
The cost of usage in the λ-calculus
Andrea Asperti

University of Bologna
Bologna, Italy

Email: asperti@cs.unibo.it

Jean-Jacques Lévy
INRIA Paris-Rocquencourt

Le Chesnay, France
Email: jean-jacques.levy@inria.fr

Abstract—A new “inductive” approach to standardization for
the λ-calculus has been recently introduced by Xi, allowing him to
establish a double-exponential upper bound |M |2

|σ|
for the length

of the standard reduction relative to an arbitrary reduction σ
originated in M . In this paper we refine Xi’s analysis, obtaining
much better bounds, especially for computations producing small
normal forms. For instance, for terms reducing to a boolean, we
are able to prove that the length of the standard reduction is at
most a mere factorial of the length of the shortest reduction
sequence. The methodological innovation of our approach is
that instead of counting the cost for producing something, as
is customary, we count the cost of consuming things. The key
observation is that the part of a λ-term that is needed to produce
the normal form (or an arbitrary rigid prefix) may rapidly
augment along a computation, but can only decrease very slowly
(actually, linearly).

I. INTRODUCTION

The standardization theorem, stated and proved for the first
time by Curry and Feys back in 1958 [11], is one of the
major results of λ-calculus. It states that for any reduction
σ : M � N there exists a standard reduction between the
same terms that avoids to reduce residuals of previous redexes:
in other words, redexes are fired, if ever, as soon as they are
met in leftmost outermost order. As a consequence, a term
M has a normal form if and only if the leftmost reduction
sequence originated by M is finite (normalization theorem),
explaining the relevance of lazy strategies in functional pro-
gramming languages.

There are also important relations between standardization
and sequentiality, as first observed by Plotkin in his seminal
work on PCF [23]. For instance, we can easily argue that
parallel-or cannot be expressed in the λ-calculus: there is no
context C[,] such that C[Ω,Ω] has no normal form, but
C[Ω, I] and C[I,Ω] have normal forms, where ∆ = λx. xx,
Ω = ∆∆ and I = λx.x. Indeed, with Curry’s standardization
theorem, we know that a normal form is always reached by
the leftmost-outermost (normal) reduction. There are three
possibilities: if the normal reduction of C[M,N] ignores M
and N then C[Ω,Ω] has a normal form too; if the normal
reduction starts looking at M , then C[Ω, I] cannot have a
normal form; conversely, if it starts looking at N , then C[I,Ω]
cannot have a normal form. Hence, the deterministic feature
of the normal reduction enforces the stability property of the
predicate “has a normal form”.

Many proofs of the standardization theorem can be found
in the literature such as [22], [16], and [8]; abstract properties

of the standardization process have been investigated in [13].
A novel approach, that avoids the notion of development
and is entirely based on structural induction on λ-terms and
derivations, has been recently proposed by Xi [26] (see also
[15]). Xi’s approach not only results in a very concise proof,
but it also establishes an upper bound to the number of steps
in the standard reduction sequence obtained from a given
reduction sequence.

Let us define the multiplicity m(R) of a redex R =
(λx.M)N as the number of occurrences of x in M . Let
σ = R0R1 . . . Rn be an arbitrary reduction. Xi proves that
there exists a standard reduction σs such that

|σs| ≤ (1 + max{m(R1), 1}) · · · (1 + max{m(Rn), 1}) (1)

where |σs| is the length of σs.
Since the multiplicity of a redex Ri is obviously bound by

the size |Mi| of the term it belongs to, and the size of Mi is
at most a double exponential |M |2i of the size of the initial
term M = M0, we also have

|σs| ≤ |M |2
1

· · · |M |2
n−1

< |M |2
n

(2)

In Xi’s own words, the previous bounds are “not very tight,
but intelligible”. However, it is possible to provide concrete
example of terms exhibiting a double exponential explosion,
such as the following one.

Example 1: Let I = λx.x and two = λx.λy.x(xy). Let us
define

M0 = xx
Mn+1 = two(λx.Mn)x

In four steps
Mn+1 →Mn[Mn/x]

The (normal form of the) term Mn grows as a double
exponential in n, and an innermost reduction get to the normal
form in a linear number of steps. Consider now the term

En = λx.Mn(Iz)

If we reduce the argument first, we can still compute the
normal form in a linear number of steps; if we reduce Mn

first, we will eventually create a double exponential number
of copies of (Iz).

�
Since we have indeed examples of λ-terms whose standard
reduction grows as a double exponential of the length of the
shortest reduction, the problem seems to be essentially settled.

In fact, it is not. The point is that the only known examples
are based, as in the previous case, on fast growing λ-terms
producing at the end huge results, where just the cost of
their reading dwarfs the number of steps required for their
construction. As a matter of fact, we are never really interested
in computing functions but, possibly, just to partially evaluate
them in view of their future application. At the end, we
are merely interested in atomic results (data types that, like
variables, or booleans, take a fixed amount of space and can
be read in a constant amount of time).

