
A compact proof of decidability for regular
expression equivalence

Andrea Asperti

Department of Computer Science, University of Bologna
asperti@cs.unibo.it

Abstract. The article describes a compact formalization of the relation
between regular expressions and deterministic finite automata, and a
formally verified, efficient algorithm for testing regular expression equiv-
alence, both based on the notion of pointed regular expression [8].

1 Introduction

In this paper, we give a simple formalization of the construction of a deterministic
finite automaton associated with a given regular expression, and of a bisimilarity
algorithm to check regular expression equivalence. Our approach is based on the
notion of pointed regular expression (pre), introduced in [8] (a similar notion
has been independently presented in [14]). A pointed regular expression is just
a regular expression internally labelled with some additional points. Intuitively,
points mark the positions inside the regular expression which have been reached
after reading some prefix of the input string, or better the positions where the
processing of the remaining string has to be started. Each pointed expression for
e represents a state of the deterministic automaton associated with e; since we
obviously have only a finite number of possible labellings, the number of states
of the automaton is finite.

Pointed regular expressions provide the tool for an algebraic revisitation of
McNaughton and Yamada’s algorithm for position automata [19], making the
proof of its correctness, that is far from trivial (see e.g. [9, 11, 12]), particularly
clear and simple. In particular, pointed expressions offer an appealing alternative
to Brzozowski’s derivatives (see e.g. [20] for a recent revisitation), avoiding their
weakest point, namely the fact of being forced to quotient derivatives w.r.t. a
suitable notion of equivalence in order to get a finite number of states (that is not
essential for recognizing strings, but is crucial for comparing regular expressions).

All the proofs in this paper have been formalized in the Interactive Theorem
Prover Matita [6].

2 Preliminaries

An alphabet is an arbitrary set of elements, equipped with a decidable equality:

� �
record DeqSet : Type :=
{ carr :>Type; (∗ coercion ∗)

eqb: carr → carr →bool; (∗ notation: a == b ∗)
eqb true: ∀x,y. (eqb x y = true) ↔ (x = y)

}.� �
A string (or word) over the alphabet S is just an element of list S. We need

to deal with languages, that is, sets of strings. A traditional way to encode sets
of elements in a given universe U in type theory is by means of predicates over
U , namely elements of U → Prop. A language over an alphabet S is hence an
element of list S → Prop.

Languages inherit all the basic operations for sets, namely union, intersection,
complementation, substraction, and so on. In addition, we may define some new
operations induced by string concatenation, and in particular the concatenation
A · B of two languages A and B, the so called Kleene’s star A∗ of A and the
derivative of a language A w.r.t. a given character a:� �
definition cat :=λS,A,B.λw:word S.
∃w1,w2.w1 @ w2 = w ∧A w1 ∧B w2.

definition star :=λS,A,λw:word S.
∃lw. flatten S lw = w ∧ list forall S lw A.

definition deriv :=λS,A,a,w. A (a::w).� �
In the definition of star, f latten and list forall are standard functions over
lists, respectively mapping [l1, . . . , ln] to l1@l2 . . .@ln and [w1, w2, . . . , wn] to
(A w1) ∧ (A w2) · · · ∧ (A wn).

Two languages are equal if they are equal as sets, namely if they contain
the same words. This notion of equality, called eqP and denoted with the infix
operator ', is an extensional equality, different from the primitive intensional
equality of Matita. In particular, we can rewrite with an equation A ' B inside
a context C[A], only if the context is compatible with “'”.� �
definition eqP :=λA:Type.λP,Q:A →Prop.∀a:A.P a ↔Q a.� �

The main equations between languages that we shall need for the purposes
of this paper (in addition to the set theoretic ones, and those expressing exten-
sionality of operations) are listed below; the simple proofs are omitted.� �
lemma epsilon cat r: ∀S.∀A:word S →Prop. A ·{ε} ' A.
lemma epsilon cat l: ∀S.∀A:word S →Prop. {ε} ·A ' A.
lemma distr cat r: ∀S.∀A,B,C:word S →Prop. (A ∪B) ·C ' A · C ∪ B · C.
lemma deriv union: ∀S,A,B,a. deriv (A ∪B) a ' (deriv A a) ∪ (deriv B a).
lemma deriv cat: ∀S,A,B,a. ¬A ε→ deriv (A·B) a ' (deriv A a) · B.
lemma star fix eps : ∀S.∀A:word S →Prop. A∗ ' (A − {ε}) ·A∗ ∪ {ε}.� �

3 Regular Expressions

The type re of regular expressions over an alphabet S is the smallest collection
of objects generated by the following constructors:� �
inductive re (S: DeqSet) : Type :=

z: re S (∗ empty ∗)
| e: re S (∗ epsilon ∗)
| s : S → re S (∗ symbol ∗)
| c: re S → re S → re S (∗ concatenation ∗)
| o: re S → re S → re S (∗ plus ∗)
| k: re S → re S. (∗ kleene ’s star ∗)� �

In Matita, similarly to most interactive provers, we provide mechanisms to let
the user define his own notation for syntactic constructs, and in the rest of
the paper we shall use the traditional notation for regular expressions, namely
∅, ε, a, e1 · e2, e1 + e2, e

∗.
The language sem r (notation: JrK) associated with the regular expression r

is defined by the following function:� �
let rec sem (S : DeqSet) (r : re S) on r : word S →Prop :=

match r with
[z ⇒ ∅
| e ⇒ {ε}
| s x ⇒ {[x]}
| c r1 r2 ⇒ Jr1K · Jr2K
| o r1 r2 ⇒ Jr1K ∪ Jr2K
| k r1 ⇒ Jr1K∗].� �

4 Pointed regular expressions

A pointed item is a data type used to encode a set of positions inside a regular
expression. The idea of formalizing pointers inside a data type by means of a
labelled version of the data type itself is probably one of the first, major lessons
learned in the formalization of the metatheory of programming languages (see
e.g. [16] for a precursory application to residuals in lambda calculus). For our
purposes, it is enough to mark positions preceding individual characters, so we
shall have two kinds of characters •a (pp a) and a (ps a) according to the case
a is pointed or not.� �
inductive pitem (S: DeqSet) : Type :=

pz: pitem S
| pe: pitem S
| ps: S → pitem S
| pp: S → pitem S
| pc: pitem S →pitem S → pitem S
| po: pitem S →pitem S → pitem S
| pk: pitem S →pitem S.� �

A pointed regular expression (pre) is just a pointed item with an additional
boolean, that must be understood as the possibility to have a trailing point at
the end of the expression. As we shall see, pointed regular expressions can be
understood as states of a DFA, and the boolean indicates if the state is final or
not.� �
definition pre :=λS.pitem S × bool.� �

The carrier |i| of an item i is the regular expression obtained from i by
removing all the points. Similarly, the carrier of a pointed regular expression is
the carrier of its item. The formal definition of this functions are straightforward,
so we omit them. In the sequel, we shall use the same notation for functions
defined over items or pres, leaving to the reader the simple disambiguation task
(matita is also able to solve autonomously this kind of notational overloading).

The intuitive semantic of a point is to mark the position where we should
start reading the regular expression. The language associated to a pre is the
union of the languages associated with its points. Here is the straightforward
definition (the question mark is an implicit parameter):� �
let rec semi (S : DeqSet) (i : pitem S) on i : word S →Prop :=
match r with
[pz ⇒ ∅
| pe ⇒ ∅
| ps ⇒ ∅
| pp x ⇒ {[x]}
| pc i1 i2 ⇒ (semi ? i1) · J | i2 |K ∪ (semi ? i2)
| po i1 r2 ⇒ (semi ? i1) ∪ (semi ? i2)
| pk i1 ⇒ (semi ? i1) · J | i1 |K∗].

definition semp :=λS : DeqSet.λp:pre S.
if (snd p) then semi ? (fst p) ∪ {ε} else semi ? (fst p).� �

In the sequel, we shall often use the same notation for functions defined over re,
items or pres, leaving to the reader the simple disambiguation task (matita is also
able to solve autonomously this kind of notational overloading). In particular,
we shall denote with JeK all semantic functions sem, semi and semp.

Example 1.

1. If e contains no point then JeK = ∅
2. J(a+ •bb)∗K = Jbb(a+ bb)∗K
�
Here are a few, simple, semantic properties of items� �
lemma not epsilon item : ∀S:DeqSet.∀i:pitem S. ¬ (JiK ε).
lemma epsilon pre : ∀S.∀e:pre S. (J iK ε) ↔ (snd e = true).
lemma minus eps item: ∀S.∀i:pitem S. JiK ' JiK−{ε}.
lemma minus eps pre: ∀S.∀e:pre S. Jfst eK ' JeK−{ε}.� �
The first property is proved by a simple induction on i; the other results are
easy corollaries.

4.1 Intensional equality of pres

Items and pres are a very concrete datatype: they can be effectively compared,
and enumerated. This is important, since pres are the states of our finite au-
tomata, and we shall need to compare states for bisimulation in Section 7.

In particular, we can define beqitem and beqitem true enriching the set
(pitemS) to a DeqSet.� �
definition DeqItem :=λS.

mk DeqSet (pitem S) (beqitem S) (beqitem true S).� �
Matita’s mechanism of unification hints [7] allows the type inference system

to look at (pitemS) as the carrier of DeqSet, and at beqitem as if it was the
equality function of DeqSet.

The product of two DeqSets is clearly still a DeqSet. Via unification hints,
we may enrich a product type to the corresponding DeqSet; since moreover the
type of booleans is a DeqSet too, this means that the type of pres automatically
inherits the structure of a DeqSet (in Section 7, we shall deal with pairs of pres,
and in this case too, without having anything to declare, the type will inherit
the structure of a DeqSet).

