model is application-code-agnostic and is based solely on a data-driven predic-
tive approach, where log data describing the past jobs in the system are employed to estimate
future power consumption. For this, three different model components are developed and inte-
grated. The first employs support vector regression to predict power usage for jobs before these are
started. The second uses a simple heuristic to predict the length of jobs, again before they start.
The two predictions are then combined to estimate power consumption due to the job at all com-
putational elements in the system. The third component is a linear model that takes as input the
power consumption at the computing units and predicts system-wide power consumption. Our
method achieves highly-accurate predictions starting solely from workload information and user
histories. The model can be applied to power-aware scheduling and power capping: alternative
workload dispatching configurations can be evaluated from a power perspective and more effi-
cient ones can be selected. The methodology outlined here can be easily adapted to other HPC
systems where the same types of log data are available.

KEYWORDS

energy efficiency, hybrid HPC system, job length prediction, job power prediction, power

modeling, workload

Power consumption of computational systems has become a major concern in the computing community. Today; it is not uncommon for a large data
center, such as those hosting HPC systems, to consume as much power as a mid-size city, with the obvious economic and environmental conse-
quences. Furthermore, large power needs have negative implications for the systems themselves, for example by requiring complex and expensive
cooling structures and by limiting their scalability. Accurate models of power consumption in large computing systems will be extremely important
for optimizing their energy usage. Models allow for prediction of system behavior under various scenarios, enabling advanced scheduling and fault

tolerance techniques that are essential for making Exascale computing sustainable.
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In this paper, we model and predict system-level power consumption starting from workload measures for Eurora,

1 an experimental hybrid High

Performance Computing (HPC) system with CPUs, GPUs, and MICs. Our predictive model consists of three components. First, power consump-
tion of jobs is predicted from workload data using a Support Vector Regression (SVR) approach.? Second, we introduce a simple heuristic that enables
data-driven prediction of job length, which allows us to estimate which jobs will run in the system at a future time. The two predictions are then com-
bined to estimate the power used by computing units. Third, we develop a relation between power used by computing units and the total system
power, including networking, |O system, and other elements, using a linear model.

This work makes various contributions to modeling power consumption for HPC systems. First, the relation between power of computing units
and system power is investigated, and a clear linear dependency between the two is observed, in agreement with other studies. We take this result
one step further by building a complete power model for the entire system. Our second contribution is a model, constructed out of three compo-
nents, that is capable of predicting system-level power starting from workload data. Our approach does not require knowledge of application code
or hardware counters for power prediction. This makes the methodology easily extendable to other systems, since only simple workload measures
that are common to all HPC systems are used. Our final contribution is an investigation of the possible applications of our model to power-aware
scheduling.

The rest of this paper is organized as follows. We first discuss the data and our prediction approach in Sections 2 and 3. The transition from
workload to power consumption of computing units using job power and length prediction is investigated in Section 4.1, while the integration of all
three model components is described in Section 4.2, where results at system level are presented. Section 5 discusses potential applications of our

model. State-of-the-art is surveyed in Section 6, and Section 7 summarizes and concludes this paper.

2 | EURORADATA

This work uses workload and power measurements from Eurora, a hybrid HPC system installed at Cineca, the largest data center in Italy.3 The
system consists of 64 nodes each equipped with 2 CPUs (8-core Intel Xeon E5 CPUs) and 2 accelerators. The accelerators on half of the nodes are
GPUs (Nvidia Tesla Kepler), while on the other half, they are MICs (Intel Xeon Phi). Thus, the system is equipped, in total, with 1028 CPU cores, 64
GPUs, and 64 MICs. Eurora was number one on the Green500 list in June 2013 and runs a custom monitoring framework* that collects system logs
related to workload (hundreds of thousands of jobs from hundreds of users) and power consumption at both computing unit and at system levels.
The data is stored in a MySql database, henceforth referred to as the “Eurora database”. The measurements span the period from March 2014 to
August 2015, resulting in over 250 GB of data.