So, the natural question is if we can refine Xi’s analysis
in case we restrict the attention to computations leading to
a known rigid structure. The answer is surprising and quite
unexpected: not only it is possible to generally give a better
bound, but this bound is sensibly smaller than Xi’s one. For
instance, in case of computations producing a variable (or a
boolean) we are able to prove that the length of the standard
(hence normal) reduction σs is at most a factorial of the length
of the shortest reduction sequence σ:

|σs| ≤ |σ|! (3)

As far as we know, our approach is original and innovative
too. The general idea is that instead of trying to count the
cost for producing something, as customary, we count the cost
of consuming things, where by consuming, we do not mean
wasting (that is a very easy and quite inexpensive task) but
really exhausting things through they concrete usage. In the
case of redexes, the difference should be clear: something is
to throw away a redex inside garbage, and something else is
to consume it by its firing.

In order to distinguish between the two previous forms of
consumption, we need to be able to distinguish what is live
(needed) or dead (useless) inside a lambda term, along a given
computation. The technical tool that we shall use to this aim
is offered by prefixes: partially specified terms, where some
subterms have been replaced by a dummy constant (a hole).
For a lambda term M producing a normal form A, there exists
a minimal prefix bMcA of M that is enough for producing A,
and we say that a subterm of M is live for A if it belongs to
the minimal prefix.

The main technical contribution of the paper is a refinement
of Xi’x bound where we replace the notion of multiplicity of a
redex with that of “live multiplicity”: we only need to count the
occurrences of the variable that are live for the given reduction.

The other important observation is that the live prefix of
a term consumes very slowly (at most linearly) along any
reduction. Since the size of the live prefix is an upper bound
to the live multiplicity, is then very easy to get our factorial
bound 3.

The structure of the paper is the following. Section II is
devoted to the formal definition of prefixes and their theory;
the main result in this section is the Slow Consumption
Lemma 7. In Section III, we rephrase Xi’s approach focusing
on live prefixes of lambda terms; the main result is Theorem
2 that refines Xi’s bound of Equation (1) by just considering
the “live” multiplicity of variables. Finally, in Section IV we

put together these two results to get the factorial bound of
Theorem 3.

II. PREFIXES

We consider λ-terms augmented with a constant . For-
mally, this gives a theory of contexts, but we are more
interested to look at them as prefixes, or incomplete terms,
where some part of the term is not specified. Let Λc be the
set of these terms. The notions of substitution, β-reduction,
and so on are completely standard, so we omit them.

Definition 1: Given two terms M and N in Λc we say that
M is a prefix of N (M � N) if N matches M except on
subterms.

Lemma 1: (lifting) Let P �M ; if P → Q, then there exists
N such that Q � N and M → N .

Proof: Trivial.

A. Rigid prefixes

Following [17], we say that a λ-term is a 0-term if it cannot
reduce to an abstraction.

Definition 2: A prefix A of M is rigid if A is in normal
form and morevoer all occurrences of in head position of an
application correspond to 0-subterms of M .

If A is a rigid prefix of M and M → M ′, then A is a
rigid prefix of M ′, that explains the terminology. Any redex
ever fired along a reduction rooted in M is “below” A, in the
sense that if M � N and R : N → N ′, then the occurrence
of R is N (expressed as a path) is of the form u · v where u
is occurrence of in A.

Rigid prefixes are finite approximants of Berarducci
trees[9]. They can only be of form λx.A1, xA1A2 . . . An or
A1A2 . . . An where Ai are rigid prefixes and n ≥ 0. For in-

stance (λx.x) is a rigid prefix of M = Ω(λx.x(Ix))(IIx).
But (λx.x)(Ix) is not rigid prefix of M .

Definition 3 (production): Given a prefix A, we say that M
produces rigid A if there exists N such that M � N and A
is rigid prefix of N .

It is easy to show that rigid prefixes enjoy a Church-Rosser
property. But more important for us, they respect the stability
property[10].

Lemma 2: For any term M producing a rigid prefix A, there
exists a unique minimum prefix bMcA of M producing A.

Proof: The proof is the analogous for Berarducci trees
of the proof for Bohm (or Lévy-Longo) trees in [10]. It is in
fact the one by Plotkin using the standardization theorem in
PCF [23].

Remark 1: The notion of minimal prefix can also be easily
understood in terms of the labeled calculus [19] or paths [5].
Suppose M produces A. In the former cases, given an initial
labeling for M , the minimal prefix bMcA is the prefix of M
containing all labels appearing in A. In the latter case, bMcA
can be understood as the minimal prefix of M containing all
ancestors of paths in A.

Definition 4 (live and dead): Let M be a term producing a
rigid A:

• a subterm P of M is live for A in M if (the root of) P
belongs to bMcA

• a redex (λx.P)Q is live for A in M if its function part
(λx.P) is live for A.