Items and Pres can also be enumerated. In particular, it is easy to define a
function pre enum that takes in input a regular expression and gives back the
list of all pres having e for carrier. Completeness of pre enum is stated by the
following lemma:� �
lemma pre enum complete : ∀S.∀e:pre S.

memb ? e (pre enum S (|fst e|)) = true.� �
5 Broadcasting points

Intuitively, a regular expression e must be understood as a pointed expression
with a single point in front of it. Since however we only allow points before
symbols, we must broadcast this initial point inside e traversing all nullable
subexpressions, that essentially corresponds to the ε-closure operation on au-
tomata. We use the notation •(·) to denote such an operation; its definition is
the expected one: let us start discussing an example.

Example 2. Let us broadcast a point inside (a+ ε)(b∗a+ b)b. We start working
in parallel on the first occurrence of a (where the point stops), and on ε that
gets traversed. We have hence reached the end of a + ε and we must pursue
broadcasting inside (b∗a + b)b. Again, we work in parallel on the two additive
subterms b∗a and b; the first point is allowed to both enter the star, and to
traverse it, stopping in front of a; the second point just stops in front of b. No
point reached that end of b∗a + b hence no further propagation is possible. In
conclusion:

•((a+ ε)(b∗a+ b)b) = 〈(•a+ ε)((•b)∗ • a+ •b)b, false〉

�

Broadcasting a point inside an item generates a pre, since the point could pos-
sibly reach the end of the expression. Broadcasting inside a pair i1 + i2 amounts
to broadcast in parallel inside i1 and i2. If we define

〈i1, b′1〉 ⊕ 〈i2, b2〉 = 〈i1 + i2, b1 ∨ b2〉

then, we just have •(i1 + i2) = •(i1)⊕ •(i2).
Concatenation is a bit more complex. In order to broadcast an item inside

i1 · i2 we should start broadcasting it inside i1 and then proceed into i2 if and
only if a point reached the end of i1.

This suggests to define •(i1 · i2) as •(i1). i2, where e. i is a general operation
of concatenation between a pre and item (named pre concat l) defined by cases
on the boolean in e

〈i1, true〉 . i2 = i1 / •(i2) 〈i1, false〉 . i2 = 〈i1 · i2, false〉

In turn, / (named pre concat r) says how to concatenate an item with a pre,
that is however extremely simple:

i1 / 〈i1, b〉 = 〈i1 · i2, b〉

The different kinds of concatenation between items and pres are summarized in
Fig. 1, where we also depict the concatenation between two pres of Section 5.3.

item pre

item i1 · i2 i1 / e2
i1 / 〈i1, b〉 := 〈i1 · i2, b〉

pre e1 . i2 e1� e2
〈i1, true〉 . i2 := i1 / •(i2) e1 � 〈i2, b〉 := let 〈i′, b′〉 = e1 . i2
〈i1, false〉 . i2 := 〈i1 · i2, false〉 in 〈i′, b ∨ b′〉

Fig. 1. Concatenations between items and pres and respective equations

The definition of •(·) (eclose) and . (pre concat l) are mutually recursive. In
this situation, a viable alternative that is usually simpler to reason about, is to
abstract one of the two functions with respect to the other.� �
definition pre concat l :=λS.λbcast:∀S.pitem S →pre S.λe1:pre S.λi2:pitem S.

let 〈 i1 ,b1〉 := e1 in
if b1 then i1 . (bcast ? i2) else 〈 i1 · i2 , false 〉 .

let rec eclose (S: DeqSet) (i: pitem S) on i : pre S :=
match i with
[pz ⇒ 〈pz S, false 〉
| pe ⇒ 〈pe S, true〉
| ps x ⇒ 〈ps S x, false 〉
| pp x ⇒ 〈pp S x, false 〉
| po i1 i2 ⇒ •i1 ⊕ •i2
| pc i1 i2 ⇒ •i1 / i2
| pk i ⇒ 〈(fst (•i))∗ ,true〉].� �

The definition of eclose can then be lifted from items to pres:� �
definition lift :=λS.λf:pitem S →pre S.λe:pre S.

let 〈 i ,b〉 := e in 〈 fst (f i), snd (f i) ∨ b〉.

definition preclose :=λS. lift S (eclose S).� �
By induction on the item i it is easy to prove the following result:� �
lemma erase bullet : ∀S.∀i:pitem S. | fst (•i)| = |i |.� �
5.1 Semantics

We are now ready to state the main semantic properties of ⊕, ., / and •(−):� �
lemma sem oplus: ∀S:DeqSet.∀e1,e2:pre S.

Je1 ⊕ e2K ' Je1K ∪ Je2K .

lemma sem pre concat r : ∀S,i.∀e:pre S.
J i . eK ' J iK · J | fst e |K ∪ JeK .

lemma sem pre concat l : ∀S.∀e1:pre S.∀i2:pitem S.
Je1 / i2K ' Je1K · J | i2 |K ∪ J i2K .

theorem sem bullet: ∀S:DeqSet. ∀i:pitem S.
J•iK ' J iK ∪ J | i |K .� �

The proofs of sem oplus and sem pre concat r are straightforward. For the
others, we proceed as follow: we first prove the following auxiliary lemma, that
assumes sem bullet� �
lemma sem pre concat l aux : ∀S.∀e1:pre S.∀i2:pitem S.