In our study, we start from workload information and build a prediction of system-level power consumption. In order to build our model compo-
nents, we require several data types: workload (information on jobs submitted to the system), recorded power for computing units, power measured
atsystemlevel. All these datawere extracted from the Eurora database. A preprocessing stage was required to correct missing data before extracting
the features useful for modeling and to synchronize the timestamps for the various data types. This meant replacing missing power of idle comput-
ing units with a default value and removing all data points where it was unclear whether the missing data were due to idle units. More details on the

procedure can be found in previous work.>
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FIGURE1 Workload properties for corrected data. The top-left plot shows the distribution of power consumption per job, measured at 5-minute
intervals. The rest of the histograms shows the distribution of resources used by each job (CPU cores, GPUs, and MICs)
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FIGURE2 Availability of power measurements at system level

After data correction and synchronization, workload data consist of 57,183 jobs from 401 unique users. Job information includes user, queue,
and timestamps for submission, start and finish, together with number of computing units used (CPU cores, GPUs, and MICs) and their allocation
in the system. These data were used to extract job length to be predicted by our heuristic and also input features for the SVR model predicting job
power consumption. Figure 1 shows the distribution of the number of computing units used by each job. Many jobs use only CPUs with about 26%
of jobs employing GPUs and about 2% employing MICs.

Power consumption for computing units (CPUs—including RAM power, GPUs, and MICs) is available in the dataset at a 5-second resolution.
Power is available at the level of CPU, GPU, and MIC and not at core level. These data were used to compute two measures. First, we computed
power profiles for jobs: power at 5-minute intervals for the computing units used by that job. These profiles became the regression target of the
first component of our model, SVR. Figure 1 also shows the distribution of power levels recorded at 5-minute intervals for each job. Second, we
computed the total power of all active computing units. This was used as an input feature for the third model component, the linear model mapping
computing to system power. Additionally, it was employed to validate the integration of the first two model components (see Section 4.1).

The third piece of data required for our study is power measurements at system level, ie, power consumed not only by the computing units but
the entire rack. The Eurora database includes a table that contains measurements at the main electric panel for the system, at 5-minute intervals.
These measurements were the target of our integrated model. Figure 2 shows power measurements available at this level. Several gaps that are
evident in the Figure are due to both system shutdowns and monitoring issues. For this reason, we concentrate on the period July-November 2014,
which contains enough contiguous data for training and testing our models.

3 | PREDICTION APPROACH

Using the data described above, we predict power consumption at system level based only on workload measures. This involves the integration of
three modeling components. Figure 3 presents graphically the approach adopted. The first component is an SVR model that is able to predict power
profiles for jobs, in advance. The second component is a heuristic that enables prediction of job length. The third and last component is a linear
model that maps power of the computing units to power at system level. Computing unit power is extracted by combining the first two modeling
components. In the following, we will describe each component individually and provide details on their integration.

3.1 | Job power prediction

The first component of our model predicts power consumption of jobs in Eurora starting from workload measures. The analysis uses only job charac-
teristics and collocation information and was introduced in detail in previous work.® The method uses SVR to build one model per user. For each job,
a wide set of regression features is employed to predict its power profile in time. A job is described by independent features, which are job name,
number of CPU cores, GPUs, and MICs used by the job and number of nodes allocated, but also by features that describe the workload and resource
allocation globally, for example, the number of cores/GPUs/MICs in use by other jobs collocated on the same nodes as the job being analyzed. This
choice enables prediction of power interference across jobs, so that different mapping of resources can result in differences in power levels.

The analysis is based on workload and power data extracted from the Eurora database. Specifically, we use measurements of computing unit
power to calculate the exact power used by each job at 5-minute intervals (the regression target) while features are extracted from the information
about resource allocation that exists in the database. For each user, we first build one SVR model to predict the power consumed by jobs on each
component type (CPUs, GPUs, and MICs), which are then summed to compute the overall power for jobs. This is applied at 5-minute intervals to
compute a power profile for each job of that user. We train each model with data up to September 2014 and then apply to jobs from the first week

of October 2014. Further details of job power prediction with this approach can be found in the original paper.®
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FIGURE3 System-level power model. The three model components are represented by the star boxes: SVR models to predict job power, heuristic
for prediction of job length, and linear model to obtain system power. Predictions resulting from the first two components are combined to predict
computing power, which is then used as input for the third component. Predictions at computing unit and system level are evaluated against

real data

TABLE1 Summary of data used for training and testing the SVM
Number of Users  Average Jobs Per User Average CPU Cores Average GPUs Average MICs Average Duration (Minutes)

