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Abstract

We extend Pure Type Systems with a function turning each term M
of type A into a dummy | M| of the same type (| - | is not an identity,
in that M + |M|). Intuitively, a dummy represents an unknown,
canonical object of the given type: dummies are opaque (cannot
be internally inspected), and irrelevant in the sense that dummies
of a same type are convertible to each other. This latter condition
makes convertibility in PTS with dummies (DPTS) stronger than
usual, hence raising not trivial consistency issues. DPTS offer an
alternative approach to (proof) irrelevance, tagging irrelevant in-
formation at the level of terms and not of types, and avoiding the
annoying syntactical duplication of products, abstractions and ap-
plications into an explicit and an implicit version, typical of sys-
tems like 7ICC™.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Lambda calculus
and related systems

General Terms Theory

Keywords Pure type system, proof irrelevance, canonical element

1. Introduction

Mechanized mathematical proofs are becoming a standard tool in
research related to programming languages and software develop-
ment methods (see e.g. [22, 23, 37, 44] for some major, recent
achievements). In particular, proof assistants based on dependent
type theory ([4, 13, 14]) seem to enjoy a growing popularity in this
field, due to several attractive features of these formalisms:

1. type theories embed key computational constructs of functional
programming languages: functions can be defined by (well-
founded) recursion, and are live entities that can be tested and
executed; data are typed terms identified modulo reduction to
their normal form (conversion), allowing to distinguish between
computation and reasoning, and to treat them differently (some-
times referred to as “Poincaré principle” [8]); the more pow-
erful is the conversion rule, the more reasoning is reduced to
mere computation, making the logical argument more concise
and cogent (that is also the leading idea behind theorem proving
modulo [16]);
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2. proofs are an integrated part of the formalism, allowing, via the
Curry Howard isomorphism [36], a smooth interplay between
specification and reasoning: proofs are objects of the language,
and can be treated as normal data, naturally leading to a pro-
gramming style akin to proof-carrying-code [31], where chunks
of software come equipped with proofs of (some of) their prop-
erties. Moreover, sharing a common syntax between the logical
and the computational part of the theory reduces verification
to type-checking, in such a way that only a small and well-
identified software component (the so-called kernel [5]) is re-
ally critical for the reliability of the whole application (the so-
called “de Bruijn principle”).

The relation between the logical and computational part is how-
ever far from being perfect: often, the logical part “gets in the way”
at places where one would not expect it, making the logical reason-
ing more complex than expected. The typical, well known example
is the case of a subset type {x : A | P} of a type A, restricted by
means of a given predicate P '. In type theories, elements of this
set are pairs (a, h), composed of an element a of type A and a proof
h that a satisfies the property P (i.e., a term A of type P(a)). The
annoying part of the story is that two elements (a, k') and {(a, h"")
may now be different just because we provided two different proofs
h' and h" of the property P(a), while we probably considered this
information as completely irrelevant.

The important issue of characterizing “irrelevant” information
for the purposes of conversion, with the goal of making it more
flexible and powerful, has received much attention in recent years
[1,9, 12, 25, 29, 30, 34, 35, 43] (in older literature, such as [10] or
[3], proof irrelevant type theories are mostly investigated as a tool
for proving properties of other systems).

All recent studies exploited the important relation between irrel-
evance and (program) extraction. Type theories are naturally con-
structive: every proof comes equipped with a computational con-
tent (a computable function) that can be automatically extracted
from the proof by removing all the information that is irrelevant
for the computation but is only used for type-checking purposes
(see [24]). While the practical interest of code extraction is still
questionable, this paradigm can be used as a leading idea to ex-
tend convertibility: instead of comparing the typed terms, we may
just compare their extracted computational content. In Coq [41],
the distinction between relevant and irrelevant information is based
on the sort of types: terms of sort Prop (proofs) are removed dur-
ing extraction, and proof-irrelevant versions of the Calculus of In-
ductive Constructions have been investigated by Werner [29, 43].
Miquel’s Implicit Calculus of Constructions - a Curry-style variant
of the Calculus of Constructions - offers a more satisfactory alter-

! Subset types are also at the core of PVS [33]. However, in this formalism,
objects of type {x : A|P} are also of type A, making type checking
undecidable.



native to the distinction between Prop and Set. In [9], Bernardo and
Barras introduce a decidable variant of this calculus, called ICC*
obtained by explicitly decorating the irrelevant information inside
the term. This technique, which is adopted by other authors as well
(see for instance [1, 25, 30, 34, 35]), is quite invasive, since it re-
quires a complete syntactical duplication of products, abstractions
and applications into an explicit and an implicit variant. Moreover,
while the technique is surely interesting for extraction, its logical
interest is reduced by the incapability of the type system to exploit
convertibility between terms with different types®.

In this paper we propose a different approach, based on an
explicit function allowing to tag each term M of type A as a
dummy |M| of the same type. The term |M| becomes an opaque
object, whose internal structure cannot be exploited; on the other
hand, since we have no way to distinguish dummies of the same
type from each other, we may consistently assume they are all
convertible. The dummy function is hence similar to the Werner’s
€ term [43], but for the fact that we keep a copy of M for type
checking purposes (mostly to ensure that the type A is inhabited in
the given context).

For example, considering again the case of subset types, we may
explicitly declare proofs as irrelevant, in such a way that the two
terms (a, |h'|) and (a, |h"'|) are convertible even if h' and k" are
not.

Dummy terms can also be used for partial specifications. For
instance, when defining the predecessor function for natural num-
bers in type theory, we face the embarrassing choice of extend-
ing it on 0. The natural solution is to use a dummy value, defining
pred 0 as, say, |0] (any other choice of a natural number inside
the dummy would be equivalent). The important benefit of using
a dummy in the specification is to guarantee that, in our proofs,
we will not make an improper, extremely fragile, (ab)use of a spe-
cific extension. For instance, if we define pred 0 = 1 we would
be able to prove that Vx : nat.pred = # x; if, later, we decide
to change the definition letting pred 0 = O the previous theorem
would become false. The robust way to state the result is to guard
it in order to subsume undefined cases by absurdity: the statement
VY :nat.x >0 — pred x + x is still provable with the dummy ex-
tension, since under the assumption 0 > 0 we can prove anything.

The issue of irrelevance, and its practical importance for im-
proving usability of interactive provers based on type theory has
been largely discussed in previous papers (see e.g. [9, 29, 43]),
so we shall not insist on this point here. Dummies are not meant
to improve on this respect, but to provide an alternative founda-
tional view on irrelevance, and a more syntactical and operational
approach to consistency. Dummies are a technical tool that can be
used to recover more traditional functionality: for example, the pro-
cess of systematically marking all subterms of a given sort (say,
Prop) as dummies does not compromise the fact that a term is well
typed, hence mimicking proof-irrelevance.

In this paper, we formally introduce and investigate the notion
of dummy in the case of Pure Types Systems. We chose Pure
Type System instead of more sophisticated Systems with Inductive
Types for a double reason. First of all, Inductive Types introduce
a heavy additional syntactical burden that makes the metatheory
sensibly more entangled than for PTS; since we are introducing a
new notion, it looks preferable to start from a more comfortable
and standard setting. The second reason is technical: some of the
techniques used in this paper do not extend to Inductive Types. In
particular, if case analysis of dummies is opaque, normalization is
stopped and we cannot derive consistency by a simple inspection
on the shape of normal forms. This point can be bypassed in
PTS by adding an “absorption” rule (see rule § below) that is

2 even using the so-called John Major’s Equality [27].

enough to normalize terms with dummies in a form suitable to
entail consistency (note that this rule sensibly changes the intuitive
meaning of dummies, turning them into something more akin to a
bottom element). As we discuss in the conclusion, this technical
approach cannot be extended to the case of inductive types with
discrimination rules for constructors. So, while we strongly believe
in the consistency of dummies (without d) even in the case of
Type Systems with Inductive Types, the proof of this claim (or its
confutation) is an open, challenging issue.

