
Not loNg ago, any start-up hoping to create the next big thing
on the Internet had to invest sizable amounts of money in comput-
ing hardware, network connectivity, real estate to house the equip-
ment, and technical personnel to keep everything working 24/7.
The inevi table delays in getting all this funded, designed, and set up
could easily erase any competitive edge the company might have
had at the outset. • Today, the same start-up could have its product
up and running in the cloud in a matter of days, if not hours, with
zero up-front investment in servers and similar gear. And the com-
pany wouldn’t have to pay for any more computing oomph than it
needs at any given time, because most cloud-
service providers allot computing resources
dynamically according to actual demand.

Peer-to-peer cloud computing
could free us from

the tyranny of data centers

 The
People’s

Cloud

Illustrations by
rob wilson

By
ozalp babaoglu &
Moreno Marzolla

50 | oct 2014 | north american | SPectrUm.ieee.orG

10.PeerToPeerCloud.NA.indd 50 9/11/14 12:30 PM

SPectrUm.ieee.orG | north american | oct 2014 | 51

10.PeerToPeerCloud.NA.indd 51 9/11/14 12:30 PM

With the computing infrastructure out of sight and out of
mind, a start-up can concentrate its attention on launching
and improving its product. This lowers the barriers to entry,
letting anyone with an Internet connection and a credit card
tap the same world-class computing resources as a major cor-
poration. Many of the most popular and successful Internet
services today, including Netflix, Instagram, Vine, Foursquare,
and Dropbox, make use of commercial clouds.

These clouds might seem a bit ethereal to their end users, but
they in fact require some very down-to-earth facilities. Their
stadium-size data centers are immensely costly to construct,
and, not surprisingly, most are run by giant corporations
like Amazon, Google, and Microsoft. Each offers a variety
of service models, depending on exactly how the customer
interacts with its cloud- computing environment.

The lowest-level model is known as infrastructure as a ser-
vice, or IaaS, which outfits each customer with one or more
virtual machines running on the cloud provider’s physical
equipment. One actual computer might, for example, simu-
late five different virtual computers, each leased to a different
customer. In addition to leasing such virtual machines, an IaaS
provider may include a choice of operating systems to run on
them. Notable examples of such IaaS clouds include Google’s
Compute Engine and Amazon’s Elastic Compute Cloud.

At a higher level of abstraction are platform-as-a-service,
or PaaS, clouds. These include an environment for develop-
ing the online applications that are to run on the provider’s
equipment. Customers don’t have to manage virtual machines.
They just create their applications using various software
libraries, application-programming interfaces, and other
software tools such as databases and middleware, and then
one or more virtual computers are spun up automatically
as needed to run all of this. Examples of PaaS clouds are
 Amazon’s Elastic Beanstalk, Google’s AppEngine, Microsoft’s
Azure, and SalesForce’s Force.com.

At a still-higher level are software-as-a-service, or SaaS,
clouds. Their customers know nothing of the underlying
infrastructure or computing platform: They simply use some
Web-based application or suite of applications to handle the
task at hand. This is probably the model of cloud computing
that most people are familiar with. It includes services like
Apple iWork, Gmail, Google Docs, and Microsoft Office 365.

But is this the only way cloud computing can work? At the
University of Bologna, in Italy, we’ve been investigating a
very different strategy to do cloud computing without those
giant centralized facilities at all—using peer-to-peer technolo-
gies of the kind sometimes associated with shady file-sharing
operations. Their use here, though, could help democratize
cloud computing. Our prototype software is still at a very
early stage, but its development and similar successes by
researchers elsewhere show real promise.

PlaciNg the Physical iNfrastructure for a cloud-computing
operation where it’s usually found, in a single massive data
center, has definite advantages. Construction, equipment
procurement, installation, and maintenance are all simpli-
fied, and economies of scale reduce costs. On the other hand,
a single large data center consumes an enormous amount of
electrical power, often comparable to what you’d need to

With the right soft-
ware, geographically
distributed hardware
can provide a unified
cloud-computing
resource

Scattering
the Clouds

soMe cloud-coMputing providers
put all their hardware eggs in one data-
center basket [blue]. Others employ multiple
data centers networked together [orange].
The logical extension is a peer-to-peer cloud
made of individual computers [yellow].

52 | oct 2014 | north american | SPectrUm.ieee.orG

10.PeerToPeerCloud.NA.indd 52 9/11/14 12:30 PM

run a small town, and dissipating the waste heat it generates
is usually a big headache.

Perhaps the most serious shortcoming, though, is that
a centralized cloud-computing facility can end up being a
single point of failure, no matter how cleverly it is designed.
Redundant power supplies, backup power generators, and
replicated network connections help, but they can’t protect

absolutely against catastrophic events such as fires, hurri-
canes, earthquakes, and floods.