Train data 34 12796 13.2 0.34 0.07 85.03
Test data 34 1579 12.62 0.36 0.06 95.01

For training, we applied the SVR method only to users with at least 1000 data points coming from at least 100 different jobs. Out of 84 users who
accessed Eurora during the first week of October 2014, 34 had enough data to train the SVR model. Table 1 shows general statistics of the workload
for these users, for the training and testing periods. For the rest of the users, who had less data available, we used an Enhanced Average Model (EAM),
also introduced in previous work.? It is important to note that the data related to the activity of the remaining users consist of much fewer data
points compared to those for the 34 regular users.
oys GPU:PL, s MIC: Py,

existing training data. For each job j belonging to the user, we count the number of units used by the job, denoted as népu, népu and n,{mc. The predicted

To apply the EAM, we computed for each user u an average power per unit type (CPU core: P ) from the limited amount of

job power can then be computed as follows:

+nl o XPy.. (1)

i« _ pu j p
P = nCPU x PCPU + nGPU x P MiC

j EPU
For instance, if a job uses 10 CPU cores, one GPU and no MIC, and the average power per CPU core for that user is 7.9 W, while the average GPU
power is 47.5 W, then the predicted power for the job will be 10 x 7.9 + 47.5 = 126.5 W. This value is used at all time points t when the job is active;
hence, the job profile is static. In the rare case where no user data for training existed, we used a global (over all users) average power consumption
per unit in the EAM.
In previous work, we compared the SVR approach with the EAM and we observed that performance improved for most of the users when using
SVR. However, when an SVR model cannot be trained due to lack of data, the EAM provides a valid replacement since we obtained R? values greater

than 0.5 over all user jobs.

3.2 | Joblength prediction

A second component of our analysis is concerned with prediction of job length. In order to predict computing power in advance, clearly, we need to
predict not only the power consumption for all jobs but also estimate their lengths. This allows us to predict which jobs will be present in the system
at afuture time.

Thejob length prediction component of our model is based on a very simple heuristic: search the user history for a similar job and use the duration
of that job as the predicted duration of the current job. We chose this approach based on observations made on the data that we will outline in the

following. With these observations, we devised a simple set of rules to find a similar profile in the user history. For this, we inspected the workload and
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extracted a so-called job profile for each job. This includes the job name, the queue name, the user-declared wall-time, and the number of resources

of each type (CPU, GPU, MIC, and nodes) used. We analyzed users separately.

A first observation was that jobs with identical profiles did not always show similar durations over time. Instead, a sort of step function was
observed: consecutive jobs with the same profile will have very similar running times for a period, then switch to a new set of similar running times
that could be larger or smaller. This indicates a user pattern where the user switches between states. A possible scenario is that, at first, the user
tests the application on a small dataset, running several simulations, then moves to a larger one, again running one or more instances, then switches
to a different dataset, and so on. Every time there is a change, we see in the data a shift in job duration, followed by a set of jobs with similar running
times. The size of these sets ranges from one to tens or even hundreds of jobs. So, a good strategy for estimating job duration is to look at the last job
with anidentical profile and take that duration. This leads to good predictions most of the time and to large errors only when the user switches state.

Sometimes, however, a job with an identical profile may not be present in the user history. Hence, we need to understand whether we can make
a correspondence with different jobs. We inspected the job names and observed that, while using the same job name is common, another common
pattern employed by users is to have a common prefix for the job name, followed by a number such as ‘run1’ and ‘run2. Hence, if we do not find an
identical job in the user history, we look for a job with the same prefix name, with the rest of the profile unchanged.

If this matchis also not possible, we look for the last job that had the same name and was submitted to the same queue and with the same wall-time,
even if the resources used are slightly different. The reason we use the queue as a criterion is that Eurora uses several queues intended for jobs of
different sizes. If also this search fails, we look for the same match but with the name prefix rather than the exact name. If none of these rules give a
match, we look for the last job with the same name or, as a last resort, the same name prefix.