The paper is structured in two main sections, dealing respec-
tively with general PTS (Section 2) and with the dummy version
(DCC) of the Calculus of Constructions (Section 3).

In particular, Section 2.1 and Section 2.2 provide syntax, reduc-
tions and typing rules of PTS with dummies (DPTS); Section 2.3
extends to DPTS most of the traditional meta-theory of PTS (sub-
stitution lemma 9, generation lemma 12, subject reduction property
14); Section 2.4 and Section 2.5 deal respectively with uniqueness
of types and type inhabitance; finally Section 2.6 introduces the no-
tion of Reducibility Candidates in the general framework of DPTS.

In Section 3 we prove the strong normalization of DCC. The
section starts with the essential classification lemma (Section 3.1);
then we provide an overview of the proof (Section 3.2), to conclude
with the technical details in Section 3.3.

Section 4 contains our concluding remarks.

Our technical exposition intentionally adheres to standard intro-
ductory texts, such as [7] and [36]. In all proofs, we tried to empha-
size the most interesting subcases and the new cases induced by
dummies.

2. PTS with dummies

Pure Type Systems have been independently introduced by Berardi
[11] and Terlouw [42] as a way of generalizing the presentation
of logical systems in Barendregt’s A-cube [7]. They provide a
unifying, neat and compact framework to express many different
systems of typed A-calculus a la Church, and are a basic backbone
of the modern presentation of Type Theory (see e.g. [36]).

We extend the usual notion by adding a new rule that allows
us to turn each term M of type A into a dummy |M|4 of type
A as well; convertibility of terms is the smallest congruence rela-
tion closed with respect to reduction and equalities of dummies:
|M|a = |N|a. It is worth remarking that, working with well-typed
terms, the type annotation A for the dummy |M |4 will always be
redundant, since it can be uniquely® inferred from the term M: it is
just a technical artifice essentially devised to avoid to equate terms
of a different nature (terms, types, kinds), that could open the way
to paradoxes.

2.1 Raw terms, reduction and conversion

Let S be a set of sorts (types for types), ranged over by s, and let
V' be a set of variables, ranged over by x. We shall work with the
following set of raw terms:

M:=u=x|s|(MM)|e: M.M |z : M.M | |M|m

The operators A and II are binders, and their scope is the term fol-
lowing the dot. The definition of the set F'V (M) of free variables
of M, and that of the substitution operation M [N /z] are the usual
ones: in particular

- FV(IM|p) = FV(M) U FV(P)
- (IM|p)[N/z] = IM[N/2]|p(n/z)

3 Provided the DPTS is singly sorted, see Theorem 20.



A relation ¢ over raw terms is said to be compatible if for all
M, N such that M ¢ N, the following properties hold for any P

(M P)o (N P) Ax:M.PoAx:N.P
(PM)o(PN) Ax:P.Molx:P.N
|M|p o |N|p Iz : M.PoIlx: N.P
Py o|Ply  Tz:PMollz: PN

We say that ¢ is preserved by substitution if for all M, M', N,
N’ such that M o M" and N o N' we have M [N /x] o M'[N'/z].

The relation — g5 is the smallest compatible relation containing
the following reduction rules:

(8) (M&:P.M) N - M[N/x]
(5) |M‘H9c:AAB N - |MN‘B[N/7)]

(reduction inside dummies is allowed). The relation —*535 (=ps) is
the reflexive and transitive (and symmetric) closure of —gs. Rule
(0) states that dummies behave in a way similar to exceptions: they
cannot be internally inspected, and whenever applied to an argu-
ment they just “absorbe” it. As we anticipated in the introduction,
rule § in not an essential property of dummies, but a technical arti-
fice useful to recover, in the specific context of PTS, the subformula
property on normal forms.

Using standard techniques, like e.g. parallel reduction [39], it is
easy to prove the Church-Rosser property:

LEMMA 1. —*>55 is confluent.

All dummies in a given type are equal to each other as stated by

the following d-rule:

(d) |Ml|a=a|N|a
The smallest compatible equivalence relation containing the above
rule will be denoted =4 (equality up to dummies). Two terms are
equal up to dummies if they are structurally identical up to dummy
subterms of the same type.

The notion of convertibility we shall work with, denoted with
~, is the smallest compatible equivalence relation containing the
[-rule, the §-rule and the d-rule. Obviously,

M=y N=M=z=NandM 535 N=>M=N
Note that, if ¢ is a reflexive, transitive, compatible relation contain-
ing the d-rule, then for all M, N
Ao B=|M|a<|N|g
Hence, in particular,
A:dBD |M‘A =d |N|B and A~ B = ‘M|A = |N|B

We shall now state a few more properties of the above relations,

omitting the relatively simple and standard proofs.

LEMMA 2. The relations 155, =4 and = are all preserved by sub-
stitution.

Equality up to dummies commutes with S-reduction:

LEMMA 3. If M =4 N and M —ps M' then there exists N' such
that N 535 N’ and M’ =4 N'.

Using the previous lemma it is easy to prove the following result,
that generalizes the existence of a common reduct between two -
convertible terms:

LEMMA 4. M = N if and only if there exist two terms M’ and N’
such that M S5 M' =4 N’ <5 N.

DEFINITION 5.

1. A term is in normal form if it does not contain any redex.

2. A term is in weak head normal form (whnf) if it belongs to the
class of terms U generated by the following grammar, where
M, N are arbitrary terms (U, D stands for Up and Down):

U = )\$:M.N||N|]\4|D
D= z|s|Hz: M.U|(|Nlu M) | (D M)

where (|N|u M) is not a d-redex.
3. A term is in head normal form if it belongs to the class of terms
U generated by the following grammar, where M is any term:

U,U" = dx:M.U||U|m | D
D :=z|s|lz: MU|(U|y M) | (D M)

where (|U|ys M) is not a §-redex.

It is easy to see that any term in normal form must also be in (weak)
head normal form. Luckily, as we shall see, the class of well typed
(weak) head normal forms has a simpler syntactical structure. The
notion of head normal form is useful for consistency issues (see
Section 2.5).

A term is strongly normalizing if it does not originate infinite
reduction sequences. Formally, it is defined as the accessible part
of the (inverted) reduction relation.

2.2 Type rules

DEFINITION 6. A PTS is specified by a triple (S, A, R) where S
is a set of sorts, A €S x S is a set of axioms, RS SxSxSisa
set of rules.

DEFINITION 7. A Type Judgment is a triple of the form
'-A:B

expressing the fact that A has type B in the (raw) context T'. A and
B are raw terms, and I is an ordered list of items of the form x : C
assigning a type C' (a raw term) to the variable .

We denote with I'[ NV /z] the obvious extension of the notion
of substitution to contexts (we assume that x ¢ I'); in particular:
@[N/z]=@and (T',z: A)[N/z] =T[N/x],z : A[N/z].

DEFINITION 8. The DPTS (PTS with dummies) determined by the
specification (S, A, R) is the Type Judgment axiomatized by the
following rules (in start and weak we assume © ¢ T'):

(axiom) (s1,82) e A
8182
(start) I'A:s
sar x:Arax: A
I'A:B T+C:s
(weak) z:C+A:B
P'A:s;y T,x:Ar-B:sy (s1,82,83)€R
d
(prod) T+ 1z:AB:ss
(appl) I'-M:Tlz:AB TrN:A
P T+ (M N):B[N/z]
(lambda) Tx:Ar-M:B T'+Ilz:AB:s
T'rXx:AM:1lx: A.B
I'-A:B
(dummy) T+ |Alp: B
( ) I'mA:B T'v+C:s Bz(C
cone T-A:C



2.3 Main Properties of DPTS

As usual, we shall use the notation I' - A : B : C to mean
' A:Band T + B : C. A raw context I is legal if there
exist A, Bsuchthat '+ A : B.