J•i2K ' J i2K ∪ J | i2 |K →
Je1 / i2K ' Je1K · J | i2 |K ∪ J i2K .� �

Then, using the previous result, we prove sem bullet by induction on i. Finally,
sem pre concat l aux and sem bullet give sem pre concat l.

It is important to observe that all proofs have an algebraic flavor. Let us
consider for instance the proof of sem pre concat l aux. Assuming e1 = 〈i1, b1〉
we proceed by cases on b1. If b1 is false, the result is trivial; if b1 is true, we have

J〈i1, true〉 / i2K' Ji1K . •(i2) by def. of /
' Ji1K · J|f st • (i2)|K ∪ J•(i2)K by sem pre concat r
' Ji1K · J|i2|K ∪ Ji2K ∪ J|i2|K by erase bullet and sem bullet
' Ji1K · J|i2|K ∪ J|i2|K ∪ Ji2K by assoc. and comm.
' (Ji1K ∪ {ε}) · J|i2|K ∪ Ji2K by distr cat r
' J〈i1, true〉K · J|i2|K ∪ Ji2K by the semantics of pre

As another example, let us consider the proof of sem bullet. The proof is by
induction on i; let us consider the case of i1 · i2. We have:

J•(i1 · i2)K'J•(i1)K / Ji2K by definition of • (·)
'J•(i1)K · J|i2|K ∪ Ji2K by sem pre concat l
'(Ji1K ∪ J|i1|K) · J|i2|K ∪ Ji2K by induction hypothesis
'Ji1K · J|i2|K ∪ J|i1|K · J|i2|K ∪ Ji2K by distr cat r
'(Ji1K · J|i2|K ∪ Ji2K) ∪ J|i1 · i2|K by assoc. and comm.
'J(i1 · i2)K ∪ J|i1 · i2|K by definition of J K

5.2 Initial state

As a corollary of theorem sem bullet, given a regular expression e, we can easily
find an item with the same semantics of e: it is enough to get an item (blank e)
having e as carrier and no point, and then broadcast a point in it:

J•(blank e)K ' J(blank e)K ∪ JeK ' JeK

The definition of blank is straightforward; its main properties (both proved by
an easy induction on e) are the following:� �
lemma forget blank: ∀S.∀e:re S.|blank S e| = e.
lemma sem blank: ∀S.∀e:re S. Jblank S eK ' ∅.
theorem re embedding: ∀S.∀e:re S. J•(blank S e)K ' JeK.� �
5.3 Lifted operators

Plus and bullet have been already lifted from items to pres. We can now do a
similar job for concatenation (�) and and Kleene’s star (�).� �
definition lifted cat :=λS:DeqSet.λe:pre S. lift S (pre concat l S eclose e).

definition lk :=λS:DeqSet.λe:pre S.
let 〈 i1 ,b1〉 := e in if b1 then 〈(fst (eclose ? i1))∗ , true〉 else 〈 i1∗ , false 〉 .� �

We can easily prove the following properties:� �
lemma sem odot: ∀S.∀e1,e2: pre S.

Je1 � e2K ' Je1K · J | fst e2|K ∪ Je2K .

theorem sem ostar: ∀S.∀e:pre S.
Je�K ' JeK · J | fst e |K∗ .� �

For example, let us look at the proof of the latter. Given e = 〈i, b〉 we proceed
by cases on b. If b is false the result is trivial; if b is true we have:

J〈i, true〉�K'J(f st •(i))∗K ∪ {ε} by definition of �
'Jf st •(i)K · Jf st |•(i)|K∗ ∪ {ε} by definition of J K
'Jf st •(i)K · J|i|K∗ ∪ {ε} by erase bullet
'(J•(i)K− {ε}) · J|i|K∗ ∪ {ε} by minus eps pre
'((JiK ∪ J|i|K)− {ε}) · J|i|K∗ ∪ {ε} by sem bullet
'((JiK− {ε}) ∪ (J|i|K− {ε})) · J|i|K∗ ∪ {ε} by distr minus

'(JiK ∪ (J|i|K− {ε})) · J|i|K∗ ∪ {ε} by minus eps item
'JiK · J|i|K∗ ∪ (J|i|K− {ε}) · J|i|K∗ ∪ {ε} by distr cat r
'JiK · J|i|K∗ ∪ J|i|K∗ by star fix eps
'(JiK ∪ {ε}) · J|i|K∗ by distr cat r
'J〈i, true〉K · J|i|K∗ by definition of J K

6 Moves

We now define the move operation, that corresponds to the advancement of the
state in response to the processing of an input character a. The intuition is clear:
we have to look at points inside e preceding the given character a, let the point
traverse the character, and broadcast it. All other points must be removed.