For instance, if we take as an example the job profile {job-name:TRANSFER1, wall-time:06:00, queue:parallel, ncpu:1, ngpu:0, nmic:0, nodes: 1},
then the first rule will provide a match if an identical profile is found in the user history. If not, the second rule would match the profile
{job-name:TRANSFER*, wall-time:06:00, queue:parallel, ncpu:1, ngpu:0, nmic:0, nodes:1}, ie, where the job name has the same prefix but the trail-
ing number is different. The third rule would match the last job that has the profile {job-name:TRANSFER 1, wall-time:06:00, queue:parallel,ncpu:?
ngpu:’ nmic:* nodes:*}, ie, regardless of resources used. The fourth rule would match a profile {job-name:TRANSFER*, wall-time:06:00,
queue:parallel, ncpu:* ngpu:’ nmic:* nodes:*}. The last two rules will match the last profile that has the job name ‘TRANSFER?1’ or ‘TRANSFER*,
regardless of the value of the other fields.

This procedure provided a match over 92% of the time. If all rules fail, then we take the user-declared wall-time as the predicted duration. After

applying all rules, prediction is capped by the wall-time, since the Eurora scheduler kills all jobs that exceed it.

3.3 | System power model

The third component of our analysis is a model of system-level power consumption, taking as input the power of the computational units. We extracted
measurements of power consumption at system level at 5-minute intervals from the Eurora database. Power of each individual CPU, GPU, and MIC
was also extracted and summed to obtain total computing power. Figure 4 plots power of the system versus total computing power for our dataset.
It is clear that there is a strong relationship between the two power measures, with a very high Pearson correlation coefficient (0.939). Thus, we
built a linear model of system power, denoted as LM, starting from the individual computing units. The model provides an estimate of the system-level
power P;(t) at time t as a linear function of the measured power of computing units Pc(t) at the same time t, as follows:

Ps(t) = LM (Pc(t)) . (2)
In order to evaluate the model, we opted for a classical cross-validation approach, where the model is trained and tested on separate datasets. In

the following, we will show results from training with all data from September 2014 and testing on data from the first week of October 2014.
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FIGURE4 Power consumed by the entire system versus power of computing units only
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3.4 | Modelintegration

Having obtained job power profiles (predicted at 5-minute intervals using the SVR component of our model), we can calculate the total predicted
power of computing units P(t) at time t by summing the predicted power of individual jobs running on the system at time t, P].*(t), together with the
power of the idle units, P;ge(t), as follows:

Peh =Y, Pi®)+Piaed). (3)

j€Jobs

Idle power can be measured once for each unit type, with Py, being the sum over all idle units. For instance, if at a certain time t there are 3 jobs
running, usingin total 160 CPU cores, 2 GPUs, and 1 MIC, then the predicted system power P (t) will be the sum of the power of each job, predicted
by the SVM model, plus the idle power for the rest of the components (864 idle CPU cores, 62 idle GPUs, and 63 idle MICs). In the following, we will
show results where SVR models were trained with data before October and applied to predict the total power for the first week of October 2014.

In Equation 3, “Jobs” denotes the set of all jobs running at time t. Hence, it is assumed that the set of active jobs is known in advance. In a real
setting, however, this set also needs to be predicted, and we completed this task by using job length predictions resulting from our second model
component. Specifically, at every time step, we predict which job will still be running at the following time step (5 minutes in the future) by considering
the set of all the jobs whose predicted length indicates that they will still be online. At the same time, every 5 minutes, we can ensure that jobs that
are known to have finished are removed from the set of online jobs. Hence, if we consider the set of jobs predicted to be running at time t to be Jobs™,

then Equation 3 becomes

PE®) = ) Pr(t) +Pae(d) (4)
j€Jobs*
Then, to obtain the desired system-level power predictions, one only needs to apply the linear model LM described in Section 3.3 to the predicted

computing power PZ* from Equation 4. We have

Pi(t) = LM (P (b)) = LM< Z Pr(t)+ Pid|e(t)> ) (5)

jeJobs*

Itis important to note that the linear model LM is trained using the real (measured) power consumption of computing units, Pc(t) from Equation 2.
However, in the final model, it is applied to the predicted power of computing units, which uses both job power and length prediction, P**(t).