The first major property of DPTS is the substitution lemma:

LEMMA 9. Assume
e A/ A-B:C I'eD:A
then
I'A[D/z]+ B[D/z]: C[D/x]
Proof. The proof is by induction on the notion of derivation. We
only treat the new cases of dummies and convertibility.

— (dummy) Suppose the last rule of the derivation is a dummy

rule:
Nz:AJA+-B:C

Nx: A, A+ |Blc:C
By induction hypothesis we know that

T,A[D/z]+ B[D/z]: C[D/x]
and hence by an application of the dummy rules we get
U, A[D/z] = |B[D/zllorp/a : C[D/x]
B[D/z]|c[p/e] = |Blc[D/x] the proof

Since, by definition,
is complete.
— (conv) Suppose the last rule of the derivation is a conv rule:
Iz:AA-B:C T,2:AA-C':s C=zC'
Tx:AJA-A:C
By induction hypothesis we know that
I'A[D/z]+ B[D/z]: C[D/xz]

and

I,A[D/z]+ C'[D/z]:s[D/z]=s
Using the fact that substitution preserves convertibility (Lemma
2), we have C[D/z] = C'[D/z], hence we can apply the
convertibility rule to close the goal. O

The following results generalize the rules ax and weak, allowing
a more liberal treatment of the context.

LEMMA 10. (Start lemma). Let T be a legal context, then:

1. if (s1,52) € AthenT & s : sa;
2. if(x:A) el thenT -z : A

Proof. If T is legal, there exist A, B such that I' — A : B. The
proof is a simple induction on this derivation. O

LEMMA 11. (Weakening lemma). If T, A+ B:CandT'+ A : s
then T,z : A,A+ B:C, provided x ¢ T', A.

Proof. The proof is by induction on the derivation of 'y A + B : C..
We only consider a couple of cases.

— (axiom) if the last rule is an axiom, we use the Start Lemma

— (weak) suppose the last rule of the derivation is a weakening
rule:

ILA-B:C TArRA:S
T Az:A+B:C

If A is empty A must be equal to A" and we have nothing to
prove. Otherwise, by induction hypothesis we know that the
twosequents ',z : A A+ B:CandT,z: A,Ar A" : 5
are provable, hence we close the goal with an application of the
(weak) rule. a

The following result, known under the name of generation
lemma, states the hypothesis required to derive a type assignment
T'+ A: B, according to the shape of A. The relevant cases, for the
purposes of proving the subject reduction property, are functions,
products and dummies; the other cases are however used in the
uniqueness theorem in the next section.

LEMMA 12. (Generation lemma) For allT', A, B,C

1. if T+ s: C then there exists (s1,52) € A such that C = s

2. if '+ x : C then there exist a sort s and a term B such that
T'+-B:sand (x:B)eTl

3.if T +1lx : A.B : C then there exists (s1,52,83) € R such
thatT'- A:s1and T,z : A+ B: sy and C 2 s3;

4. if T'+ (M N) : C then there exist A, B such that T’ + M :
lz: ABandT + N: Aand C = B[N/z];

5. T'+ Ax: A.M : C then there exist s, B such that I + Ilx :
AB:sandTU,x: A+ M :Band C =1lz: A.B;

6. if T'+|Alg:CthenT'+ A: Band C = B;

Proof. Consider a derivation of I' + A : C' in the above cases.
The rules of weakening and conversion do not change the term A *
and we may assume A has been introduced by the last rule (we are
implicitly using the transitivity of ). In the cases above, this must
respectively be a (prod) (lambda) or a (dummy) rule, and the result
follows by inspection of this rule. O

The following corollary states the important fact that the type of
a type is always a sort.

LEMMA 13. (Type validity) If T' — A : B then there exists a sort s
such that either B=sorI'+ B : s.

Proof. An easy induction on the derivation of I' - A : B. Let us
just consider the interesting case of the application. Suppose the
last rule is
'-M:llz:AB Tr+N:A
'~ (M N):B[N/x]

Since IIz : A.B # s, then by induction hypothesis there exists
a sort s such that T' + TIx : A.B : s. By the generation lemma
for products, there exist s; and sz such that (s1,s2,s) € R,
I'-A:syand 'z : A+ B : s2. Finally, by the substitution
lemma, I' - B[N/z] : s2[N/z] = s2. O

As a corollary of the previous result, we obtain that no term con-
vertible with an abstraction can be inhabited. Indeed, by the gen-
eration lemma the type of an abstraction must be convertible with
a product, which is not convertible with a sort. The inhabitation
problem for dummy types is more interesting, since according to
our rules a dummy term can have as type a sort. In section 2.5, we
shall prove that dummy types cannot be inhabited by closed terms
in normal form.

THEOREM 14. (Subject reduction theorem for DPTS’s)
P-A:BAASz; A =>T-A:B

In order to prove the previous theorem we need a stronger
induction hypothesis, allowing reduction inside I'; at the same time
we shall generalize the statement to take equality up to dummies
into account.

? .
DEFINITION 15. We denote with — the smallest reflexive, compat-

7.
ible relation containing the rules [3, 6 and d. The relation — is

4 when we work with De Bruijn notation, this is not entirely true for weak-
ening, requiring some syntactical shuffling with the lifting function. This is
also the case where we need the Weakening Lemma 11.



extended to contexts in the obvious (parallel) way: T’ Lo if and
onlylf‘l_‘ = : A17_.,7xn : An, F, =T :Ai,...,mn : A;v and

for all i, A; A4 Al
Then, the Subject Reduction Theorem is an obvious corollary

of the following result (this technique seems to be slightly simpler
than the one used in [7]):

LEMMA 16.

T A:BAT ST AASA =T - A:B
Proof. The proof is by induction on the derivation of T' + A : B.
Let us investigate some significant cases:

— (appl) The last rule is the application rule:
'-M:Mlz:AAB T+N:A
'+ (M N):B[N/x]

As induction hypothesis, we know that,

TS AMS M T - M :Tlz: A.B
and
TS ANSN ST/ - N': A
If (M N) % P, three cases are possible: (1) P = (M’ N')
where M > M’ and N > N; 2 M = Xz : C.Q and
P = Q[N/z]; 3 M = |Dlnxc.q@ and P = |D N|gn/a1-
We treat independently the three subcases:

1. supposing I" i I, by induction hypothesis we have I'" +
M' :Tlz : ABand IV = N’ : A, and hence by the
application rule

I’ (M'N'): B[N'/z]
Since convertibility is preserved by substitution (note that
N5 N implies N = N'), we conclude, as expected

'+ (M'N'): B[N/x]

2. weknowthatI' - Az : C.Q : Tlz : A.B andif T’ 5 I, the
induction hypothesis tells us that

IM-Xe:C.Q:Tlz: AB
We use the generation lemma to conclude that there exist
s,B"suchthat (i.) ' + Tz : C.B' : s, (ii.) [V,z : C +
Q : B and (74i.) Iz : A.B = Iz : C.B’. From (iii.), using
Lemma 4, we obtain A =~ C and B =z B’'.

Since N - N , we know by induction hypothesis that
I'" - N : A, and since A = C, by convertibility we also
getI' - N : C.