We can give a particularly elegant definition in terms of the lifted operators
of the previous section:� �
let rec move (S: DeqSet) (x:S) (E: pitem S) on E : pre S :=
match E with
[pz ⇒ 〈pz S, false 〉
| pe ⇒ 〈pe S, false 〉
| ps y ⇒ 〈ps S y, false 〉
| pp y ⇒ 〈ps S, x == y〉 (∗ the point is advanced if x==y, erased otherwise ∗)
| po e1 e2 ⇒ (move ? x e1) ⊕ (move ? x e2)
| pc e1 e2 ⇒ (move ? x e1) � (move ? x e2)
| pk e ⇒ (move ? x e)�].� �

Example 3. Let us consider the pre (•a+ ε)((•b)∗ • a+ •b)b and the two moves
w.r.t. the characters a and b. For a, we have two possible positions (all other
points gets erased); the innermost point stops in front of the final b, the other
one broadcast inside (b∗a+ b)b, so

move a ((•a+ ε)((•b)∗ • a+ •b)b) = 〈(a+ ε)((•b)∗ • a+ •b) • b, false〉
For b, we have two positions too. The innermost point stops in front of the final
b too, while the other point reaches the end of b∗ and must go back through b∗a:

move b ((•a+ ε)((•b)∗ • a+ •b) • b) = 〈(a+ ε)((•b)∗ • a+ b) • b, false〉
�

Obviously, a move does not change the carrier of the item, as one can easily
prove by induction on the item� �
lemma same carrier: ∀S:DeqSet.∀a:S.∀i:pitem S.
| fst (move a i)| = |i |.� �

Here is our first, major result.� �
theorem move ok: ∀S:DeqSet.∀a:S.∀i:pitem S.

Jmove a iK ' deriv J iK a.� �

The proof is a simple induction on i. Let us see the case of concatentation:

Jmove a (i1 · i2)K ' Jmove a i1 �move a i2K by def. of move
' Jmove a i1K · J|f st (move a i2)|K ∪ Jmove a i2K by sem odot
' Jmove a i1K · J|i2|K ∪ Jmove a i2K by same carrier
' (deriv Ji1K a) · J|i2|K ∪ (deriv Ji2K a) by ind. hyp.
' (deriv (Ji1K · J|i2|K) a) ∪ (deriv Ji2K a) by deriv cat
' deriv (Ji1K · J|i2|K ∪ Ji2K) a by deriv union
' deriv Ji1 · i2K a by definition of J K

The move operation is generalized to strings in the obvious way:� �
let rec moves (S : DeqSet) w e on w : pre S :=
match w with
[nil ⇒ e
| cons a tl ⇒ moves S tl (move S a (fst e))].

lemma same carrier moves: ∀S:DeqSet.∀w.∀e:pre S.
| fst (moves ? w e)| = | fst e |.

theorem decidable sem: ∀S:DeqSet.∀w: word S. ∀e:pre S.
(snd (moves ? w e) = true) ↔ JeK w.� �

The proof of decidable sem is by induction on w. The case w = ε is trivial; if
w = a :: w1 we have

snd (moves (a :: w1) e) = true
↔ snd (moves w1 (move a (f st e))) = true by def. of moves
↔ Jmove a (f st e)K w1 by ind. hyp.
↔ JeK a :: w1 by move ok

It is now clear that we can build a DFA De for e by taking pre as states, and
move as transition function; the initial state is •(e) and a state 〈i, b〉 is final if
and only if b = true. The fact that states in De are finite is obvious: in fact,
their cardinality is at most 2n+1 where n is the number of symbols in e. This
is one of the advantages of pointed regular expressions w.r.t. derivatives, whose
finite nature only holds after a suitable quotient.

Example 4. Figure 2 describes the DFA for the regular expression (ac+ bc)∗.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(a c + b c) *

c

a

b

c a|b

a|b

c

a|b|c

*(a c + b c)

*(a c + b c)

*(a c + b c)

Fig. 2. DFA for (ac+ bc)∗

The graphical description of the automaton is the traditional one, with nodes
for states and labelled arcs for transitions. Unreachable states are not shown.
Final states are emphasized by a double circle: since a state 〈e, b〉 is final if and
only if b is true, we may just label nodes with the item.
The automaton is not minimal: it is easy to see that the two states corresponding
to the pres (a • c + bc)∗ and (ac + b • c)∗ are equivalent (a way to prove it is
to observe that they define the same language!). In fact, each state has a clear
semantics given in terms of the associated pre e and not of the behaviour of the
automaton. As a consequence, the construction of the automaton is not only
direct, but also extremely intuitive and locally verifiable. �

Example 5. Starting from the regular expression (a+ ε)(b∗a+ b)b, we obtain the
automaton in Figure 3. Remarkably, this DFA is minimal, testifying the small