• the live multiplicity m(R) of a redex (λx.P)Q in a term
M is the number of live occurrences of x (that is the
number of occurrences of x in bMcA).

For instance M = (λf. ff(f∆))(λx.I) reduces to I , and

bMcI = (λf.f (f))(λx.I)

The subterm ∆ is dead for I in M , as well as the second
occurrence of f ; so the live multiplicity of f is 2.

Notice that, in general, a minimal prefix of a term does not
reduce to a minimal prefix. For instance, let P = λx.xII ,
fst = λx.λy.x, snd = λx.λy.y and let us consider the term

M = (λx.x fst (x snd))P

that reduces to I . Then, bMcI = M ; however M reduces to

N = (λx.xII) fst ((λx.xII) snd)

and
bNcI = (λx.xI) fst ((λx.x I)) snd)

However, if M → N , the minimal prefix of N is a prefix of
the reduct of the minimal prefix of M . Formally:

Lemma 3: For any rigid prefix A produced by M and any
redex R : M → N then either R is dead for A and hence
bMcA = bNcA, or R is live for A and R : bMcA → N ′

where bNcA = bN ′cA � N ′ � N .
Proof: By the minimality of the prefix. Slight subtlety:

the top pair application and abstractions nodes of R cannot
overlap the boundary of bMcA since A is rigid.

As a corollary of the previous result, we cannot have
zombies around: a live subterm can only be a residual of a
live subterm (or, stated the other way round, deads remain
deads).

Lemma 4: (no zombies) For any rigid prefix A produced
by M , any redex R : M → N , and any subterm P of N , if
P is live for A in N then it is a residual of a live subterm for
A in M .

Proof: Obvious corollary of Lemma 3.
Corollary 1: (live multiplicity may only increase) Let M

be a term producing a rigid prefix A, and suppose M →M ′.
Then, for any redex R′ in M ′ residual of a redex R in M ,
mA(R) ≤ mA(R′).

Proof: Since by Lemma 4 any live occurrence must be a
residual of a live occurrence.

Of course, it is not true that the any residual of a live
subterm remains live. Nevertheless, a live subterm, if it is
not consumed along the reduction, must have at least a live
residual.

Lemma 5: (survival) For any rigid prefix A produced by M ,
any redex R : M → N , and any subterm P of M , if P 6= R
is live for A in M , then it has at least one live residual in N .

Proof: Replacing P with in bMcA would still reduce
to a term larger then bNcA and hence would still produce A,
contradicting the minimality of bMcA.

B. Sizes of rigid prefixes

Definition 5: (size) We define the size of a term (with holes)
in the following way:
• |x| = | | = 0
• |(M N)| = |M |+ |N |+ 1
• |λx.M | = |M |+ 1.
As a consequence of the previous lemma we have the

following major corollary concerning the size of the minimal
prefixes:

Lemma 6: (slow consumption) For any rigid prefix A pro-
duced by M , if R : M → N , then

|bNcA| ≥ |bMcA| − 2

Proof: By lemma 5 any live subterm of P of M has at
least on live residual, but for the application-lambda pair of
nodes fired by R.

The previous lemma, and its relation with the live multi-
plicity can be better stated if, in the size of the terms, we just
count applications.

Definition 6: (applicative size) The applicative size |M |@
of a λ-term M is the number of applications in it.

Then, the slow consumption lemma can be rephrased in the
following terms:

Lemma 7: (@ slow consumption) For any rigid prefix A
produced by M , if R : M → N , then

|bNcA|@ ≥ |bMcA|@ − 1

Lemma 8: (rigid prefix bound) Let A be a rigid prefix, and
let σ : M � N be any reduction producing A (that is such
that A � N). Then, for any variable x in M , if m(x) is its
live multiplicity (for A) we have

m(x) ≤ |σ|+ |A|@ + 1

Proof: The live multiplicity for A of any variable in M
is obviously bound by |bMcA|@ + 1. On the other side, by
Lemma 7 the size of |bMcA|@ is at most equal to |σ|+ |A|@,
and so we are done.

Example 2: In Figure 1, we give a couple of examples of
reductions, computing at each step the minimal prefix and its
@-size.

C. Equivalence for production

Definition 7: Given two terms M and N producing A, we
say that they are equivalent for A if they coincide on their
minimal prefixes for A:

M ≈A N ⇔ bMcA = bNcA
An important property of the previous equivalence relation is
that it is preserved by reduction:

Lemma 9: If M ≈A N and R : M → M1, then either
M1 ≈A N (if R is dead for A) or there exists N → N1,
M1 ≈A N1.