Again, application of the system-level model on test data from the first week of October 2014 will be shownin the following. Both linear regression
and SVR were performed using the scikit-learn Python package,” while data preprocessing for feature extraction was performed using the BigQuery

cloud platform.8

3.5 | Evaluation criteria

At each step, the models were evaluated using two standard criteria for regression: the normalized-root-mean-squared-error (NRMSE) and
R-squared (R%). We have

\/ (X1, (Psty - Pyctn)*) /N
Ps

N 2
_, (Ps(t) — Pe(t)
RZ =1-— Zl:l( S S ) , (7)

ZL(PS(E) - ps)2

where N is the number of time points considered, Pty and Ps(t;) are the predicted and real system-level powers at time t;, respectively, while Ps is

NRMSE = (6)

the average of the real system power over all N data points.

NRMSE measures the error between prediction and real data as a fraction of the average measured power. It takes positive values only, with small
values meaning errors are much smaller than the average power levels. The R? criterion includes information on variability in the data and compares
the errors to the natural variability. It tells us how the model performs compared to the so-called “average model”—a model where power is predicted
to be the average of all power levels measured. A value close to O indicates that the model is no better than the average model (error is comparable
to the standard deviation of the data), while larger values correspond to models better than random (with 1 corresponding to perfect prediction).

4 | RESULTS

In this section, we discuss the performance of our integrated model. We first evaluate the prediction of power at the level of computing units, then

we move on to system-level power.
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4.1 | From workload to power of computing units

Power consumption of computing units is predicted by our model based on workload measures. We employ job power predictions by SVR (first
model component) and job length predictions using our heuristic (second model component). In this section, we will evaluate the two mechanisms
separately.

First, we discuss the predicted computing power obtained by summing job-level predictions and considering the job length to be known
(Equation 3). Figure 5 displays the total predicted power after summing over all users, compared to the measured time series.

The model performance is extremely good, with errors under 3% and very high R? values. Job power prediction, as showed in previous work,
provided accurate predictions (NRMSE under 20% and R? values over 0.5) for over 80% of the users; however, for some users, results were less
accurate. Considering all users together allows for errors for some of the users to be compensated by others so that the final performance is very
good. This means that prediction of total power of computing units can be successfully achieved starting from job power predictions.

Secondly, we introduce the prediction of job length, to be used together with predicted job power. To evaluate our approach for job length predic-
tion, we computed the absolute error between the real length and that obtained with our heuristic. For all jobs ever logged in the system, the mean
absolute error was 38.9 minutes, which is a much better prediction compared to the user-defined wall-time, which is typically used to estimate job
duration, and which would have provided a mean error of 225.11 minutes. When looking at the first week of October 2014 only, the mean absolute
error was 6.94 minutes. Figure 6 shows the cumulative distribution of October errors for our approach. We can see that our method obtains an
error smaller than 1 minute for over 65% of the jobs, while almost 90% of jobs display errors under 10 minutes. For some jobs, we have higher errors.
These jobs correspond to shifts in user state (eg, the same job that was short now starts to last much longer, possibly due to a change in input data).

The question now is how does this additional error in job length affect computing and then system-level power prediction. For this, we apply
Equation 4 to obtain predicted computing power starting from workload measures, hence combining the power and length prediction results (the
first two components of our model). Figure 7 shows a comparison between the predicted and measured power consumption at the level of computing
units.

As the Figure shows, computing power is still reproduced very well. As expected, the error grows, from 2.5 to 6.8% with some periods pre-
dicted much better than others. We can observe some periods where our model underestimates computing power, and this corresponds to

underestimation of job length during prediction.
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FIGURE5 Power consumed by computing units, obtained by predicting power for individual jobs (Equation 3). Here, we assume that the job
length is known. The dashed line shows the real (measured) power of computing units
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FIGURE7 Power consumed by computing units, obtained by predicting both power and duration for individual jobs (Equation 4). The dashed line
shows the real (measured) power of computing units

4.2 | From computing units to system-level power

In order to be able to predict system-level power consumption starting from the power of computing units, we first need to train the linear model
that is the third component of our integrated approach. For cross-validation, the model was trained with Eurora data from September 2014 and
tested on data from the first week of October 2014. Increasing the amount of training data did not improve performance, so we decided to limit the
training period to one month, meaning that, in an online setting, previous historical data could be discarded, thus saving storage resources.