*

b
ε(a +)(b a + b) bl l l

*
ε l(a +)(b a + b) b*

ε(a +)(b a + b) b*

ε(a +)(b a + b) b*

a b

a
b b

a

b
a

a

b a

a|b

a|b

2

6

8

9

* ε l l l l

1

 ε
*

l l l l(a +)(b a + b) b

(a +)(b a + b) b

a

3

l l l(a +)(b a + b) bε

ε(a +)(b a + b) bl l
*

5

ε(a +)(b a + b) bl l
*

7

4

b

Fig. 3. DFA for (a+ ε)(b∗a+ b)b

number of states produced by our technique (the pair of states 6− 8 and 7− 9
differ for the fact that 6 and 7 are final, while 8 and 9 are not). �

7 Equivalence

We say that two pres 〈i1, b1〉 and 〈i2, b2〉 are cofinal if and only if b1 = b2.
As a corollary of decidable sem, we have that two expressions e1 and e2 are
equivalent iff for any word w the states reachable through w are cofinal.

� �
theorem equiv sem: ∀S:DeqSet.∀e1,e2:pre S.

Je1K ' Je2K ↔ ∀w.cofinal 〈moves w e1,moves w e2〉.� �
This does not directly imply decidability: we have no bound over the length of
w; moreover, so far, we made no assumption over the cardinality of S. Instead
of requiring S to be finite, we may restrict the analysis to characters occurring
in the given pres. This means we can prove the following, stronger result:� �
lemma equiv sem occ: ∀S.∀e1,e2:pre S.(∀w.(sublist S w (occ S e1 e2))→

cofinal 〈moves w e1,moves w e2〉) → Je1K ' Je2K.� �
The proof essentially requires the notion of sink state and a few trivial properties:� �
definition sink pre :=λS.λi.〈blank S (| i |), false 〉 .

lemma not occur to sink: ∀S,a.∀i:pitem S. memb S a (occur S (|i|)) 6= true →
move a i = sink pre S i .

lemma moves sink: ∀S,w,i. moves w (sink pre S i) = sink pre S i.� �
Let us say that a list of pairs of pres is a bisimulation if it is closed w.r.t.

moves, and all its members are cofinal.� �
definition sons :=λS:DeqSet.λl:list S.λp:(pre S)×(pre S).

map ?? (λa.〈move a (fst (fst p)),move a (fst (snd p))〉) l .

definition is bisim :=λS:DeqSet.λl: list ?.λalpha: list S. ∀p:(pre S)×(pre S).
memb ? p l = true → cofinal ? p ∧ (sublist ? (sons ? alpha p) l).� �

Using lemma equiv sem occ it is easy to prove� �
lemma bisim to sem: ∀S:DeqSet.∀l:list ?.∀e1,e2: pre S.

is bisim S l (occ S e1 e2) →memb ? 〈e1,e2〉 l = true → Je1K ' Je2K.� �
As observed in [18] this is already an interesting result: checking if l is a bisim-
ulation is decidable, hence we could generate l with some untrusted piece of
code and then run a (boolean version of) is bisim to check that it is actually a
bisimulation. However, in order to prove that equivalence of regular expressions
is decidable we must prove that we can always effectively build such a list (or
find a counterexample). The idea is that the list we are interested in is just the
set of all pair of pres reachable from the initial pair via some sequence of moves.

The algorithm for computing reachable nodes in a graph is a very traditional
one. We split nodes in two disjoint lists: a list of visited nodes and a frontier,
composed by all nodes connected to a node in visited but not visited already. At
each step we select a node a from the frontier, compute its sons, add a to the
set of visited nodes and the (not already visited) sons to the frontier.

Instead of fist computing reachable nodes and then performing the bisimi-
larity test we can directly integrate it in the algorithm: the set of visited nodes

is closed by construction w.r.t. reachability, so we have just to check cofinality
for any node we add to visited.

Here is the extremely simple algorithm� �
let rec bisim S l n (frontier , visited : list ?) on n :=

match n with
[O ⇒ 〈false,visited〉 (∗ assert false ∗)
| S m ⇒

match frontier with
[nil ⇒ 〈true,visited〉
| cons hd tl ⇒

if beqb (snd (fst hd)) (snd (snd hd)) (∗ cofinality ∗) then
bisim S l m (unique append ? (filter ? (λx.notb (memb ? x (hd::visited)))
(sons S l hd)) tl) (hd:: visited)

else 〈 false , visited 〉
]

].� �
The integer n is an upper bound to the number of recursive calls, equal to

the dimension of the graph. It returns a pair composed by a boolean and the set
of visited nodes; the boolean is true if and only if all visited nodes are cofinal.