By (4i.) and the substitution lemma we now conclude

I'"+Q[N/z]: B'[N/x]

and finally we use the fact that convertibility is preserved by
substitution to conclude, as expected,

I+ Q[N/z]: B[N/x]

3. we know that T - |D|nsc.g : Iz : A.B and if T - I, the
induction hypothesis tells us that

I+ |Dlngc.g: Mz : A.B
By the generation lemma we have (i.) I’ ~ D : Iz : C.Q,
and (¢.) Ilz : C.Q =z Ilz : A.B, that implies C' = A and

Q< B.
By induction hypothesis I - N : A, and by congruence

I'" = N : C. By application I'' + (D N) : Q[N/z], and
hence by the dummy rule
"D Nlgnyz) : Q[N /2]

Since convertibility is preserved by substitution, we con-
clude, as expected

F’ = |D N‘Q[N/z] : B[N/m]
— (dummy) the last rule is a dummy rule

I'-A:B
r‘F'/”B : B

If|Alg 5 Pthen P = |A'|’s where A 5 A’and B 5 B’ (hence
B = B'). Provided T’ > I”, the induction hypothesis tells us
that ' - A’ : B. Since B =~ B’ we alsohave ' — A" : B’, and
by the dummy rule

'+ |A|g : B
Using again the convertibility between B and B’ we get the
goal:

I |A'|p : B

COROLLARY 17. (Type reduction property)
I'-A:BABSss B =T+ A:B

Proof. If ' + A : B then by Lemma 13, B=sor' - B : s for
some sort s. In the first case B’ = s and we are done. In the second
case, by the Subject Reduction Theorem 14, T' —~ B’ : s and we
may apply convertibility to get the goal.

Let us now extend the relation =4 to contexts in the usual way:

I =g Mifandonly if ' = 21 : A1,...,zn : Ap, IV = 21 :

i ...,xn + AL, and for all i, A; =4 A}. Then, as another
corollary of Lemma 16, we obtain the following result.

THEOREM 18.
F'-A:BAD=qI"AA=g A =>T"+A":B

2.4 Uniqueness of types

Uniqueness of types may only hold under the assumption the sorts
and products get unique types according to the specification in A
and R.

DEFINITION 19. A DPTS (S, A, R) is singly sorted if for all sorts
851,52, 83,54

1. (s1,82) € AN (s1,83) e A= s2 =83

2. (s1,82,583) € RA(81,82,54) € R = 83 = 84

THEOREM 20. (Uniqueness of Types for singly sorted DPTS)
'rA:BAT+-A:C=BzC

Proof. By induction on the structure of A, exploiting in each case
the corresponding generation lemma. We treat a couple of cases:

— if A = s, by the generation lemma there exist (s, s1), (s,s2) €
A such that B = s; and C 2 sp. If the DPTS is singly sorted,
then s1 = s2 and by transitivity B = C.

— if A = |M|n, by the generation lemma N = B and N z C,
hence by transitivity B = C.

COROLLARY 21. (Subject conversion for singly sorted DPTS) If
'+ A :BiandD'+ As: Ba, then A1 2 As implies By 2 Bo.

Proof. The statement follows easily from Lemma 4, Theorem 14,
Theorem 18, and Theorem 20. O



Even if the DPTS is not singly sorted, we can follow the proof
of Theorem 20 to obtain a technical lemma needed in Section 2.5.

LEMMA 22. If T'+ A: B and T'+ A: sy for some sort ss, then
there exists a sort s1 such that B = s1.

2.5 Inhabitation Properties

In this section we will show that some interesting types are inhab-
ited just by terms having no normal form. It will follow that such
types are empty in a normalizing DPTS (see Section 3).

We begin with a well-known technical result.

LEMMA 23. (Free variable lemma)
Ifx1:Ch,...,2n: Co+ A: Bthen FV(A) € {z1,...,za}.

Proof. By induction on the derivation of the type judgment. O

Then we use the generation lemma to restrict a bit the shape of
head normal forms for well-typed terms.

LEMMA 24. A well-typed term M in head normal form must be-
long to the class of terms U generated by the following grammar
(where M is a generic term):

U:i=Xx: MU ||U|pm|s|Hz: MU | D
D:=z|(D M)

Proof. By the generation lemma it is easy to conclude that sorts,
products, and non-functional dummies cannot be applied to any
term. O

Two important corollaries follow almost immediately.

LEMMA 25. if + A : B and the h.n.f. of B is not a product or a
sort, then A is not normalizing.

Proof. If A has a normal form, then we can suppose (Theorem 14)
that A is in h.n.f. Now we proceed by induction on the structure of
the spine of A taking Lemma 24 into account.

— (sort): A = s gives B 2 s; for some sort s by Lemma 12(1),
that is excluded;

— (prod): A =1Ilz : N.M gives B = s for some sort s by Lemma
12(3), that is excluded;

— (lambda): A = Az : N.M gives B = IIz : N.C for some C by
Lemma 12(5), that is excluded;

— (var): A = (z N1 ... Nyp) is excluded because z € FV(A) =

@ by Lemma 23;
— (dummy): A = |M|n gives - M : N and B 2 N by Lemma
12(6). So the inductive hypothesis concludes. O

This lemma states that dummy types (B = |M|n) can be inhab-
ited only by terms without a normal form.

LEMMA 26. if - A: B and B = Iz : s.x for a sort s, then A is
not normalizing.

Proof. Following the previous lemma, if A is normalizing we
can assume A = Az : s.A” with A" in h.n.f. because the cases
(sort), (prod), and (var) are excluded. Then Lemma 12(5) gives
x:s+ A': B with B’ =~ x. Proceeding on the spine of A’ the
cases (sort), (prod), and (lambda) are excluded. So we are left with
A" = (z N; ... N,) in which n = 0 since Lemma 10(2) yields
+ 2 :s. Now Lemma 22 appliedto z:s+~x: B’ andz:s+x:s
gives B’ = s, which is excluded by B’ = z. a

This lemma states that the false proposition (B = Ila : x.a) of a
logical DPTS is inhabited only by terms without a normal form.

2.6 Candidates of Reducibility

The Candidates of Reducibility [21] are subsets of A-terms enjoy-
ing certain closure conditions used to establish some properties of
various typed A-calculi, such as the strong normalization and the
confluence of reduction (see e.g. [17]).
In this section we recall such subsets in the context of a DPTS.
Firstly, we set some definitions. In particular the subset of
strongly normalizing terms will hereafter be denoted by sn.

DEFINITION 27. A term is neutral or simple if it is not of the form
Az : N.M or |M|n.

The intuition underlying this definition is that whenever M
is neutral and (M N) —pgs L then either L = (M’ N) with
M —>B6s M’,OI‘L = (M N’) with N —>B6s N'.

Our definition of a candidate of reducibility is inspired by Tait’s
saturation conditions ii and iii [38].

DEFINITION 28. A subset C of terms (closed under a-conversion)
is a candidate of reducibility (c.r) if the following conditions hold:

— (S1)if M € C then M € sn;

- (S2)ifLesn, N esn, and (M[N/z] Ny ... N; ...
then (Ax : LLM) N N1 ... N; ... Ny)€C;

— (83) if M € sn is neutral and in weak head normal form, and if
Niesn,...N;esn,... N, €sn, then

-(84) if (M Lv ... Ly ... Ly,) € C and N € sn, then
(|M|NL1...L-L' Ln)EC

The class of candidates will be denoted by cr.

N,) eC,

Our conditions S1, S2 and S3 easily follow from Girard’s con-
ditions CR1, CR2, CR3: in particular S1 is CR1, S2 is the typed
version of Tait’s condition ii, and S3 is a generalization of Tait’s
condition iii. For instance we can show that CR3 implies S3. To
this aim we recall the following:

— (CR2)if M €C and M -5 M’ then M’ € C;

— (CR3) if M is neutral and if M’ e C for all M’ such that
M —gs M', then M € C;

LEMMA 29. The condition CR3 implies the condition S3.

Proof. we denote with 6(M) the maximum number of steps in
which M € sn reduces to its normal form. Then we proceed by
induction on d = 6(M) + 6(N1) + ... + 6(Ny). If d = 0O then
(M N1 ... Ny) e Cbeing (M Ni ... Ny) neutral and normal
(CR3).Ifd >0 and (M N ... N,) —gs L, then we have two
cases: L = (M’ Ny ... N,) with M —gs M’, gives M’ € sn
neutral and in weak head normal form with §(M') < §(M).
Therefore L € C and CR3 concludes. C = (M Ny ... N; ... Ny)
with N; —gs N; for some 4, gives N; € sn with 6(N ) < 5(N)
Therefore L € C and CR3 concludes. O.