Figure 8 shows the real and estimated power time series, with NRMSE and R? values included. The linear model provides a very good fit, with
errors below 5% and high R? value. Thisisa strong indication that a linear model can extrapolate very well from computing power to system power.
It is important to note that this first evaluation at system level starts with measured computing power. In the rest of this section, we will discuss
performance on the predicted computing power introduced in Section 4.1.

We thus combine the three models to obtain system-level power predictions from predicted workload measures. We apply the linear model
evaluated in Figure 8 to the predictions shown in Section 4.1. Again, we first evaluate performance when employing only job power predictions, so
considering the job length to be known. Figure 9 displays the prediction result.

As the Figure shows, prediction is very similar to the measured system power, with overall errors for the first week of October 2014 of under
3% and very high R2.We can observe a slight trend of underestimating large power levels, especially for singular peaks, and overestimation of very
low power levels. The former appears to be due to underestimation at step 2 (Figure 5), while the latter seems to be caused by the linear model
overestimating lowest values (Figure 8).

However, this prediction is rather unrealistic, since in a real setting, job length would not be known in advance. To estimate a more realistic per-
formance, we apply the linear model also to the power of computing units shown in Figure 7, ie, employing both power and length prediction for
jobs. Results are displayed in Figure 10.

We can observe again a slight increase in error, compared to the case when job length was assumed to be known: 4.5% versus 2.6% errors. How-
ever, this was to be expected, and predicted power remains very close to the real measured power. In conclusion, after integration of the three
components, our model is able to faithfully predict system-level power.lt is important to note that this prediction does not use as features any mea-
surement of power at any level, nor any performance measures, but only information on workload (number of computing units used by jobs for the
various users). Hence, online application of the model would require monitoring only the workload. However, historical power measurements are

necessary for model training.

NRMSE=0.044 R-squared=0.691
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FIGURES8 Power consumed by the entire system, estimated, using a linear model, from power of computing units. The dashed line shows the real
(measured) system-level power consumption
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FIGURE9 Power consumed by the entire system, forecasted with the linear model from predicted computing power obtained from job power
predictions. Here, we consider the job length to be known. The dashed line shows the real (measured) system-level power consumption
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FIGURE 10 Power consumed by the entire system, forecasted with the linear model from predicted computing power obtained from both job
power and job length predictions. The dashed line shows the real (measured) system-level power consumption

5 | DISCUSSION AND APPLICATIONS

The analysis presented was performed off-line for historical data. In practice, it is intended for on-line use, for instance, when using the live monitor-
ing system to extract feature values and compute power predictions in real time for future time windows. As we have discussed in previous work,®
prediction of job power profiles does not imply a large overhead to the system. Job length prediction is very simple, requiring only to record the pre-
vious job profiles and corresponding lengths for each user and requiring limited processing power. Training and applying the linear model also has
low overhead, with negligible running times required. Hence, all in all, the entire model is straightforward to employ.

Theresults presented (Figure 10) are related to predicting future system-level power for a 5-minute time window. We restricted the time window
in order to be able to take into account the fact that job length overestimations can be corrected simply by looking at the system itself: even if the
predicted job length suggests that one job may still run for a long time, it may happen that the job actually finishes earlier. In this case, prediction is
overridden by measurement, improving performance. In a real setting, this window can of course be varied. The maximum future time window for
which prediction can be achieved depends on factors such as the frequency of job submissions by the user, job length, and load of the system. Every
time a new job is ready to start, our model can predict the power profile for the system, given also the other jobs currently running on the machine,
with their respective predicted job lengths. Thus, a complete system-level profile can be obtained at least until anew job is started. Then, the profile
changes according to the new job. On a very busy system with long queues, prediction can be obtained for longer periods of time, since we can
know in advance what jobs will be scheduled next. On a lightly used system, the prediction window depends practically only on the time between
job submission by users, which is more difficult to foresee. HPC systems, in general, work with relatively long and heavy jobs and queues that are
always busy, making our approach very useful in this context.