The main test function is:� �
definition equiv :=λSig.λre1,re2:re Sig.

let e1 :=•(blank ? re1) in
let e2 :=•(blank ? re2) in
let n :=S (length ? (space enum Sig (| fst e1 |) (| fst e2 |))) in
let sig :=(occ Sig e1 e2) in
(bisim ? sig n [〈e1,e2〉] []).� �

We proved both correctness and completeness; in particular, we have� �
theorem euqiv sem : ∀Sig.∀e1,e2:re Sig.

fst (equiv ? e1 e2) = true ↔ Je1K ' Je2K .� �
For correctness, we use the invariant that at each call of bisim the two lists
v isited and f rontier only contain nodes reachable from 〈e1, e2〉: hence it is ab-
surd to suppose to meet a pair which is not cofinal. For completeness, we use
the invariant that all the nodes in visited are cofinal, and the sons of v isited are
either in v isited or in the f rontier; since at the end f rontier is empty, v isited
is hence a bisimulation. All in all, correctness and completeness take little more
than a few hundreds lines.

8 Discussion, related works, conclusions

Most of the formal proofs contained in this paper go back to 2009, preceding the
technical report where we introduced the notion of pointed regular expression
[8]; the long term idea, still in progress, was to use this material as a base for
wrting an introductory tutorial to Matita. Since then, a small bunch of related

works have appeared [2, 18, 13, 22], convincing us we could possibly add our two
cents to this interesting, and apparently never exhausted topic.

Most of the above mentioned works are based on the notion of derivative,
either in Brzozowski’s acception [18, 13] or in Antimirov’s one [2, 22]. This is
not particularly surprising, since the algebraic nature of derivatives make them
particularly appealing for a formal development. However, as remarked in [18],
“in the large range of algorithms that turn regular expressions into automata,
Brzozowski’s procedure is on the elegant side, not the efficient one”.

In order to get an efficient implementation, Braibant and Pous [10] resort to a
careful implementation of finite state automata, encoding them as matrices over
the given alphabet; automata are build using a variant of Thompson’s technique
[21] due to Ilie and Yu [17] (simpler to formalize then [21] but still complex).

Our approach based on pointed regular expressions provides a simple, alge-
braic revisitation of McNaughton and Yamada’s algorithm [19] that, in contrast
to Brzozowski’s procedure, is traditionally reputed for its efficiency [1]; as a
result, our approach is both efficient and compact.

Compactness, is maybe the most striking feature: from the definition of lan-
guages and regular expressions to the correctness proof of bisimilarity, our de-
velopment takes less than 1200 lines. A self contained (not minimal) snapshot of
the library can be found at http:\\www.cs.unibo.it\~asperti\re.tar, and
it takes about 3400 lines. The development described in [18] has about the same
size, but in this case the comparison is not fair, since they only check correctness,
but do not address neither termination nor completeness. Especially, termination
for Brzozowski’s procedure is a delicate issue, taking quite an effort to [13].

The formalization in [13] is unexpectedly verbose: 7414 lines, not including
relevant fragments of the standard library. This is particularly surprising since it
has been written in ssreflect [15], that is reputed to be a compact dialect of Coq.
We should observe that [13] contains two bisimilarity algorithms: one slow and
naif (similar to that described in [18]) and one more complex, but more difficult
to prove correct (taking, respectively, 1109 and 2576 lines). The point is that
the efficiency of Brzozowski’s procedure largely relies on the quotient made over
derivatives: associative and commutative rewriting is enough for termination, but
more complex rewritings are required to get a really performant implementation.

In spite of this huge effort, the actual performance of the bisimilarity test
in [13] remains modest. Let us consider a couple of examples. The first one is
an encoding of Bezout’s identity discussed in [13]; exploiting the fact that set
inclusion can be reduced to equality expressing A ⊆ B as A ∪ B = B, the
arithmetical statement

∀n ≥ c.∃x, y.n = xa+ yb

can be expressed as the following regular expression problem

A(a, b, c) = (0c)0∗ + (0a + 0b)∗ ' (0a + 0b)∗

The second problem, borrowed from [3], consists in proving the following equal-
ity:

B(n) = (ε+ a+ aa+ · · ·+ an−1)(an)∗ ' a∗

In Figure 4 we compare our technique (pres) with that of [13]; execution times
are expressed in seconds and have been computed on a machine with a Pentium
M Processor 750 1.86GHz and 1GB of RAM.

problem answer pres [13] problem answer pres [13]
A(3, 5, 8) yes 0.19 2.09 B(6) yes 0.15 0.29
A(4, 5, 11) no 0.18 5.26 B(8) yes 0.20 1.24
A(4, 5, 12) yes 0.24 5.26 B(10) yes 0.26 3.98
A(5, 6, 19) no 0.30 31.22 B(12) yes 0.31 10.71
A(5, 6, 20) yes 0.43 31.23 B(14) yes 0.45 25.04
A(5, 7, 23) no 0.38 70.09 B(16) yes 0.61 53.15
A(5, 7, 24) yes 0.57 70.19 B(18) yes 0.80 104.16

Fig. 4. Performance

The main achievement of our work, is however the very notion of pointed
regular expression. The important facts are that

1. pointed expressions are in bijective correspondence with states of DFA
2. each pointed expression has a clear and intuitive semantics
3. the relation between a state and its sons is immediate and very natural

This allows a direct, intuitive and locally verifiable construction of the determin-
istic automaton for e, that is not only convenient for formalization, but also for
didactic purposes. Since their discovery, we systematically used pointed expres-
sions for teaching the argument to students and, according to our experience,
they are largely superior to any other method we are aware of. In our opinion,
pointed regular expressions are a nice example of the kind of results we may
expect from the revisitation of methods and notions of computer science and
mathematics induced by mechanical formalization, and which is probably the
most ambitious and challenging objective of this discipline (see e.g. [4, 5]).