Another drawback of centralized clouds is that their geo-
graphic location, which may be best for the owners, may
not be best for the customers. This is the case, for example,
when governments place restrictions on sensitive data cross-
ing national borders. A data center located in one country
may then be off-limits to customers in some other countries.

Cloud-service providers have increasingly addressed these
concerns by using not just one but several far-flung data cen-
ters connected through fast private networks. Doing so not
only protects against local catastrophes, it also provides cus-
tomers with more options for locating their data.

What would happen if you took this trend in geographically
distributing cloud infrastructure to its logical conclusion? You’d
end up with clouds made up of millions of individual computers
distributed across the globe and connected through the Internet.
We would call this a peer-to-peer (P2P) cloud because it shares
many of the characteristics of various P2P systems developed
for file sharing, content distribution, and the payment networks
of virtual cryptocurrency schemes such as Bitcoin.

In principle, a P2P cloud could be built using the ordinary
computing, storage, and communication equipment found
now in people’s homes, with essentially zero initial invest-
ment. Broadband modems, routers, set-top boxes, game
consoles, and laptop and desktop PCs could all contribute.
The challenge is to turn this motley collection into a coher-
ent and usable cloud infrastructure and offer its services to
customers. You also have to ensure that the salient features
of clouds—on-demand resource provisioning and the meter-
ing of service—are maintained.

This would surely be tough to do, but think of the advantages.
First, there would be no single entity that owns or controls
it. As with most other P2P applications, a P2P cloud could be
created and operated as a grassroots effort, without requir-
ing the permission or consent of any authority. People would
choose to participate in a P2P cloud by installing the appro-
priate client software on their local machines, and the value
of the resulting cloud infrastructure would be commensurate
with the number of individuals who are contributing to it.

A second advantage comes from the fact that a P2P cloud’s
components are small, individually consume little power,
and well distributed. This drastically reduces concerns about
local catastrophes. It also removes the usual worries about
heat dissipation. Although such P2P clouds couldn’t provide
the quality-of-service guarantees of a Google or an Amazon,
for many applications that wouldn’t much matter.

the idea of creatiNg a huge computing resource from
a large number of loosely coupled machines is not new.
This has long been done, for example, with volunteer com-

gossip-based protocols are used to
maintain an unstructured peer-to-peer
network of individual computers, some
of which do the work of one customer
[orange] while other combinations serve
different customers [blue and yellow].

the coMputers in some P2P networks
resemble gossiping office workers.
Gossip-based protocols allow information
to flow reliably, even if some computers
leave the system and break previously
established links [orange lines].

SPectrUm.ieee.orG | north american | oct 2014 | 53

10.PeerToPeerCloud.NA.indd 53 9/11/14 12:30 PM

puting, where people execute applications on
their personal computers on behalf of others.
 Volunteer-computing systems usually require
you to install certain software, which then runs
when your computer has no higher-priority tasks
to do. That application then uses your spare com-
puting cycles to fetch and process data from some
central server and upload the results back to the
same server when it’s done.

This strategy works well for many scientific prob-
lems, for which a central controller can farm out
pieces of the desired computation to workers that
operate independently and in parallel. If one fails
to return a result within some reasonable period,
no problem: The same task is simply handed out
to some other volunteer worker.

The Berkeley Open Infrastructure for Network
Computing (BOINC) is a popular volunteer-
computing system that can load and run different
client programs. Examples of projects found on the
BOINC platform include SETI@home (to analyze
radio signals from space in the search for extra-
terrestrial transmissions), Rosetta@home (to cal-
culate how proteins fold), and Einstein@home
(to detect gravitational waves).

Another type of volunteer computing is known
as a desktop grid. In conventional grid-computing
projects, multiple high-performance computers in
different locations are harnessed to work together
on a single problem. Desktop grids allow people
to contribute the processing power of their per-
sonal computers to such efforts. BOINC supports
desktop grids, as does EDGeS (Enabling Desktop Grids for
e-Science), a project of several European institutions that is
based on BOINC, and also XtremWeb, a project of the French
National Center for Scientific Research, the French Institute
for Research in Computer Science and Automation (INRIA),
and the University of Paris XI.

the success of the maNy volunteer-computing projects
demonstrates the extreme scale that a P2P cloud could in
principle attain, both in terms of the number of different
computers involved and their geographic distribution. Using
such a collection would, of course, mean that equipment
failures will be common. And besides, the people who con-
tribute their computers to these clouds could turn them on
and off at any time, something the people who run P2P net-
works refer to as “churn.”

So the first task for any P2P cloud is to keep track of all
functioning and online devices enrolled in the system and
to dynamically partition these resources among customers.

And you have to do that in a completely decentralized man-
ner and despite churn.