The method presented here is easily applicable to any HPC system. Of course, this involves training models of job power consumption and job
duration for the users of the new system and learning the dependencies between power at computing units and system level, using the methodol-
ogy outlined in this paper. It is possible that the linear relation between system and unit power does not hold in some systems, in which case, the

linear model can be replaced by a non-linear regression model. Once the three model layers are learned, they can be combined into one prediction
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framework. Thus, on the new system, the required measurements are workload (number of units of each type used by the jobs) and power consump-

tion at computing and system level. These are typically available on HPC systems (eg, the work of Sirbu and Babaoglu?). When power of computing
units is missing, temperatures can be used as their proxies.” With regard to applications outside the HPC domain, this is still possible but would
depend on the system type. The data-driven approach is based on a certain stability of the system, in terms of components and user behavior. Hence,
while for certain homogeneous systems such as clouds this may be the case, for other heterogeneous systems like grids, our method would not be
able to learn power patterns.

System-level power predictions can have several applications for optimization of behavior for HPC systems. Besides providing a tool for operators
to be aware of future power values, the model can also be used to decrease power consumption by adjusting job scheduling and resource allocation.
Power for various scheduling and allocation schemes for the same workload can be predicted, and the scheme with the lowest power employed. This
is made possible due to the wide range of workload features considered, which include global description of resources allocated to jobs. Specifically,
the number of nodes that a job uses and the number of cores in use by other jobs change from one allocation scheme to another, changing thus
power consumption. Our task would be to construct a low-power mapping of resources to jobs, which would require some form of search-based
optimization. For instance, methods relying on constraint programming are already widely used for HPC scheduling and could be extended to take
into account power and job length predictions.10 Evolutionary techniques could also be a possibility. The disadvantage of these methods, when
facing currently used HPC schedulers, is their running time; hence, suitable implementations are needed.

Another example of a power-aware technique that is commonly explored, especially given the increased power needs of HPC infrastructures, is
power capping. This technique is not concerned with decreasing overall energy consumption, although this may happen as a side effect, but con-
centrates on maintaining total system power at bay, so that the capacity of the energy provisioning system is not exceeded. Here too, our model can

provide important information on power for future system states, so that scheduling meets the power capping needs.

6 | RELATED WORK

With energy needs becoming a major concern for large computational infrastructures, numerous recent research efforts have focused on analyzing
and reducing power usage.1112 A large amount of work regards modeling power for various types of computing units, starting from load, frequency,
and other hardware counters. For instance, single and dual core CPU power is modeled in the work of Dargie®? by considering the relation between
the probability distribution functions of load and power, while servers with up to 8 cores are studied in the works of Takouna et al'4 and Kim et al.1>
GPU power is estimated from load measures in the work of Ma et al.1¢ These methods do not allow for advance prediction in real life scenarios,
since load and hardware counters cannot be known in advance, unless they can be predicted through other methods. Our method is significantly
different in that we model total system power starting exclusively from workload measures, without the need to monitor the individual components,
enabling advance prediction of power.

Power requirements of HPC applications have also been analyzed in the recent years. For instance, the US Department of Defense is using appli-
cation signatures to predict power consumption across different architectures.” Performance counters are used to model application power on
three small scale HPC platforms by Witkowski et al.18 GPU CUDA kernels are analyzed in the work of Nagasaka et al,1? again based on job perfor-
mance counters. Recently, we have introduced a method® based on Support Vector Regression (SVR), which builds one power model per user to
predict job power consumption based on workload in Eurora. This method has the advantage over others in that it does not require instrumenting
the applications to extract signatures and performance counters, but only needs the number of resources required, making it much more straightfor-
ward to apply. In this work, the SVR method was employed to predict power of computing components, from which we then obtained system-level
power. Recently, another method for predicting power solely from workload data was introduced??; however, the authors concentrate on predicting
mean power for jobs and not full power profiles like we do.

