
A Web Interface for Matita

Andrea Asperti and Wilmer Ricciotti

Department of Computer Science, University of Bologna
{asperti,ricciott}@cs.unibo.it

This article describes a prototype implementation of a web interface for the
Matita proof assistant [2]. The motivations behind our work are similar to those
of several recent, related efforts [7, 9, 1, 8] (see also [6]). In particular:

1. creation of a web collaborative working environment for interactive theo-
rem proving, aimed at fostering knowledge-intensive cooperation, content
creation and management;

2. exploitation of the markup in order to enrich the document with several
kinds of annotations or active elements; annotations may have both a pre-
sentational/hypertextual nature, aimed to improve the quality of the proof
script as a human readable document, or a more semantic nature, aimed to
help the system in its processing (or re-processing) of the script;

3. platform independence with respect to operating systems, and wider acces-
sibility also for users using devices with limited resources;

4. overcoming the installation issues typical of interactive provers, also in view
of attracting a wider audience, especially in the mathematical community.

Point 2. above is maybe the most distinctive feature of our approach, and in
particular the main novelty with respect to [7].

In fact, delivering a proof assistant as a web application enables us to ex-
ploit the presentational capabilities of a web browser with little effort. Purely
presentational markup does not require any special treatment on the part of the
prover and is natively supported by the web browser. However, having an easy
access to HTML-like markup allows much more flexibility. Not only can we dec-
orate comments by means of textual formatting or pictures; executable parts of
scripts reference concepts defined elsewhere, either in the same script or in the
library, using possibly overloaded identifiers or notations: it is natural to enrich
those identifiers with hyperlinks to the associated notions. This association is
actually computed by the system every time the script is parsed, hence it is the
system’s job to enrich the script accordingly. Since the previous computation
can be expensive, it is natural to have the system use such hyperlinks to speed
up the execution of the script. Moreover, when the source text is particularly
ambiguous, hyperlinks provide essential semantic information to avoid asking
the user for explicit disambiguation every time the script is executed.

Hyperlinks are an example of a textual annotation having both a presenta-
tional and a semantic value. The text enriched with hyperlinks not only provides



a more dynamic and flexible format to access the repository, but it is also a more
explicit and hence more robust representation of the information.

A further use of markup is to attach to the script information that is valuable
to the system, but is not thought to be normally read by the user. This is
technically a kind of presentational markup, used to hide parts of the script
rather than for decorating text.

Our current implementation supports three categories of markup:

– standard HTML markup, used to add formatting to text; formatted text is
currently assumed to occur in Matita comments;

– hyperlinks to Matita definitions, typically produced by the system and reused
on a new parsing of the script to avoid a second disambiguation of the input
(at the time of the submission, traversing hyperlinks is not yet supported,
but implementing it does not look problematic);

– markup wrapping traces of execution of automation steps in the script, pro-
duced by the system on a first execution and granting a notable speed-up on
future executions; the trace is normally transparent to the user, but visible
on demand.

Structure of the system

Matita core The server runs a minimally reworked version of the Matita engine,
equivalent to its stand-alone counterpart, but for the following features:

– the status of Matita includes the user id of its owner, as needed by an
inherently multi-user web application: this allows the system to run at the
same time several user-specific versions of the library;

– the lexical analyzer and the parser take into account the script markup;

– the disambiguation engine and the automation tactic produce and return
information suitable for enriching the script.

For what concerns the lexical analyzer, producing specific tokens for the
markup would require major modifications to the parser, which in Matita is a
complex component extensible at runtime with user provided notations. In an
effort to keep the parser as untouched as possible, the token stream returned
by our lexical analyzer ignores the markup; however, hyperlinks that can be
used for immediate disambiguation are stored in an additional table that is later
accessible to the parser, which is then able to build a disambiguated abstract
syntax tree (AST) for it. In order for this technique to work, we assume that
disambiguation markup is only located around “leaves” of the AST (and in
particular, identifiers or symbols); at the moment, this assumption does not
seem to be restrictive.

Markup for automation traces, which is used only to hide additional argu-
ments to the automation tactic, is completely handled by the user interface and
can thus be safely ignored by the lexical analyzer and the parser.



Matita web daemon The Matita web daemon is a specialized HTTP server,
developed using the Netplex module of the Ocamlnet library1, providing remote
access to the Matita system. It exports several services:

– storage of user accounts and authentication;
– storage of user libraries;
– synchronization of user libraries with the shared library via svn;
– remote execution of scripts.

Such services are invoked through a CGI interface and return XML documents
encoding their output.

