
Not loNg ago, any start-up hoping to create the next big thing 
on the Internet had to invest sizable amounts of money in comput-
ing hardware, network connectivity, real estate to house the equip-
ment, and technical personnel to keep everything working 24/7. 
The inevi table delays in getting all this funded, designed, and set up 
could easily erase any competitive edge the company might have 
had at the outset. • Today, the same start-up could have its product 
up and running in the cloud in a matter of days, if not hours, with 
zero up-front investment in servers and similar gear. And the com-
pany wouldn’t have to pay for any more computing oomph than it 
needs at any given time, because most cloud-
service providers allot computing resources 
dynamically according to actual demand.
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With the computing infrastructure out of sight and out of 
mind, a start-up can concentrate its attention on launching 
and improving its product. This lowers the barriers to entry, 
letting anyone with an Internet connection and a credit card 
tap the same world-class computing resources as a major cor-
poration. Many of the most popular and successful Internet 
services today, including Netflix, Instagram, Vine, Foursquare, 
and Dropbox, make use of commercial clouds. 

These clouds might seem a bit ethereal to their end users, but 
they in fact require some very down-to-earth facilities. Their 
stadium-size data centers are immensely costly to construct, 
and, not surprisingly, most are run by giant corporations 
like Amazon, Google, and Microsoft. Each offers a variety 
of service models, depending on exactly how the customer 
interacts with its cloud- computing environment.

The lowest-level model is known as infrastructure as a ser-
vice, or IaaS, which outfits each customer with one or more 
virtual machines running on the cloud provider’s physical 
equipment. One actual computer might, for example, simu-
late five different virtual computers, each leased to a different 
customer. In addition to leasing such virtual machines, an IaaS 
provider may include a choice of operating systems to run on 
them. Notable examples of such IaaS clouds include Google’s 
Compute Engine and Amazon’s Elastic Compute Cloud.

At a higher level of abstraction are platform-as-a-service, 
or PaaS, clouds. These include an environment for develop-
ing the online applications that are to run on the provider’s 
equipment. Customers don’t have to manage virtual machines. 
They just create their applications using various software 
libraries, application-programming interfaces, and other 
software tools such as databases and middleware, and then 
one or more virtual computers are spun up automatically 
as needed to run all of this. Examples of PaaS clouds are 
 Amazon’s  Elastic Beanstalk, Google’s AppEngine, Microsoft’s 
Azure, and SalesForce’s Force.com.

At a still-higher level are software-as-a-service, or SaaS, 
clouds. Their customers know nothing of the underlying 
infrastructure or computing platform: They simply use some 
Web-based application or suite of applications to handle the 
task at hand. This is probably the model of cloud computing 
that most people are familiar with. It includes services like 
Apple iWork, Gmail, Google Docs, and Microsoft Office 365. 

But is this the only way cloud computing can work? At the 
University of Bologna, in Italy, we’ve been investigating a 
very different strategy to do cloud computing without those 
giant centralized facilities at all—using peer-to-peer technolo-
gies of the kind sometimes associated with shady file-sharing 
operations. Their use here, though, could help democratize 
cloud computing. Our prototype software is still at a very 
early stage, but its development and similar successes by 
researchers elsewhere show real promise.

PlaciNg the Physical iNfrastructure for a cloud-computing 
operation where it’s usually found, in a single massive data 
center, has definite advantages. Construction, equipment 
procurement, installation, and maintenance are all simpli-
fied, and economies of scale reduce costs. On the other hand, 
a single large data center consumes an enormous amount of 
electrical power, often comparable to what you’d need to 

With the right soft-
ware, geographically 
distributed hardware 
can provide a unified 
cloud-computing 
resource

Scattering 
the Clouds

soMe cloud-coMputing providers 
put all their hardware eggs in one data-
center basket [blue]. Others employ multiple 
data centers networked together [orange]. 
The logical extension is a peer-to-peer cloud 
made of individual computers [yellow].
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run a small town, and dissipating the waste heat it generates 
is usually a big headache.

Perhaps the most serious shortcoming, though, is that 
a centralized cloud-computing facility can end up being a 
single point of failure, no matter how cleverly it is designed. 
Redundant power supplies, backup power generators, and 
replicated network connections help, but they can’t protect 

absolutely against catastrophic events such as fires, hurri-
canes, earthquakes, and floods. 

Another drawback of centralized clouds is that their geo-
graphic location, which may be best for the owners, may 
not be best for the customers. This is the case, for example, 
when governments place restrictions on sensitive data cross-
ing national borders. A data center located in one country 
may then be off-limits to customers in some other countries.

Cloud-service providers have increasingly addressed these 
concerns by using not just one but several far-flung data cen-
ters connected through fast private networks. Doing so not 
only protects against local catastrophes, it also provides cus-
tomers with more options for locating their data.