Inthe quest for Exascale computing systems, where energy needs will be much greater, it isimportant to analyze power of large computing infras-
tructures at system level. Related work cited above looks only at individual computing components or jobs, while we concentrate on total system
power including hardware other than computing components, such as networking and I/O. Very few other examples of power analysis at system
level exist in the literature, despite a recognized need for development in this direction.2! For example, recently, Google has introduced a method??2
of modeling Power Usage Effectiveness (PUE) through an Artificial Neural Network, which takes as input workload, cooling, power, together with other
external information such as outside temperature and wind speed. This allowed for testing various data center scenarios and improving PUE for the
system under analysis. Resource usage indicators (such as operations per second) are used in the work of Canuto et al23 to model power at system
level for a heterogeneous datacenter. Using nonlinear transformation of raw resource usage indicators, the authors generate a set of features of
interest that are then mapped to power consumption using linear regression. Again, all these models are useful for estimating power consumption
while measuring the input features but do not allow for power prediction.

Some work also exists for prediction of job length on HPC systems. Typically, the prediction task is solved using machine learning techniques,
where various job properties are used as input to a model that can predict the remaining running time for the job. For instance, Ejarque et al24

record the memory and CPU usage for jobs in time and provide an estimate of the remaining running time, using a statistical classifier. A similar
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approach is the work of Chen et al,2> where kernel logs are used to monitor job execution, in order to predict remaining running time. The authors

use a Hidden Markov Model to perform the prediction. In both examples, jobs need to be monitored after they have started to understand their
characteristics and respond to changes. Our work instead uses only general job information available just before the job is started; hence, it is much
more flexible. Additionally, our heuristic does not require any complicated training procedure, while producing very good prediction results. This
provides an advantage for on-line usage.

Job duration prediction has also been analyzed in the context of job scheduling.2é Here, predictions are performed using linear regression, using
the past running times and resource utilization as features. The authors show that slowdown during scheduling can be improved by 28% through pre-
diction of job length. Our predictions can also be employed to optimize scheduling approaches, as we intend to do in future work, with the additional
advantage that we can obtain power-aware schedulers by combining power and length predictions for jobs. Examples of power-aware techniques
include power-capping, such as the works of Borghesi et al.27:28 Studies along these lines could benefit from accurate system-level power prediction
that we introduce in this paper. Power-reducing scheduling techniques have also been investigated using Dynamics Voltage and Frequency Scaling
in virtualized cloud environments.2?:30

Our predictions can also enable power-reducing scheduling, due to the fact that we employ features related to resource allocation. That means
that different load levels for a node are incorporated in the model. Different loads typically lead to different voltage/frequency scales. Thus, power
usage under various such scales can be learned by our model provided that enough data is available.

A different application of power models is prediction or identification of anomalous behavior. For instance, the Google PUE model22 allowed for
identification of anomalies in monitoring, when the model did not fit the data any more. Similarly, a decrease in modeling performance can predict
system failures as well. Our model can also be used to predict anomalous behavior, as we discussed in previous work.>

7 | CONCLUSIONS

We have presented a 3-layer model of system-level power consumption for Eurora, a hybrid HPC installation containing CPUs, GPUs, and MICs.
The model takes as input workload parameters, namely, job names and resources allocated to each job. It first computes a predicted profile of power
consumption for each job using Support Vector Regression and forecasts job duration with a simple heuristic. The two predictions are then used to
estimate power for computing units. This estimation is provided as input to a linear model able to predict total power at system level, including also
networking, 10, and other elements.

The approach achieves very good performance on test data, with errors under 5% for the first week of October 2014. The methodology can be
easily applied to other systems since the data types used are generally available in most HPC systems.

We have discussed applications of our predictions. One is power optimization through job dispatching. Being able to forecast job length and
power can enable dispatchers to choose among different allocation schemes that reduce consumption. A different application could be capping
power usage for HPC systems, again in the context of scheduling algorithms. Both applications are considered for future work, possibly together
with investigating alternative power models based on hardware counters, which could be adapted to perform advance power prediction rather than
real time estimation. Knowledge of the application code for jobs could also help; however, these data are not currently available in our system. The

methodology outlined here can be easily adapted to other HPC systems for which the same data types are available.
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