Remote execution of scripts allows a user authoring a script on a web browser
to send it to the server for processing. The typical interactions with a script are
allowed, in the style of Proof-General [4] and similarly to [7]: executing one step
(tactic or directive) or the whole script, as well as undoing one step or the whole
script (execution of a script until a given point is reached is performed by the
client by multiple calls to single-step execution).

Parsing of the script is performed on the server, as client-side parsing of the
extensible syntax used by Matita is essentially unfeasible. To execute (part of)
a script, the server needs thus to receive all of the remaining text to be parsed,
because the end of the next statement is not predictable without a full parsing.
The Matita daemon will answer such a request by returning to the client

– the length of the portion of the original script that has been successfully
executed;

– a (possibly empty) list of parsed statements, which have been enriched with
mechanically generated markup including disambiguation hints and automa-
tion traces (the length of this updated text does not match the previous value
in general);

– an HTML representation of the proof state of the system after the execution
of the last statement (if the execution stopped in the middle of a proof);

– a representation of the error that prevented a further execution of the script
(if the execution stopped because of an error).

Collaborative formalization The daemon provides a preliminary support for col-
laborative formalization, currently coming in the form of a centralized library
maintained by means of svn. Other authors (see [1]) have advocated the use
of distributed versioning systems (e.g. Git). Our choice is mainly related to the
reuse of the original Matita repository and to the fact that svn already supports
the kind of distributed activity we have in mind. The effective usability and
scalability of this approach will be tested in the future.

The client The Matita web client was initially written in plain Javascript and
is currently being ported to the jQuery2 framework. The client implements a

1 http://projects.camlcity.org/projects/ocamlnet.html
2 http://jquery.com



user interface that is essentially similar to the one of ProofGeneral [4], CtCoq
and CoqIDE [5], or stand-alone Matita [3], but in the form of a web page. This
includes displaying the script (disabling editing for the already executed part),
buttons for script navigation, boxes for proof state (including multiple open
goals) and disambiguation, instant conversion of TEX-like escapes to Unicode
symbols, and essential interface for accessing the remote file system.

The implementation issues are similar to those described in [10]. The web
interface does not need to understand much of Matita: information like being
in an unfinished proof or in disambiguation mode can be easily inferred from
the data structures returned from the server. On the other hand, some code is
necessary to convert Matita markup to HTML markup and vice-versa.

Availability The Matita web interface is accessible from the website
http://pandemia.helm.cs.unibo.it/login.html. Accounts for accessing the inter-
face are provided by the authors on request.

References

1. Jesse Alama, Kasper Brink, Lionel Mamane, and Josef Urban. Large formal wikis:
Issues and solutions. In Proceedings of Intelligent Computer Mathematics (CICM
2011), Bertinoro, Italy, volume 6824 of Lecture Notes in Computer Science, pages
133–148. Springer, 2011.

2. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. The
Matita interactive theorem prover. In Proceedings of the 23rd International Con-
ference on Automated Deduction (CADE-2011), Wroclaw, Poland, volume 6803 of
LNCS, 2011.

3. Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli.
User interaction with the Matita proof assistant. Journal of Automated Reasoning,
39(2):109–139, 2007.

4. David Aspinall. Proof General: A generic tool for proof development. In Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2000, volume
1785 of Lecture Notes in Computer Science. Springer-Verlag, January 2000.

5. Yves Bertot and Laurent Théry. A generic approach to building user interfaces for
theorem provers. Journal of Symbolic Computation, 25:161–194, 1998.

6. Herman Geuvers. Proof Assistants: history, ideas and future. Sadhana, 34(1):3–25,
2009.

7. Cezary Kaliszyk. Web interfaces for proof assistants. Electr. Notes Theor. Comput.
Sci., 174(2):49–61, 2007.

8. C. Tankink, H. Geuvers, J. McKinna, and F. Wiedijk. Proviola: A tool for proof
re-animation. In Proceedings of AISC 2010, Heidelberg, volume 6167 of Lecture
Notes in Computer Science, pages 440–454. Springer, 2010.

9. Josef Urban, Jesse Alama, Piotr Rudnicki, and Herman Geuvers. A wiki for mizar:
Motivation, considerations, and initial prototype. CoRR, abs/1005.4552, 2010.

10. Makarius Wenzel. Isabelle as document-oriented proof assistant. In Intelligent
Computer Mathematics - 18th Symposium, Calculemus 2011, and 10th Interna-
tional Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings,
volume 6824 of LNCS, pages 244–259, 2011.