Proof: When R is dead for A, then bMcA = bM1cA by
Lemma 3. When R is live for A, then (top part of) R also
exists in N at same occurrence and we apply again Lemma 3.

reduction (λf.f f (f ∆))(λx.I) → (λx.I)(λx.I)((λx.I)∆)) → (λx.I)(λx.I)I → II → I
minimal prefixes (λf.f (f))(λx.I) (λx.I) ((λx.I))) (λx.I) I II I

@-size 4 3 2 1 0

reduction (λx.xx (xx))(IK) → (λx.xx(xx))K → KK(KK) → (λy.K)(KK) → K
minimal prefixes (λx.xx)(IK) (λx.xx)K KK (λy.K) K

@-size 4 3 2 1 0

reduction (λx.xxx)(KI) → (λx.xxx)(λy.I) → (λy.I)(λy.I)(λy.I) → I(λy.I) → λy.I
minimal prefixes (λx.x x)(KI) (λx.x x)(λy.I) (λy.I) (λy.I) I(λy.I) λy.I

@-size 4 3 2 1 0

Fig. 1. @-size of minimal prefixes along some reductions

III. STANDARD AND NORMAL REDUCTIONS

This section contains our revisitation of Xi’s “inductive”
approach to standardization [26], taking into into account the
notion of live multiplicity for variables of Definition 4. In
particular, we shall follow Kashima’s version of the proof
[15], that is particularly neat and clear (see also [14] for a
completely formalized version of Kashima’s standardization
proof for the Matita Proof Assistant).

Definition 8: (Standard and normal reduction)

• A reduction M0
R1→ M1

R2→ · · · Rk→ Mk
Rk+1→ · · · is

standard when for any i, j such that 1 ≤ i < j, the
redex Rj is not residual of a redex in Mi−1 to the left
of Ri.

• A reduction M0
R1→M1

R2→ · · · Rk→ Mk
Rk+1→ · · · is normal

(or leftmost-outermost) when for any i ≥ 1 the redex Ri

is the leftmost redex in Mi.
In the following, we shall use M

st� N and M
norm� N to

respectively denote standard and normal reductions.
Definition 9: A normal reduction is rigid if it never reduces

under a λ or at the right of a head variable.
Our notion of rigid normal reduction is called “head re-

duction in application” (abbreviated with “hap”) in [15], so
we shall keep this name in order to avoid useless confusion,
and we shall use the notation

hap
� for it. Formally,

hap
� is the

reflexive and transitive closure of the following generalization
of the β-rule:

(βapp) (λx.A0)A1 . . . An
hap
� A0[A1/x] . . . An

It is immediate that any normal reduction is also standard
and that a normal reduction is uniquely determined: if ρ :
M

norm� N and ρ′ : M
norm� N ′, then ρ is a prefix of ρ′, or vice

versa (the same is also true for
hap
�, since

hap
� is a special case

of normal reduction).
Any reduction of a term M may end up in a variable, in

an abstraction or an application; if the reduction is standard,
it can be decomposed according to the following lemma:

Lemma 10: (Decomposition)
• if M st� x, then M

hap
� x

• if M st� λx.N then M
hap
� λx.N ′ and N ′ st� N

• if M st� (P Q) then M
hap
� (P1 Q1), P1

st� P and
Q1

st� Q

Proof: See [15].

In fact, any reduction satisfying the conditions of the decom-
position lemma is a standard reduction, hence “standard” is
the smallest relation defined over reductions satisfying the
decomposition lemma, that allows us to reason by cases on
such a decomposition.

We recall some properties of the above reductions.
Lemma 11: If M

hap
� N then M P

st� N P .
Proof: By the definition of βapp.

Lemma 12: If M
hap
� N and N st� P then M st� N .

Proof: By induction on the possible decompositions of
N

st� P .
Lemma 13: If M

hap
� N then M [P/x]

hap
� N [P/x].

Proof: By induction on the length of M
hap
� N .

Note that the previous result does not hold for normal re-
ductions. Suppose that x appears as head variable of some
applicative subterm xA1 . . . An; then the normal reduction can
reduce a redex R in some Ai, but this redex would be at the
right of any redex in P when we substitute P for x.

Lemma 14: If σ : M
st� N and τ : P

st� Q, there exists

γ : M [P/x]
st� N [Q/x]

moreover, |γ| ≤ |σ| + m|τ | where m is the multiplicity of x
in N .

Proof: By induction on the decomposition of the standard
reduction, using lemma 13 (see e.g. [15])

The main idea behind our results is that the previous lemma
remains “morally” true even if we restrict the substitution to
the live occurrences of x. To this aim, we shall exploit the
following generalization of Lemma 14:

Lemma 15: Suppose σ : M
st� N and τ : P

st� Q. Let us
split the occurrences of x in N in two sets xtrue and xfalse .
Then

γ : M [P/x]
st� N [Q/xtrue ;P/xfalse]

where |γ| ≤ |σ| + m|τ | where m is the multiplicity of xtrue
in N .

Proof: By induction on the structure of σ : M
st� N ,

according to the decomposition lemma.
• If σ

hap
� y, then we have two subcases:

– y 6= xtrue. Then, γ = σ.
– y = xtrue. Then γ = στ , that is a standard reduction

by Lemma 12.