Next, we state some results on candidates:

LEMMA 30. (properties of candidates)

1. cr contains sn;
2. cris closed under arbitrary intersection;
3. if C1 e crand Cs € cr, then
C1 :>Cz E{M|VN€C1. (MN) ECQ}ECF.

3. The Calculus of Constructions with Dummies

In this section we give some results concerning DCC: the DPTS

based on AC' [7]. In particular we prove the so-called Classification

Lemma 35 and the strong normalization property (Theorem 48).
Thus, Lemma 25 and Lemma 26 yield crucial consequences:



THEOREM 31. The system DCC satisfies:

1. consistency: + A :1la: x.a is excluded;
2. emptiness of dummy types: + A :|B|c is excluded.

We would like to stress that Theorem 31 holds even if the
reduction ¢ is dropped from the system, since if I' = A : B holds
without 6, then it holds with § as well.

Due to the Classification Lemma, the valid terms and contexts
of DCC belong to the following stratified grammar:

Term =0|K|T|M

(kind) H,K :=x|la: HK |llz: UK | |K|g

(constructor) T,U z=a|lla: HT |Uz:UT | a: HT
| Xe:UT|TU|TN ||T|u

(object) M,N:=x|Xa:HM | Xx:UM| MU
| M N|[Mly
Context Cu=x|T,(a:H)|T,(z:U)

where we split the set V' of variables into the subset V7 of type
variables, ranged over by a, and the subset V* of object variables,
ranged over by x. In this case, the set S of sorts is {{J, » }.

The notation IT(0, O) will refer to the construction ITa : H. K
and to its type rule prod(J,). The notations A\(0,0) and
@(O, ) will refer to the associated constructions Aa : H.T and
(T U) respectively, and to their type rules as well. The notation
B(0,0) will refer to the 8 reduction rule involving Aa : H.T and
(T U). The notation §(0J, ) will refer to the § reduction rule
involving |T'| and (T U). These conventions will apply also to
the other sort combinations available in DCC, which are: (I, *),
(*,0), (x, *). The notations D(A) 3, D(0O), D(*) will refer to
the constructions |K|q, |T'|u, |M|u respectively, and to their type
rules as well.

It is convenient to state the type rules A(s1,s2), @(s1,s2),
D(s), and Conv(s) in the way we display below:

'-A:s D(z:A)+C:B T+Iz:A.B:so
I'eXx:AC:Ilz: A.B
T-N:A:s I'-M:Ilx: A.B:sy
T+ (M N):B[N/z]

I'-A:B:C
Fl—'AlBIB
I'-A:B:s I'-C:s B=C

'-A:C

These rules are compatible with (lambda), (appl), (dummy),
and (conv) respectively, since the additional premises are admis-
sible by Lemma 10(2), the Type Validity lemma 13, the Subject
Conversion lemma 21, and the Generation lemma 12(3).

3.1 Classification Lemma for DCC

In this section we prove the Classification Lemma for DCC using
a degree assignment: a classical notion in typed A-calculus [7].

DEFINITION 32. The degree of a term A in the context I', denoted
by #(A)r, is defined if ' and A belong to the stratified grammar
of DCC and is undefined otherwise. In particular:

#(Dr=4; #K)r=3; #(Mr=2; #M)r=1
Ifv eV, then #(v)r is derived from the declaration of v in T.

LEMMA 33. Ifv e FV(A) and #(B)r = #(v)r, then
#(A[B/v])r = #(A)r, or these degrees are undefined.

5 A is intended as the third sort in a three-sorted logical PTS.

Proof. The degree of a term depends just on the degrees of its
subterms, so it is preserved by replacement of equal subterms (w.r.t.
the degree) as long as captures are avoided. O

Here is the main result of the section: a soundness theorem.
THEOREM 34. IfT'+ A: B in DCC, then #(A)r = #(B)r - 1.

Proof. We proceed by inductionon '+ A : B.

— (axiom): I' = x, and A = %, and B = O, give I' € Context and
#(A)r=3=4-1=#0O)r-L;
— (start): I'= A, (v : B), and A = v, with the premise A + B : s,

give A ‘¢ Context and #(B)a T #(s)a-1¢ {3,2}; so

I’ € Context and #(v)r = #(B)r — 1 by definition;

— (weak): I' = A, (v : C), with the premises A + C': s, and
A+ A: B, gives A ' Context and #(C)a T #(s)a-1¢
{3,2};s0 ' e Context and #(A)r = #(B)r - 1;

— (prod): A = Ilv : C.E, and B = sz, with the premises

H
I'+C:sy,and I, (v:C)+ E: 59, give I' € Context, and

#(C)r T #(s1)r —1€{3,2}, and #(E)r,(v:c) &
#(Sz)py(vzc) -1= #(SQ)F -1le {3,2}; SO #(HU H CE)[‘ =
#(E)r,vcy = #(s2)r - 1;

— (lambda): A = Av : C.D, and B = Ilv : C.E, with the premises
F'+C:sy,and T, (v:C)+D:E,and '+ Tlv: C.E : s2,

give T ¢ Context, and #(C)r = #(s1)r - 1 € {3,2}, and

#(D)r o) = #(E)r o) ~1 = #(Ilv : C.E)r -1 &
#(s2)r =2 € {2,1}; s0 #(Av : C.D)r = #(D)r,(wcy =
#(E)F,(v:C) -1= #(HU : CE)F - 1;

- (appl): A = (F D), and B = E[D/v], with the premises

I'D:C:sy,andI'- F:Ilv:C.E: sz,giveFIgI Context,
IH

and #(D)r T #(C)r -1 ¥ #(s1)r - 2 € {2,1}, and
#(F)r & #(Iv : C.E)r —1 & #(s2)r -2 € {2,1}; 50
#(F D)F = #(F)F = #(HU : C'E)F_l = #(E)F,(’UZC)_l =
#(E[D/v])r,(v:cy—1 = #(E[D/v])r-1by Lemma 33 since
#(U)r, (o) = #(C)r =1 =#(D)r = #(D)r,(v:c);

— (dummy) A = |D|g, with the premise I' - D : B, gives I" €
Context, and #(D)r = #(B)r - 1; so #(B)r € {4,3,2},
and #(D)r € {3,2,1}, therefore #(|D|g)r = #(D)r =
#(B)r - 1

— (conv) the premises ' - A: C:s,and '+ B : s, with C = B,
give T' € Context, and #(C)r = #(s)r — 1 = #(B)r; so

#(A)r T #(C)r - 1=#(B)r - 1. 0

The Classification Lemma is a simple corollary of soundness.

LEMMA 35. (Classification) Any term and context valid in DCC
belongs to the stratified grammar of DCC.

Proof. The context I' is valid when there exist A and B such
that I" — A : B, so Theorem 34 states that #(A)r and #(B)r are
defined, thus I € Context. The term A is valid when there exist
T and B such that either ' - A: B, or I' - B : A. In both cases
Theorem 34 states that # ( A)r is defined, thus A € Term. 0.

3.2 Strong Normalization for DCC: an Overview

In the following sections we show that DCC enjoys the strong
normalization property. The literature provides for two classes of
proofs that CC' (AC) is strongly normalizing (s.n.) and our aim is
to extend one of these proofs. Some proofs have a multiple-step
structure being based on the strong normalization of the system Fi,
(Aw) [7, 18, 20, 36], and are rather involved. Other authors give
single-step proofs [2, 15, 19, 26, 28, 32, 40], which are semantical



in that s.n. terms are interpreted as elements of a suitable model. Of
these, Geuvers [19] seems to give the simplest model to treat and
extend for our purposes: the one of set-theoretic functions from
c.r’s to c.r.’s of any arity and order.