What would happen if you took this trend in geographically 
distributing cloud infrastructure to its logical conclusion? You’d 
end up with clouds made up of millions of individual  computers 
distributed across the globe and connected through the  Internet. 
We would call this a peer-to-peer (P2P) cloud because it shares 
many of the characteristics of various P2P systems developed 
for file sharing, content distribution, and the payment networks 
of virtual cryptocurrency schemes such as Bitcoin. 

In principle, a P2P cloud could be built using the ordinary 
computing, storage, and communication equipment found 
now in people’s homes, with essentially zero initial invest-
ment. Broadband modems, routers, set-top boxes, game 
consoles, and laptop and desktop PCs could all contribute. 
The challenge is to turn this motley collection into a coher-
ent and usable cloud infrastructure and offer its services to 
customers. You also have to ensure that the salient features 
of clouds—on-demand resource provisioning and the meter-
ing of service—are maintained.

This would surely be tough to do, but think of the advantages. 
First, there would be no single entity that owns or controls 
it. As with most other P2P applications, a P2P cloud could be 
created and operated as a grassroots effort, without requir-
ing the permission or consent of any authority. People would 
choose to participate in a P2P cloud by installing the appro-
priate client software on their local machines, and the value 
of the resulting cloud infrastructure would be commensurate 
with the number of individuals who are contributing to it.

A second advantage comes from the fact that a P2P cloud’s 
components are small, individually consume little power, 
and well distributed. This drastically reduces concerns about 
local catastrophes. It also removes the usual worries about 
heat dissipation. Although such P2P clouds couldn’t provide 
the  quality-of-service guarantees of a Google or an Amazon, 
for many applications that wouldn’t much matter.

the  idea  of  creatiNg a huge computing resource from 
a large number of loosely coupled machines is not new. 
This has long been done, for example, with volunteer com-

gossip-based protocols are used to 
maintain an unstructured peer-to-peer 
network of individual computers, some 
of which do the work of one customer 
[orange] while other combinations serve 
different customers [blue and yellow].

the coMputers in some P2P networks 
resemble gossiping office workers. 
Gossip-based protocols allow information 
to flow reliably, even if some computers 
leave the system and break previously 
established links [orange lines].
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puting, where people execute applications on 
their personal computers on behalf of others. 
 Volunteer-computing systems usually require 
you to install certain software, which then runs 
when your computer has no higher-priority tasks 
to do. That application then uses your spare com-
puting cycles to fetch and process data from some 
central server and upload the results back to the 
same server when it’s done.

This strategy works well for many scientific prob-
lems, for which a central controller can farm out 
pieces of the desired computation to workers that 
operate independently and in parallel. If one fails 
to return a result within some reasonable period, 
no problem: The same task is simply handed out 
to some other volunteer worker.

The Berkeley Open Infrastructure for  Network 
Computing (BOINC) is a popular volunteer- 
computing system that can load and run different 
client programs. Examples of projects found on the 
BOINC platform include SETI@home (to analyze 
radio signals from space in the search for extra-
terrestrial transmissions), Rosetta@home (to cal-
culate how proteins fold), and Einstein@home 
(to detect gravitational waves). 

Another type of volunteer computing is known 
as a desktop grid. In conventional grid-computing 
projects, multiple high-performance computers in 
different locations are harnessed to work together 
on a single problem. Desktop grids allow people 
to contribute the processing power of their per-
sonal computers to such efforts. BOINC supports 
desktop grids, as does EDGeS (Enabling Desktop Grids for 
e-Science), a project of several European institutions that is 
based on BOINC, and also XtremWeb, a project of the French 
National Center for Scientific Research, the French Institute 
for Research in Computer Science and Automation (INRIA), 
and the University of Paris XI. 

the success of the maNy volunteer-computing projects 
demonstrates the extreme scale that a P2P cloud could in 
principle attain, both in terms of the number of different 
computers involved and their geographic distribution. Using 
such a collection would, of course, mean that equipment 
failures will be common. And besides, the people who con-
tribute their computers to these clouds could turn them on 
and off at any time, something the people who run P2P net-
works refer to as “churn.”

So the first task for any P2P cloud is to keep track of all 
functioning and online devices enrolled in the system and 
to dynamically partition these resources among customers. 

And you have to do that in a completely decentralized man-
ner and despite churn.

To deal with such challenges, many P2P systems make use 
of what are called gossip-based protocols. Gossiping, in this 
context, is when the computers linked together in a large, 
unstructured network exchange information with only a 
small number of neighbors. Gossip-based protocols have 
been extensively studied and have been used to model, for 
example, the spread of malware in a computer network, the 
diffusion of information in a social network, even the syn-
chronization of light pulses in a swarm of fireflies. Gossip-
based protocols are appealing for P2P clouds because they 
are simple to implement and yet enable complex global com-
putations to take place efficiently even in the face of churn.