• if N = λy.N ′, then σ can be decomposed in the
following way: M

hap
� λx.N ′ and N ′ st� N . By induction

hypothesis

γ1 : N ′[P/x]
st� N [Q/xtrue;P/xfalse]

hence

γ2 : (λy.N ′)[P/x]
st� (λy.N)[Q/xtrue;P/xfalse]

Since by Lemma 13 we have a normal reduction

γ3 : M [P/x]
hap
� (λy.N ′)[P/x]

the composition of γ3γ2 is standard and it readily satisfies
the length conditions.

• similar to the previous one.

The main lemma is traditionally stated in the following way
(see e.g. [26], [15])

Lemma 16: If σ : A
st� (λx.M)N , there exists a standard

reduction σ′ : A
st�M [N/x] such that

|σ′| ≤ 1 + max{m(x), 1}|σ|

where m(x) is the multiplicity of x in M .
We want to rephrase the same lemma just taking into

account the live multiplicity of x. In order to do so, we should
first of all fix some rigid prefix produced by our computation.
However, in order to get the right level of generality, we
should embed our computation inside an arbitrary context
C[], and consider some rigid prefix Ao produced inside this
context. Moreover, at the end, we do not expect to precisely get
C[M [N/x]], but just a term equivalent to it for the production
of A0.

So, this is the new statement:
Lemma 17: Let σ : A

st� (λx.M)N , let C[] be an
arbitrary context, and suppose C[A] (and hence C[(λx.M)N])
produces A0. Then there exists a standard reduction σ′ :
A

st� B where C[B] ≈A0
C[M [N/x]] and |σ′| ≤ 1 +

max{m(x), 1}|σ|, where m(x) is the live multiplicity of x
in C[(λx.M)N] for A0.

Proof: By the decomposition Lemma 10, σ can be split
in the following way:
• σ0 : A

hap
� P Q

• σ1 : P
st� λx.M

• σ2 : Q
st� N

Moreover, for the same lemma, σ1 : P
st� λx.M decomposes

into
• σ10 : P

hap
� λx.M ′

• σ11 : M ′
st�M

Let us split the occurrences of x in M in two sets xlive
and xdead according to the fact they are live for Ao in
C[(λx.M)N] or not, (formally, if they belong or not to
bC[(λx.M)N]cAo). Then

A
hap
� P Q via σ0
hap
� (λx.M ′)Q via σ10
hap
�M ′[Q/x] via βapp

st�M [N/xlive , Q/xdead] by Lemma 15 with σ11, σ2

The length of this reduction is

|σ0|+ |σ10|+ 1 + |σ11|+m(x)|σ2|
≤ 1 + max{m(x), 1}(|σ0|+ |σ10|+ |σ11|+ |σ2|)
= 1 + max{m(x), 1}|σ|

where m(x) is the multiplicity of xtrue in M .
Moreover,

C[M [N/xlive, Q/xdead]] ≈Ao C[M [N/x]]

is a direct consequence of the way we defined live and dead
occurrences.

We are ready to state and prove the general result.
Theorem 1: Let σ : A

st� B and R : B → C. Let C[] be
an arbitrary context, and suppose C[A] (and hence C[B] and
C[C]) produces A0. Then there exists a standard reduction σ′ :
A

st� D where C[D] ≈A0
C[C] and |σ′| ≤ 1 + max{m, 1}|σ|

where m is the live multiplicity of R in C[B] (for Ao).
Proof: The proof is by induction on the one-step reduction

R : B → C.
• if B = R = (λx.M)N , this is just Lemma 17.
• suppose B = M N and R′ : M → M ′. By the decom-

position lemma, σ : A
st�M N can be decomposed into

– σ0 : A
hap
� P Q

– σ1 : P
st�M

– σ2 : Q
st� N

By the induction hypothesis relative to σ1, R′ and the
context C[(N)]) (let us remark the essential use of
the context here), there exists a term D′ and a standard
reduction σ′1 : P

st� D′ such that

(1) C[(D′N)] ≈A0
C[(M ′N)]

and
(2) |σ′1| ≤ 1 + max{m, 1}|σ1|

where m is the live multiplicity of R′ in
By composing σ0 : A

hap
� P Q, σ′1 : P

st� D′ and σ2 :
Q

st� N we get a standard reduction σ′ : A
st� (D′N),

where, by (1), C[(D′N)] ≈A0
C[(M ′N)].

As for the length, let us note first that the live multiplicity
of R′ in C[(M N)] is the same as the live multiplicity
m of R in C[(M N)], since they are the same redex. So,
the length of σ′ is

|σ′| = |σ0|+ |σ′1|+ |σ2|
≤ |σ0|+ 1 + max{m, 1}|σ1|+ |σ2|
≤ 1 + max{m, 1}(|σ0|+ σ1|+ |σ2|)
= 1 + max{m, 1}(|σ|)

• the case B = M N and R is internal to N , or B = λx.M ,
with R internal to M are analogous to the previous one,
taking the suitable context.