Intuitively, the proof runs as follows: our statement is that every
valid term of DCC is strongly normalizing. Such a term is either [,
for which we conclude immediately, or a term typed in a context.
For each term A such that " - A : B, we find a subset [ B] of terms
such that A € [B] € cr, and we conclude by S1.

Due to the shape of the (appl) type rule, this statement must
be proved in a general form where substitution appears explicitly.
So we state our claim as (A), € [B]¢ € cr where p and & are
evaluation functions for the free variables of A and B respectively.
In particular (A]), is the simultaneous substitution in A of every
v € FV(A) for the term p(v). That is to say that p: V' — Term.

We take the identity substitution as a canonical interpretation p.

As for the evaluation £, we apply it after the interpretation [-]
so the codomain of ¢ is the codomain of [-] rather than Term.

Moreover we see that [[-]¢ is not applied to an object, so we can
define it in such a way that £ does not evaluate object variables.
This happens because the constructors of DCC depend on objects
in a uniform way, so these dependences can be safely forgotten.
Similarly, kinds depend on constructors, and thus on objects, in a
uniform way as well, so these dependences can be forgotten too.
This erasing mechanism underlies the map from AC' to Aw used in
[7] to connect the strong normalization of these systems.

Our system DCC features functional constructors (i.e. terms of
the form Aa : H.T, or A(0J,0)), which are functions from con-
structors of a given type to constructors. Thus, it is straightforward
to interpret these terms as functions of a given arity and order from
c.r’s to c.r.’s. This situation requires to define the class of the func-
tions whose arity and order is derived from a kind H, especially
because the definition of [Ila : H.K]¢ and [Ila : H.T]¢ involves
a universal quantification over this class quite naturally.

We will denote such a class with { H) and we will show that
'+ A: B implies [A]¢ € {B)) when B is a kind or the term (1.
It should be noted that the definition of {B)) does not involve an
evaluation function since B depends uniformly on its free variables.

It is also important to stress that for each H, a default function
in the class (( H)) exists, which will be used to define a canonical
interpretation £ based on the formerly mentioned context I'.

As a concluding remark, we note that the codomain of [-] must
be the class of the functions from cr to cr of any arity and order.
This class will be denoted hereafter by cr™ . Instead, the codomain
of (-) must be the family of the classes of the functions from cr to
cr of a given arity and order. This family will be denoted by CR™.

3.3 Strong Normalization for DCC: the Proof

At this point we are ready to develop the detailed proof of strong
normalization for the system DCC. We begin by giving a formal
definition to the concepts we discussed in the previous section.

DEFINITION 36. The family CR™ is inductively defined by:
cre CR™; if « e CR” and B € CR™, then B“ ¢ CR”

where 3% is the class of the functions from « to S.
For each class o € CR™, the canonical element of « is denoted
by ¢ « and is defined by cases on « as follows:

cB¥=_tamcp.
The class of the functions from cr to cr of any arity and order is:

a’= U o

aeCR™

ccr=sn;

As expected, we easily have ¢ a € o for each o € CR™.

DEFINITION 37. The interpretation (-) from Term to CR™ is a
partial function defined by cases on O and on kinds as follows:

1 m
S

=

0O== 0 0Q
TR
==
E

DEFINITION 38. Given an evaluation & from VE to cr™, the in-
terpretation []¢ from Term to cr™ is a partial function defined by
cases on O, on kinds, and on constructors as follows:

[O]¢ =sn;

[*]e = sn;
[Ma: HK]e = [H]e = Nyeqrry [Klecazp);
[Mz:U.K]e = [U]e = [K]e;

[[K|a]e = c (O) = sn;

[a]e = £(a);
[Ha: HT]e = [H]e = Nyeqrry [T]eca=p);
[z : U.T]e = [U]e = [T]e;
[Na:HTJe = f: (H) =~ [T]ecazr);

[Ax: UT]e = [T]e;
[T Ule = [T]e([U]e);
[T Nle =[Tle;

[ITe]e = c (H).
We say that & agrees with a context I', and we write € & I, when
&(a) € (H)) for each type variable declaration (a: H) €T

We say that € is canonical for the context T when £(a) = ¢ (H)
for each type variable declaration (a: H) € T

As expected, if £ is canonical for I', then £ agrees with I

DEFINITION 39. Given an evaluation p from V to Term, the in-
terpretation (A)), of A € Term is the simultaneous substitution in
A of p(v) for each v € FV (A).

We say that £ and p agree with a context I, and we write &, p =
I, when § = T and p(v) € [B]¢ for each variable declaration
(v:B)eT.

We say that p is canonical for the context T when p(v) = v for
each variable declaration (v: B) €T

Generally, we cannot say that £ and p agree with I when £ and
p are canonical for I, since [B]¢ € cr may be false. However, we
shall see that this condition holds when I" is valid in DCC.

We are now ready to prove the sequence of lemmas that will
take us to the strong normalization for DCC.

Firstly, we prove a technical result.

LEMMA 40. If B € C € cr and (A),v=c) € C2 € cr for every
C eCiecr, then \v: B.(]A[)p(vgv) €C1 = Co.

Proof. Take C € Cy and rewrite (A),w=c) as (A) pw=0)[C/V].
Then, condition S2 of Cz gives (Av : B.(A) (v=0)) C € C2 and we
conclude by the definition of the c.r. constructor =. O

Secondly, we prove three substitution lemmas.
LEMMA 41. (A[B/v]) = {A)), or both members are undefined.

Proof. If v is bound in A, then we conclude immediately. Other-
wise, both the interpretation and the substitution distribute on the
subterms of A. We proceed by induction on A.
- 1I(0,0): A = Ha : H.K gives {((Tla: H.K)[B/v]) =
(Ma: H[B/v].K[B[v]) = (K[B/o]) "M 2
(K) = (Mo HK);



-I(x,0): A = Iz : UK gives {((Ilz: U.K)[B/v]) =
(Mz: U[Afv).K[B/v]) = (K[B[v]) = (K) =
{(Ilz : U.K);
- D(A): A =|K|q gives (|K|o[B/v]) = (|K[B/v]ln) = cr =
(IK]a)- m
LEMMA 42. [A[U/a]le = [Al¢(a=[ue), or both members are
undefined.

Proof. If v is bound in A, then we have [A[U/a]]e = [A]¢ =
[Al¢(a=ue)- Otherwise, A = a or A is compound. In this case
both the interpretation and the substitution distribute on the sub-
terms of A. We proceed by induction on A.
- II(O,0): A=Tb: H.K gives [A[U/a]]¢ =
[H[U/alle = Nseqruyary (KU /alle=s) =
1H
[H[U/alle = Nypeqry [K[U/alles=s) =
[H]e(az1v1e) = Nyeqry [Ke(aziune.p=p) =
[Al¢(a=[u1,) by Lemma 41;
- I(»,0): A=Txz: V.K gives [A[U/a]]¢ =
1H
[VIU/a]]e = [K[U/a]]e =
Vietastvte) = [H]eaz1a1,) = [Alecaztvne:
= D(A): A=Kl gives [A[U/a]e = sn = [Aecasoro):
- VB A=agives [A[U/a]] = [Ue = [Al¢(a=tu1e):
- 11(O, ): like T1(O, O);
— TI(*,*): like TI(*,0);
- A(O,0): B=Xb: H.T gives [A[U/a]]¢ =
(H[U/al) = [T[U/a]]e =) =
1H
(H) = [T[U/a]]ew=r) =
[ (H) = [T]e(a=qure p=r) =
[[Aﬂf(az[U]]g) by Lemma 41;

- A(%,0): A=Az : V.T gives [A[U/a]]¢ =
[T(U/alle = [Tleqa=tv16) = [Alecazio1e);:
- Q(O,0): A=TYV gives
[A[U/a]le = [T[U/alle(IV[U/a]le) =
[TTea=tv16) (VIeaz1v10)) = [Ale(azivre)s
- Q(%,0): A=T N gives [A[U/a]]e =
[7(U/alle = [Tleqastu1e) = [Alecasire:
- D(D): A=|T|u gives [A[U/a]]¢ = c (H[U/a]) = c (H) =
[[Aﬂf(az[U]]g) by Lemma 41. O

f(H
f(H

LEMMA 43. [A[N/z]]¢ = [Ale, or both members are undefined.