To deal with such challenges, many P2P systems make use
of what are called gossip-based protocols. Gossiping, in this
context, is when the computers linked together in a large,
unstructured network exchange information with only a
small number of neighbors. Gossip-based protocols have
been extensively studied and have been used to model, for
example, the spread of malware in a computer network, the
diffusion of information in a social network, even the syn-
chronization of light pulses in a swarm of fireflies. Gossip-
based protocols are appealing for P2P clouds because they
are simple to implement and yet enable complex global com-
putations to take place efficiently even in the face of churn.

So when we built our prototype system at the University
of Bologna, which we call the Peer-to-Peer Cloud System
(P2PCS), we included several decentralized gossip-based
protocols. They are used for figuring out what equipment is
up and connected, monitoring the overall state of the cloud,

54 | oct 2014 | north american | SPectrUm.ieee.orG

10.PeerToPeerCloud.NA.indd 54 9/11/14 12:30 PM

partitioning the resources available into
multiple subclouds, dynamically allocat-
ing resources, and supporting complex
queries over the set of connected com-
puters (for example, to identify the most
reliable ones). Creating those capabilities
was an important first step. But there are
still many other requirements for a prac-
tical system, only some of which we have
attempted to tackle.

If all the equipment is owned by a single
organization, building a P2P cloud with it
should be straightforward, even if the bits
and pieces are located in different people’s
homes, as might be the case with broad-
band modems or routers operated by an
Internet service provider or set-top boxes
operated by a cable-television company.
The computing devices will be all pretty
similar, if not identical, making it easier
to configure them into a single comput-
ing environment. And because the equip-
ment’s one owner presumably installs the
P2P-cloud software, you can be reasonably
confident that the data and computations
will be handled properly and according to
the organization’s security policies.

This is not true, however, if the P2P cloud
is made up of a diverse collection of differ-
ent people’s computers or game consoles
or whatever. The people using such a cloud
must trust that none of the many strangers

operating it will do something malicious. And the providers of
equipment must trust that the users won’t hog computer time.

These are formidable problems, which so far do not have
general solutions. If you just want to store data in a P2P cloud,
though, things get easier: The system merely has to break up
the data, encrypt it, and store it in many places.

Unfortunately, there is as yet no efficient way to make
every computation running on untrusted hardware tamper-
proof. For some specific problems (such as mining bitcoins),
verifying the results is significantly faster than computing
them, which allows the client to check and discard faked
results. For those problems that do not have an efficient
verification procedure, the best way to detect tampering is
to compare results for the same calculation coming from
independent machines.

Another issue, common to all P2P systems, is that there must
be appropriate incentives to get enough people to cooperate
and to discourage free riding. Otherwise, the system is bound
to degenerate completely. Coming up with incentives would

be easy enough for a company that uses its own devices to
create a cloud. That company might have a monetary incen-
tive for creating such a cloud, and the people housing the
equipment might have an incentive to keep connected to it
because they get better service that way.

Volunteer-computing systems don’t enjoy the luxury of
having such incentives in place. But they typically have such
laudable objectives that getting people to contribute their
free CPU cycles is not a problem. Who would not want to help
make history when SETI@home, which has been around since
1999, detects the first extraterrestrial radio trans mission?
For volunteer P2P systems of other kinds, though, the incen-
tives have to be carefully worked out.

develoPmeNts are admittedly at an early stage, but several
research projects and a few commercial systems that have hit
the market suggest that P2P clouds can indeed be built and
used productively, at least for certain purposes.

Our work on the P2PCS, for example, demonstrated that
it is possible to use gossip-based protocols to handle the
dynamic allocation of resources and the basic monitoring of
the system. Other researchers—at the University of Messina,
in Italy (Cloud@Home), at INRIA (Clouds@Home), and asso-
ciated with the European Union’s Nanodatacenters project—
have been exploring similar concepts.

The Nanodatacenters project is particularly interesting.
The researchers involved worked out how to form a managed
P2P network from a far-flung constellation of special home
gateways controlled by Internet service providers. Because
these “nanocenters” are near end users, the network can
deliver data much faster than a few large data centers could.

Some commercial distributed-storage solutions are also
based on P2P computing principles. An early version of
 Wuala’s cloud backup, for example, allowed users to trade
space on their hard disks. Sher.ly offers a similar service
but is oriented toward the business sector: It allows compa-
nies to use their own machines and infrastructure to create
a secure, always-on private cloud to share files internally.
There are also a number of open-source P2P systems for dis-
tributed file storage (such as OceanStore, developed at the
University of California, Berkeley) or computations (such
as OurGrid, developed mostly at the Federal University of
Campina Grande, in Brazil).

These pioneering experiments are still few and far between
compared with traditional cloud environments. But if they
succeed, and if researchers can find ways to deal with the
hurdles we’ve described here, you could easily find yourself
making use of a P2P cloud in your daily routine. You might
not even know you’re doing it. n

PoST your CommenTS at http://spectrum.ieee.org/cloud1014

SPectrUm.ieee.orG | north american | oct 2014 | 55

10.PeerToPeerCloud.NA.indd 55 9/11/14 12:30 PM