Theorem 2: (standardization with bounds) Given a reduc-
tion σ : M � N , where σ = R0R1 . . . Rn and any term

A produced by M (and N), there exists a standard reduction
std(σ) : M

st� P such that P ≈A N and

|std(σ)| ≤ (1 + max{m(R1), 1}) . . . (1 + max{m(Rn), 1})

where m(Ri) is the multiplicity of Ri : Mi →Mi+1 in bMicA
(that is, we only count the variables which are live for A).

Proof: Let σi = R0R1 . . . Ri, and let `i = |std(σi)|. We
reason by induction on i. If i = 0 then std(σi) = σ, `0 = 1
and we are done. Let us suppose, by induction hypothesis, that
there exists std(σi−1) : M

st� Pi such that Pi ≈A Mi

`i−1 ≤ (1 + max{m(R1), 1}) . . . (1 + max{m(Ri−1), 1})

If Ri is dead for A, we can just take σi−1. Otherwise, Ri is in
bPicA = bMicA. Suppose Ri : Pi → Pi+1. Since Pi ≈A Mi,
then Pi+1 ≈A Mi+1. By applying Lemma 17 to std(σi−1)
and Ri we get a standard reduction std(σi) : M

st� Q such
that Q ≈A Pi ≈A Mi, and

|std(σi−1)| ≤ 1+max{m(Ri), 1}·`i ≤ `i·(1+max{m(Ri), 1})

as expected.
Note that, if N is in normal form, then by taking A = N

we get a standard reduction M st� N in the traditional sense
(but with an improved bound).

Example 3: Let S = λx.xx(xx) and P = IK. Then,

SP → SK → KK(KK)→ (λy.K)(KK)→ K

The multiplicity of the four redexes (in Xi’s sense) is respec-
tively 1, 4, 1, 0, so we would get a bound of 5 ·2 ·2 = 20 steps
for the standard reduction (the first redex does not count).
However the live multiplicity of the second redex is just 2
(the relevant prefix of S is λx.xx that allows us to reduce
the bound to 12 steps. Neither of the two bounds is very tight:
the actual length of the standard reduction is of just 5 steps:

SP → IK(IK)(IK(IK))→ K(IK)(IK(IK))
→ (λy.IK)(IK(IK))→ IK → K

The actual interest of the notion of live multiplicity is not
that it offers a better bound to the length of the standard re-
duction, but to provide a conceptual explanation of the reasons
why, even in presence of terms with huge multiplicities, a
normal reduction may still be relatively short. The point is
that the leftmost strategy, being safe, is also parsimonious: if
part of the term is dead, it will never try to reduce inside it.

In the next section we shall see a surprising corollary of
this fact.

IV. SINKING TO A RIGID PREFIX

We can now put together our two main results, namely
Lemma 8 and Theorem 2.

Theorem 3: Let M be a term producing a rigid prefix A,
and let σ : M

st� N be an arbitrary reduction producing
A (that is such that A � N). Then there exists a standard
reduction σs : M → B such that B ≈A N and

|σs| ≤
(|σ|+ |A|@)!

(1 + |A|@)!

Proof: Let σ = R0R1 . . . Rn, so that |σ| = n + 1. Let
τi = Ri+1 . . . Rn be the tail of Ri in σ, so that |τi| = n − i
By Theorem 2,

|σs| ≤
∏

1≤i≤n

(1 + max{m(Ri), 1})

By Lemma 8, the multiplicity m(Ri) is bound by

m(Ri) ≤ |τi|+ |A|@ + 1 = n− i+ 1 + |A|@

Hence,

|σs| ≤
∏

1≤i≤n

(n− i+2+ |A|@) = (n+1+ |A|@)!/(1+ |A|@)!

Corollary 2: Let M be a term having N has a normal form.
Let σ : M

st� N be an arbitrary reduction. Then there exists
a standard reduction σs : M → N such

|σs| ≤
(|σ|+ |N |@)!

(1 + |N |@)!

Proof: By Theorem 3, taking A = N . Note that B ≈A A
if and only if B = A.

The previous theorem is particularly significant when A is
small. For instance, if A is just a variable of a boolean |A|@ =
0, so we get the following striking result:

Corollary 3: If M is a term reducing to a variable or
a boolean (λx.λy.x or λx.λy.y), the length of the normal
reduction σn is at worst a factorial of the length of the best
reduction σ, that is

|σn| ≤ (|σ|)!

Proof: Just observe that the applicative size of those terms
is 0.

V. CONCLUSION

The standardization theorem essentially tells us that the
“lazy” reduction strategy is more “precise” than any other
reduction strategy: an eager step of evaluation can always
be simulated by performing several times the “same redex”
in a more lazy way. At the same time, this accuracy also
allows us to avoid useless steps: lazy operations are only
performed on demand, if strictly needed. For this reason, a
precise investigation of what is needed (live) and what is
useless (dead) inside a lambda for producing a given output
seems to be a mandatory step in order to make a precise
comparison between an arbitrary reduction and its standard
version.