So when we built our prototype system at the University 
of Bologna, which we call the Peer-to-Peer Cloud System 
(P2PCS), we included several decentralized gossip-based 
protocols. They are used for figuring out what equipment is 
up and connected, monitoring the overall state of the cloud, 
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partitioning the resources available into 
multiple subclouds, dynamically allocat-
ing resources, and supporting complex 
queries over the set of connected com-
puters (for example, to identify the most 
reliable ones). Creating those capabilities 
was an important first step. But there are 
still many other requirements for a prac-
tical system, only some of which we have 
attempted to tackle.

If all the equipment is owned by a single 
organization, building a P2P cloud with it 
should be straightforward, even if the bits 
and pieces are located in different people’s 
homes, as might be the case with broad-
band modems or routers operated by an 
Internet service provider or set-top boxes 
operated by a cable-television company. 
The computing devices will be all pretty 
similar, if not identical, making it easier 
to configure them into a single comput-
ing environment. And because the equip-
ment’s one owner presumably installs the 
P2P-cloud software, you can be reasonably 
confident that the data and computations 
will be handled properly and according to 
the organization’s security policies.

This is not true, however, if the P2P cloud 
is made up of a diverse collection of differ-
ent people’s computers or game consoles 
or whatever. The people using such a cloud 
must trust that none of the many strangers 

operating it will do something malicious. And the providers of 
equipment must trust that the users won’t hog computer time.

These are formidable problems, which so far do not have 
general solutions. If you just want to store data in a P2P cloud, 
though, things get easier: The system merely has to break up 
the data, encrypt it, and store it in many places. 

Unfortunately, there is as yet no efficient way to make 
every computation running on untrusted hardware tamper-
proof. For some specific problems (such as mining bitcoins), 
verifying the results is significantly faster than computing 
them, which allows the client to check and discard faked 
results. For those problems that do not have an efficient 
verification procedure, the best way to detect tampering is 
to compare results for the same calculation coming from 
independent machines.

Another issue, common to all P2P systems, is that there must 
be appropriate incentives to get enough people to cooperate 
and to discourage free riding. Otherwise, the system is bound 
to degenerate completely. Coming up with incentives would 

be easy enough for a company that uses its own devices to 
create a cloud. That company might have a monetary incen-
tive for creating such a cloud, and the people housing the 
equipment might have an incentive to keep connected to it 
because they get better service that way.

Volunteer-computing systems don’t enjoy the luxury of 
having such incentives in place. But they typically have such 
laudable objectives that getting people to contribute their 
free CPU cycles is not a problem. Who would not want to help 
make history when SETI@home, which has been around since 
1999, detects the first extraterrestrial radio trans mission? 
For  volunteer P2P systems of other kinds, though, the incen-
tives have to be carefully worked out.

develoPmeNts are admittedly at an early stage, but several 
research projects and a few commercial systems that have hit 
the market suggest that P2P clouds can indeed be built and 
used productively, at least for certain purposes.

Our work on the P2PCS, for example, demonstrated that 
it is possible to use gossip-based protocols to handle the 
dynamic allocation of resources and the basic monitoring of 
the system. Other researchers—at the University of Messina, 
in Italy (Cloud@Home), at INRIA (Clouds@Home), and asso-
ciated with the European Union’s Nanodatacenters project— 
have been exploring similar concepts.

The Nanodatacenters project is particularly interesting. 
The researchers involved worked out how to form a managed 
P2P network from a far-flung constellation of special home 
gateways controlled by Internet service providers. Because 
these “nanocenters” are near end users, the network can 
deliver data much faster than a few large data centers could. 

Some commercial distributed-storage solutions are also 
based on P2P computing principles. An early version of 
 Wuala’s cloud backup, for example, allowed users to trade 
space on their hard disks. Sher.ly offers a similar service 
but is oriented toward the business sector: It allows compa-
nies to use their own machines and infrastructure to create 
a secure, always-on private cloud to share files internally. 
There are also a number of open-source P2P systems for dis-
tributed file storage (such as OceanStore, developed at the 
University of California, Berkeley) or computations (such 
as OurGrid, developed mostly at the Federal University of 
Campina Grande, in Brazil).

These pioneering experiments are still few and far between 
compared with traditional cloud environments. But if they 
succeed, and if researchers can find ways to deal with the 
hurdles we’ve described here, you could easily find yourself 
making use of a P2P cloud in your daily routine. You might 
not even know you’re doing it.  n

PoST your CommenTS at http://spectrum.ieee.org/cloud1014
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