Proof. If x is bound in A, then we conclude immediately. Other-
wise, both the interpretation and the substitution distribute on the
subterms of A as for Lemma 42 without the case V7. a

Thirdly, we prove two conversion lemmas.

LEMMA 44. Ay 2 Ag implies (A1) = (A2), or both members are
undefined.

Proof. We proceed by induction on A; = As. Bd-reductions
must not be treated because they involve constructors (86(0, O),
Bd(*,0)) or objects (84(0, *), Bd(*,*)), which are erased by
the interpretation (-)). Reflexivity, symmetry, and transitivity are
immediate. Compatibility is also straightforward because the in-
terpretation distributes on the subterms of A; and As. d-equality
must be treated explicitly.

- H(D,D)Z Ay =1laq : H1.K7 and As = Ilas : Hy. K> give
(Ar) = (K ) (KR )UT) = (ALY,

- H(*,[:l).' Ay = Ilzq : U1.Kq1 and Ay = Ilzs : Us. Ko give
(A1) = (K1) = (K2) = (A

- D(A): Ay = |Ki|g and Az = |K2|g give (A1) = cr = (A2).

If (A1) and {A2)) are defined, then A; and A2 are in weak head
normal form. Therefore they must start with the same construction
in order to be convertible. O

LEMMA 45. Ay = Ay implies [A1]e = [Az]e, or both members
are undefined.

Proof. We proceed by induction on A; = A,. 3§-reductions on ob-
jects must not be treated because objects are erased by the interpre-
tation [-]¢. Reflexivity, symmetry, and transitivity are immediate.
Compatibility is also straightforward because the interpretation dis-
tributes on the subterms of A; and A,. d-equality and Sd-reduction
on constructors must be treated explicitly.

—H(D,D)Z Ay = Ila : H1.Ky and Ay = Ila : Hs. K>

. H
give [Aie = [Hile = Nyeqryy [Kileazpy = [Hoe =
Opeqrry) [K2lleazry = [Holle = Nypey [Kole=r) =
[A2]l¢ by Lemma 44;

- II(*,0): A1 = Ilx : Ui.K; and A2 = Iz : Uz.K> give

H
[Aile = [Ui]e = [Kile = [Ua]e = [Kz]e = [Az]e;

- D(A): Ay = |K1|g and Az = |Ks|g give [A1]e =sn = [Az]e;

- TI(O, *): like II(O, O);

= II(*, »): like II(*, O);

- XM0O,0): A1 = da : Hi1.Th and Az = Xa : Ha.T>» give

IH
[Ai]e = f: (Hi) = [Ti]eazpy = F: (H) = [Toleqass) =
[ (Hz) = [To]le(a=y) = [A2]e by Lemma 44;
- /\(*,D)Z Al = Az : Ul.Tl and AQ = Az :
H
[Aile = [T1]e = [T2]e = [A2]e:
- @(D,D)Z Ay = Ty Uy and As = T Us giVC [[Aﬂ]g =
H .
[Ti]e(DVale) = [Tole(Va]e) = [Bale: if [Ar]e or [Az]e
is defined, then the function application in cr™ is well typed;

- C@(*7 D)I Al =T1 Ny and AQ =Ty No give [[Al]]é = [[Tl]]g Iil
[T2]e = [Bz]e;

- D(D)I Al = |T1|H1 and Ao = |T2|H2 give [Al]]g =cC <<H1>> =
¢ {(Hz2) = [Az2] e by Lemma 44;

- (0O, 0): in this case we have the following
[(Aa: HT) Ule = (f : (H) = [Tlea=r)) ([U]e) =
[[Tﬂ.f(az[[Uﬂg) = [[T[U/a]ﬂg by Lemma 42; if [[Al]]g or [[AQ]]g
is defined, then the function application in cr™ is well typed,
which means that [U]¢ € (H));

- B(*,0): in this case we have the following [(Az : U.T) N]¢ =
[T]e = [T[N/x]]e by Lemma 43;

- 6(0O,D): in this case we have the following [|T|rta:m.x Ule =
¢ (la: HK)([Ule) = c(K) =c(K[U/a]) =
[IT Ullk{uja) by Lemma 41; if [A1]e or [A2]¢ is defined,
then the function application in cr™ is well typed, which means
that [U]e € (H);

— 6(*,0): in this case we have the following [|T|nz:v.x NJe =
c(Hz:UK) =c{K) = c{(K[N/z]) = [IT N[ k(a1 by
Lemma 41. O

U, T, give

This soundness theorem is the main result of the section:

THEOREM 46. IfT' + A : B, then for any evaluation £ and p
1. £ =T implies [A] ¢ € { B)) when B is a kind or O;

2. &, peTimplies (A), € [B]e €cr.
Proof. We proceed by inductionon ' + A : B.

— Axiom: A = * and B = [J give:

L [*le =sne{O) =cr;
2. (*)p=+€e[O¢ =snecr;



— Start(0): T = A,(a: H),and A = a, and B = K, with the
premise A + H : [, give:
L [a]e = £(a) € (H);
2. (a), = p(a) € [H]e ¢ {O) =crsince § £ A,

— Start(»): I' = A, (z : U), and A = z, and B = U, with the
premise A + U : *, give:

2. (@), = p(x) € [U]e € (») = crsince € = A;

- Weak(0O): T' = A, (a: H), with the premise A - A : B, gives:
1. by inductive hypothesis since £ = A;
2. by inductive hypothesis since &, p = A;

— Weak(*): like Weak(O);

- II(0,0): A = e : H.K, and B = [, with the premises
F'rH:0O,and T, (a: H)+ K : 0O, give [H]¢ e (a) =cr,
and [KJ¢(a=y) ¢ {O) = cr for every f € ((H) since
&la=f)eT,(a: H),so:

I. [Ma: H.K], = [H]e = Npeqrery [K]ecazp) € (O) = cr;
H
2. (Ha: HEK), =Ta: (H).(K)paza) € [O]e =sn €cr;
the inductive hypotheses are applicable because
Ela=c{H)),p(a=a) =T, (a: H) since a € [H] fol-
lows from condition S3;

- II(*,0): A = Ilz : U.K, and B = 0O, with the premises

IF'+U:»and T, (2:U) + K : 0O, give [U]¢ € cr, and
H i
[KJe € {O) =crsince £ =T, (x: U), so:
1. [z : U.K], = [U]e = [K]e € {O) =cr.
H

2. (I : UK)p = Iz : (U)p.(K)pz=ay € [Ofe = sn € cr;
the inductive hypotheses are applicable because
&p(x=x) £ I, (x:U) since z € [U]e 3 {(*) = cr
follows from condition S3;

- II(O, *): like I1(O, O) without statement 1;

— II(, »): like IT(*, O) without statement 1;

- X0,0): A = Xa: HT, and B = Ila : H.K, with the
premises ' H:O,and I, (a: H)+T: K, and '+ B : [,

) 1H IH
give (T) p(aza) € Npeqry [K]eazy) € criorevery A e [H]e
since {(a=f),p(a=A) =T, (a: H) forevery f € {H) and
A€ [H]e, so:

H
L Das HTJe = £ (H) = [Tlega=y) < (B) = (K)";
the inductive hypotheses are applicable because £(a = f) E
I, (a: H) forevery f e (H);
IH
2. (Aa:HI)p = Aa: (H)p.(TDp(aza) € [Ble = [H]e =
Nyeqrry [Kecazs) ¢ {O) = cr by Lemma 40 with the
premise (H), € [O]¢ € cr;

- A*,0): A = X : UT, and B = Iz : UK, with the
premises '+~ U :, and I',(z:U)+T: K, and '+ B: [J,
give (T) p(a=a) € [K]¢ forevery A € [U]e since &, p(a= A) E
I, (x:U) forevery A € [U]g, so:

1. [Me: UT]e = [T]e ¢ (BY = (K); the inductive hypoth-
esis is applicable because E £ T, (z : U);
H
2. (Az:UT)p = Az (UDp-(TDp(azay € [Ble = [U]e =
1H
[K]e € {O) = cr by Lemma 40 with the premise (U), €
*]¢ €cr;

- (O, *): like A(O, O) without statement 1;

— A(*, *): like A(x, ) without statement 1;

- @(O,0): A = T U, and B = K[U/a], with the premises
I'cU:H,and'+T :1la: H.K, give:

1L [T UL, = [T]e([U]e) '€ (K) = (K[U/a])
by Lemma 41;

H
2.(TU), = (T)p (U), € Nfeqmy [Klea=s) €
[[K]]g(ag[w]]f) = [K[U/a]]¢ € cr by Lemma 42;
- @(*,0): A = T N, and B = K[N/z], with the premises
I'eN:U,and '+~ T :Ilx : U.K, give:

IH
L [T NI, = [Tl € {(Ilz: U.K) = (K) = (K[N/z]) by
Lemma 41;
IH
2.(T NDy = (T)p (ND, € [K]e = [K[N/z]]¢ € cr by
Lemma 43;
- @(0O, *): like @(OJ, ) without statement 1;
- Q(*, x): like @(*, ) without statement 1;
- D(A): A = |K|g, and B = [, with the premise I' - K : 7,
give:
L. [IK|g]le =sn e {O0) = cr.
2. (IK]ad, = (KD pla e [O]e = sn € cr; by condition S4;
- D(O): A =|T|u, and B = H, with the premises ' - T": H,
and '+ H : O, give:
L [ITu]e = C(H) € (H);
2.(IT|abp = UTDplgm, ¢ [H]e € cr by condition S4 since
1H
(H), € [O]¢ ecr;
— D(~): like D(*) without statement 1;
— Conv(O): A=T,and B = K, with the premises I' + T": K7,
and '+ K> : O, and K 2 Ko, give [K1]e I? crand [K2]¢ Ig
cr = {O), so:

H
1. [T]e € (K1) = (K2)) by Lemma 44;
2. (T), ¢ [Ki]e = [K2]e € cr by Lemma 45;

— Conv(*): like Conv([J) without statement 1. |

Finally, we give two easy corollaries of the soundness theorem,
the second of which states strong normalization for DCC.

LEMMA 47. If the evaluations £ and p are canonical for the con-
text I and T is valid in DCC, then &, p e T

Proof. We already know that if £ is canonical for I', then £ = I'.
What remains to prove is that p(z) = x € [U]¢ for any object
variable declaration (z : U) € I'. We proceed by induction on the
number of such declarations. If there is none, then we are done. If
T is valid, then there exists A c T" such that A + U : x by Lemma
10(2). So &, p E A holds by the induction hypothesis and Theorem
46(1) gives [U]¢ € () = cr. Therefore, we conclude x € [U]¢ by
condition S3. O

THEOREM 48. Every valid term in DCC is strongly normalizing.

Proof. If A € Term is valid, then A = O € sn, or there exist "
and B, both valid in DCC, such that I' - A : B. Let £ and p be
canonical evaluations for I' (they exist by definition), then Lemma
47 gives &, p = I, Theorem 46(2) gives A = (A)), € [B]e¢ € cr, and
condition S1 of [ B]¢ concludes A € sn. m|

4. Conclusions

Dummy terms seem to provide a simple, yet powerful theoretical
tool to investigate irrelevance in type systems. As a proof of con-
cept, in this paper we studied them in the setting of Pure Type Sys-
tems, that are a well-known theoretical framework, with a particu-
larly clear and well-assessed meta-theory. In particular, we proved



that dummies integrate smoothly with the theory, preserving con-
sistency when the Calculus of Constructions is considered.

Some of the techniques used in this paper only work in the case
of PTS and cannot be easily extended to more complex systems,
e.g. comprising Inductive types with strong elimination rules. This
is the case of the J-rule, which is not a constituent property of
dummies, but a mere technical artifice added in the case of PTS to
reduce terms with dummies in a form suitable to entail consistency
via structural inspection.

This is a bit surprising, since the d-rule gives rise to behav-
iors dangerously close to inconsistency. Consider e.g. the stan-
dard impredicative definition of the type of Booleans, namely B =
XX - X - X;letT = Az,y : Bz, FF = Az,y : B.y and
not = Ab: B.b B F T. Then, for any dummy boolean c = | M|z, we
have

notc=|MgBFT=|MBFT|g=c

In systems like C'C, this is not inconsistent, since we are not able
to prove discrimination results, and in particular we cannot prove
that b # not b; however, this becomes provable when adding strong
elimination of inductive types, hence preventing an extension of the
d-rule to case analysis (matching a dummy cannot turn the whole
match into a dummy).

In spite of its dangerous nature, in the calculus of constructions,
consistency follows more easily for the calculus with the J-rule
then without it. The point is that the d-rule allows us to recover
the subformula property: without this rule, normalization would
stop too soon, leaving dummy terms of arbitrary types along the
spine of the normal form. It is true that, by the generation lemma,
a dummy term can always be removed from the spine, replacing it
with its content; however, the term we obtain in this way is not any
longer in normal form. Normalizing it, we could possibly recreate
a configuration similar to the one we started from. The situation is
depicted by the following (untyped) term

A = z.(|z| )| Az.(|z| )

The term is is normal form; replacing (as a meta-step) |\z.(|z| z)|
with its witness Az.(|x| =) we obtain

A" =z (|2 ) Az (J=| =)

that in one step reduces back to A.

For all he previous reasons, extending the theory of dummies
beyond PTS is a challenging topic. We strongly believe in the
consistency of dummies (without &) for the whole Calculus of
Inductive Constructions, but the proof of this conjecture (or its
confutation) is an open issue.

To help clarifying the issue, we are also currently working at the
implementation of dummies inside a prototype version of Matita
[6] (which is based, as COQ, on the Calculus of Inductive Construc-
tions). In order to be exploitable in practice, it looks convenient to
propagate irrelevance at the level of function parameters. Say that
a variable x is a dummy parameter in M if all occurrences of x
in M are inside dummy terms. Then, we know that the function
F = \z.M makes a dummy use of its argument®. This means that
when converting F' M, against F' M> we may just assume the con-
vertibility of M and M (even if they are not explicitly declared
as dummies) since we know that by reduction they will eventually
be embedded in some dummy term. We have a double possibility
here: we may just use this information as an heuristic to speed up
convertibility, with no logical content, or we may try to integrate
this information inside the logical systems, which would definitely
lead to a duplication of binders, in a way similar to /CC*. The big

6 This is very similar to the (I-LLAM) rule of IC'C™*, that introduces an
irrelevant binder in case the variable x does not appear in the term extracted
from M.

difference is on types of higher order arguments: in the first case we
have no logical way to distinguish between a function f that makes
a dummy use of its argument from a function that doesn’t, since the
information is not in the type; on the other side, this is information
that cannot be autonomously inferred by the system according to
the use we make of f, so an explicit declaration is required, that is
precisely the place where the duplication of binders becomes ex-
tremely painful for the user. So we have an interesting trade-off
between precision and usability that must be carefully evaluated.
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