This is precisely what we did in this paper. As a technical
tool to formalize live and dead subterms we used prefixes,
that are partially specified terms, where some subterms have
been replaced by a dummy constant (a hole). An output A
is a rigid prefix, that is a finite approximant of a Berarducci
tree; then, for any lambda term M producing an output A,
there exists a minimal prefix bMcA of M that is enough for
producing A. Finally, a subterm of M is live for A if it belongs
to the minimal prefix.

The first important observation is very simple: by firing a
redex, the size of the minimal prefix can only decrease by the
two @–λ nodes involved in the redex. As a consequence, the
size of the minimal prefix relative to some output A cannot
decrease more than linearly along a reduction producing A.

The other technical contribution of the paper is a refinement
of Xi’s bound where we replace the notion of multiplicity of a
redex with that of “live multiplicity”: we only need to count the
occurrences of the variable that are live for the given reduction.

Since the live mutiplicity of variables is obviously bound by
the size of the minimal prefix, it is easy to compose together
the previous results to prove that the length of the standard
reduction is at most a mere factorial of the length of the
shortest reduction sequence (plus the size of the output).

It is probably worth to stress that the existence of minimal
prefixes requires standardization: hence we do not have an
alternative standardization proof. Like Baron Munchausen,
pulling himself out the swamp by his hairs, we are boostrap-
ping standardization, improving the analysis in a self-sustained
process.

There is probably some space for a further improvement of
the result, making a deeper analysis on the structure of terms.
In particular, there are at least a couple of places where our
upper bounds seem to provide only a rough approximation
of reality: the first one is when we approximate the live
multiplicity of variables with the size of the minimal prefix,
and the second one is in Lemma 17 where one is forced to use
the live multiplicity of the redex in a somewhat rough way,
applying it on segments of derivations that could not need to
be duplicated during standardization.

Since the analysis looks rough, it is natural to wonder if
there are concrete examples of a factorial explosion. Let us
consider the following term:

nnII

where n = λx.λy.x(x . . . (xy)) with n occurrences of x is
a Church integer. Pursuing an innermost reduction strategy,
this term can be reduced to I in a quadratic number of steps;
however any weak strategy takes at least nn steps (see [4] for
a detailed analysis of a similar term). Hence, we are not very
far from an optimal bound.

The actual interpretation of our result from the point of
view of the complexity of beta-reduction is more problematic.
In fact, it only tells us that the length of the best sequential
reduction strategy is at most an arc-factorial of the normal
reduction as long as we remain in the syntactical realm of λ-
terms. However, the λ-calculus is not so good in representing
sharing: we can give examples of terms where any reduction
strategy ends up duplicating work, that is executing several
times residuals of redexes that could be fired a single time
along a different reduction (see [20]). More complex syntacti-
cal frameworks like explicit substitutions [1] or sharing graphs
([18], [4]) are needed to exploit the concrete potentialities of
sharing in λ-terms. Alternatively, we can mimic sharing on λ-
terms through a parallel notion of reduction, firing at each step
all redexes belonging to a same family according to a given

notion of sharing. Of course, firing redexes in parallel allows
to decrease the applicative size of a live prefix in a much
faster way than a sequential reduction. Since in λ-terms we
can easily get enormous degrees of parallelism/sharing (see
the appendix), we can still hope to be able to compute the
normal form of a term in a number of steps smaller than
the arc-factorial of the length of the standard reduction. The
delicate point is that, in the case of parallel/shared reductions,
contrarily to what happens for first order term rewriting
systems [7], and for (some) sequential reduction strategies in
the lambda-calculus [3], the length of the computation cannot
be considered as a fair measure of its actual computational
cost [6] (see also the appendix to this work).

REFERENCES

[1] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques
Lévy. Explicit substitutions. J. Funct. Program., 1(4):375–416, 1991.

[2] Martı́n Abadi, Butler W. Lampson, and Jean-Jacques Lévy. Analysis and
Caching of Dependencies. In Proceedings of the 1996 ACM Interna-
tional Conference on Functional Programming (ICFP’96), Philadelphia,
pp 83–91, 1996.

[3] Beniamino Accattoli, Ugo Dal Lago. On the Invariance of the Unitary
Cost Model for Head Reduction. In 23rd International Conference on
Rewriting Techniques and Applications (RTA’12) , Nagoya, Japan, pp
22–37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[4] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of
Functional Programming Languages, volume 45 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1998.

[5] Andrea Asperti and Cosimo Laneve. Paths, computations and labels in
the lambda-calculus. Theor. Comput. Sci., 142(2):277–297, 1995.

[6] Andrea Asperti and Harry G. Mairson. Parallel beta reduction is not
elementary recursive. Inf. Comput., 170(1):49–80, 2001.