Acknowledgments We thank Claudio Sacerdoti Coen for contributing to
the notion of pointed regular expression and Enrico Tassi for collaborating to an
earlier, partial implementation in Matita. The work has been partially supported
by the European Project CerCo.1

References

1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Pearson Education Inc., 2006.

2. José Bacelar Almeida, Nelma Moreira, David Pereira, and Simão Melo de Sousa.
Partial derivative automata formalized in coq. In Implementation and Application
of Automata - 15th International Conference, CIAA 2010, Winnipeg, MB, Canada,
volume 6482 of Lecture Notes in Computer Science, pages 59–68. Springer, 2010.

1 CerCo acknowledges the financial support of the Future and Emerging Technologies
(FET) programme within the Seventh Framework Programme for Research of the
European Commission, under FET-Open grant number: 243881.

3. Valentin Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155:291–319, 1996.

4. Andrea Asperti and Cristian Armentano. A page in number theory. Journal of
Formalized Reasoning, 1:1–23, 2008.

5. Andrea Asperti and Jeremy Avigad. Zen and the art of formalization. Mathematical
Structures in Computer Science, 21(4):679–682, 2011.

6. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. The
Matita interactive theorem prover. In Proceedings of the 23rd International Con-
ference on Automated Deduction (CADE-2011), Wroclaw, Poland, volume 6803 of
LNCS, 2011.

7. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. Hints
in unification. In TPHOLs 2009, volume 5674 of LNCS, pages 84–98. Springer-
Verlag, 2009.

8. Andrea Asperti, Enrico Tassi, and Claudio Sacerdoti Coen. Regular expressions,
au point. eprint arXiv:1010.2604, 2010.

9. Gérard Berry and Ravi Sethi. From regular expressions to deterministic automata.
Theor. Comput. Sci., 48(3):117–126, 1986.

10. Thomas Braibant and Damien Pous. An efficient coq tactic for deciding kleene
algebras. In Proceedings of Interactive Theorem Proving, ITP 2010, Edinburgh,
UK, volume 6172 of LNCS, pages 163–178. Springer, 2010.

11. Anne Brüggemann-Klein. Regular expressions into finite automata. Theor. Com-
put. Sci., 120(2):197–213, 1993.

12. Chia-Hsiang Chang and Robert Paige. From regular expressions to dfa’s using
compressed nfa’s. In Combinatorial Pattern Matching, Third Annual Symposium,
CPM 92, Tucson, Arizona, USA, April 29 - May 1, 1992, Proceedings, volume 644
of Lecture Notes in Computer Science, pages 90–110. Springer, 1992.

13. Thierry Coquand and Vincent Siles. A decision procedure for regular expression
equivalence in type theory. In Proceedings of Certified Programs and Proofs, CPP
2011, Kenting, Taiwan, volume 7086 of Lecture Notes in Computer Science, pages
119–134. Springer, 2011.

14. Sebastian Fischer, Frank Huch, and Thomas Wilke. A play on regular expres-
sions: functional pearl. In Proceeding of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP 2010, Baltimore, Maryland., pages
357–368. ACM, 2010.

15. Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection
in coq. Journal of Formalized Reasoning, 3(2):95–152, 2010.

16. Gérard P. Huet. Residual theory in lambda-calculus: A formal development. J.
Funct. Program., 4(3):371–394, 1994.

17. Lucian Ilie and Sheng Yu. Follow automata. Inf. Comput., 186(1):140–162, 2003.
18. Alexander Krauss and Tobias Nipkow. Proof pearl: Regular expression equivalence

and relation algebra. Journal of Automated Reasoning, published on line, 2011.
19. R. McNaughton and H. Yamada. Regular expressions and state graphs for au-

tomata. Ieee Transactions On Electronic Computers, 9(1):39–47, 1960.
20. Scott Owens, John H. Reppy, and Aaron Turon. Regular-expression derivatives

re-examined. J. Funct. Program., 19(2):173–190, 2009.
21. Ken Thompson. Regular expression search algorithm. Communications of ACM,

11:419–422, 1968.
22. Chunhan Wu, Xingyuan Zhang, and Christian Urban. A formalisation of the

myhill-nerode theorem based on regular expressions (proof pearl). In Proceedings
of Interactive Theorem Proving ITP 2011, Berg en Dal, The Netherlands, volume
6898 of Lecture Notes in Computer Science, pages 341–356. Springer, 2011.