[7] Martin Avanzini and Georg Moser. Complexity analysis by graph
rewriting. In Functional and Logic Programming, 10th International
Symposium, FLOPS 2010, Sendai, Japan, LNCS 6009, pp 257–271,
Springer, 2010.

[8] Henk Barendregt. The Lambda Calculus, its Syntax and Semantics.
North Holland, 1984.

[9] Alessandro Berarducci. Infinite λ-calculus and non-sensible models. In
Logic and algebra (Pontignano, 1994), pp 339–377. Dekker, New York,
1996.

[10] Gérard Berry. Modèles stables du lambda-calcul. PhD thesis, Paris 7,
1978.

[11] H.B.Curry and R.Feys. Combinatory Logic. North Holland Publishing
Company, 1958.

[12] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,
volume 7 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1989.

[13] Georges Gonthier, Jean-Jacques Lévy, and Paul-André Melliès. An
abstract standardisation theorem. In Proceedings of the Seventh Annual
Symposium on Logic in Computer Science (LICS ’92), Santa Cruz,
California, USA, pages 72–81. IEEE Computer Society, 1992.

[14] Ferruccio Guidi. Standardization and Confluence in Pure Lambda-
Calculus Formalized for the Matita Theorem Prover. Journal of
Formalized Reasoning, 5(1):1–25, 2012.

[15] Ryo Kashima. A proof of the standardization theorem in lambda-
calculus. Technical Report Research Reports on Mathematical and
Computing Sciences, C-145,, Tokyo Institute of Technology, 2000.

[16] Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, CWI,
Amsterdam, 1980.

[17] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep and Fer-Jan de
Vries. Infinitary Lambda Calculus. Theor. Comput. Sci., 175(1):93-125,
1997.

[18] John Lamping. An Algorithm for Optimal Lambda Calculus Reduc-
tion. Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages (POPL’90), San Francisco,
California, USA, ACM press, pages 16-30, 1990.

[19] Jean-Jacques Lévy. An algebraic interpretation of the lambda beta -
calculus and a labeled lambda - calculus. In Lambda-Calculus and
Computer Science Theory, Proceedings of the Symposium Held in Rome,
March 25-27, 1975, volume 37 of Lecture Notes in Computer Science,
pages 147–165, 1975.

[20] Jean-Jacques Lévy. Réductions corrcectes et optimales dans le lambda
calcul. PhD thesis, University of Paris 7, 1978.

[21] Albert R. Meyer. The inherent computational complexity of theories
of ordered sets. In Proceedings of the International Congress of
Mathematicians, Vancouver, pages 477–482, 1974.

[22] Gerd Mitschke. The standardisation theorem for the λ-calculus. Z. Math.
Logik. Grundlag. Math, 25:29–31, 1979.

[23] Gordon D. Plotkin. LCF considered as a programming language. Theor.
Comput. Sci., 5(3):223–255, 1977.

[24] Richard Statman. The typed lambda-calculus is not elementary recur-
sive. In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, pages 90–94. IEEE Computer Society,
1977.

[25] Masako Takahashi. Parallel reductions in λ-calculus. Information and
Computation, 118(1):120–127, 1995.

[26] Hongwei Xi. Upper bounds for standardizations and an application. J.
Symb. Log., 64(1):291–303, 1999.

APPENDIX

A remark on parallelism and sharing The potential
parallelism inherent in λ-terms can be easily understood by
considering parallel β-reduction in Takahashi’s sense [25]
(parallel reductions in [20] are a refinements of this notion,
focused on sharing). We recall this argument here since, as
far as we know, it has never been spelled out before.

In the simply typed case, it is traditional to define a notion
of degree of a redex R in the following way (see e.g.[12]).

Definition 10 (degree): The degree ∂(T) of a type T is
defined by:
• ∂(A) = 1 if A is atomic
• ∂(U → V) = max{∂(U), ∂(V)}+ 1

The degree of a redex (λx : U.M)N is degree(U → V),
where V is the type of M .
The degree ∂(M) of a term M is the maximum among the
degrees of all its redexes.

A crucial property of the simply typed lambda calculus is
that a redex R of type U → V may only create redexes of
type U or of type V , hence with a degree strictly less than that
of R. As a consequence, each simply typed lambda term M
can be reduced to its normal form with a number of parallel
reduction steps bound by its degree ∂(M). On the other side,
we can encode complex (Kalmar-elementary) computations
in λ-terms with low-degrees (see [21], [24]), proving that
the cost of a parallel reduction (in Takahashi’s sense) is not
elementary recursive. In [6] it is proved that most of these
parallel redexes are actually sharable in Lévy’s optimal sense,
and hence the cost of sharing a single redex cannot be bound
by any elementary function.

	Introduction
	Prefixes
	Rigid prefixes
	Sizes of rigid prefixes
	Equivalence for production

	Standard and normal reductions
	Sinking to a rigid prefix
	Conclusion
	References
	Appendix

