
An introduction to
NetLogo

University of Bologna nicolas.lazzari2@studio.unibo.it

References

https://ccl.northwestern.edu/netlogo/docs/

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

The slides are based on the slides from previous tutors of the course.

https://ccl.northwestern.edu/netlogo/docs/
https://ccl.northwestern.edu/netlogo/docs/dictionary.html

NetLogo?

NetLogo is a programmable modeling environment for
simulating natural and social phenomena, based on Logo by
Seymour Papert.

It is designed to model complex system development over
time.

Why NetLogo?

Extensive documentation and tutorials.

Large collection of pre-written simulations on Biology,
medicine, physics, chemistry and more.

Free and open source.

Runs on JVM.

The environment

The whole world is a discrete grid.
Each basic region is called a patch.

The agents

The environment is composed of agents
called turtles that can independently
move.

Each turtle has a position, coordinates,
and a heading, expressed in degrees. 0° is

north.

The agents

It is characterized by size, color
and shape.

The agents

Similar to space, time is discrete too. Agent actions are performed every tick.

The agents

who
heading
xcor and ycor
shape, size, color
hidden?

Each agent is equipped with a set of properties:

The observer

The observer modifies the environment and the agents.

Through the use of commands turtles can be created, moved, modified
and so on.

Some commands

To create a turtle the command create-turtles is used.

create-turtles <num>

create-turtles 1

Some commands

The command inspect turtle is used to inspect the properties of a turtle.

inspect turtle <whoID>

inspect turtle 0

Some commands

The observer asks to the environment (or to the turtles) to change their

properties.

The instructions are either sent to a specific turtle (or patch) or to the
entire set of turtles (or patches).

Some commands

ask turtle <whoID> [...]

ask turtle 1 [set color red]

ask turtles [...]

ask turtles [set color red]

ask patch <x> <y> [...]

ask patch 2 3 [set pcolor red]

ask patches

ask patches [set pcolor red]

Turtles Patches

One

All

Some commands

see https://ccl.northwestern.edu/netlogo/docs/dictionary.html
for more commands.

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

Programming in NetLogo

Instructions tell agents what to do.

whether they are built into NetLogo (primitive) or user-
implemented (procedure)
whether the instruction produces an output (report) or not
(command)
whether an instruction takes inputs or not

Instructions to agents can be classified according to three criteria:

Commands vs reporters

Commands are procedures that don't have any output, but only side
effects on the environment.

to <command name>
 [...]
end

to go
 clear-all
 create-turtles 10
 ask turtles [forward 1]
end

Commands vs reporters

Reporters are procedures that compute a value and report it.

to-report <reporter name>
 [...]
end

to-report double [num]
 report 2 * num
end

Input parameters

to <command name> [parameters]
 [...]
end

to createNTurtles [num]
 create-turtles num
end

On styling

use camel case beginning with a lower-case letter for procedure
(e.g. myProcedure);
do not use underscores in names;
name command procedure with nouns and reporters with verbs.

There isn't an official NetLogo style guide.
Nonetheless the official documentation is fairly consistent and
follows some good habits:

Variables

Variables in NetLogo can be divided into three main groups:

Global variables,
accessible by every

agent and procedure

 Agent variables,
defined as part of

each agent

Local variables,
defined as part of

a procedure

globals [<name(s)>]

set <name> <value>

<agent*>-own [<name(s)>]

ask <agent*> <id> [
 set <name> <value>
]

*Agents can be turtles, patches, links

let <name> <value>

Agentsets

When asking to update an agent variables a subset of all the agents,

called agentset, can be used.
An agentset contains one or more agents, all of the same type, and
it's always randomly ordered.

ask one-of turtles [<command>] ; randomly choose among the whole set

let some-patches patches with [pxcor < 3] ; take patches with X < 3
ask some-patches [set pcolor red] ; change the color of the subset

Variable types

NetLogo variables are dynamically typed.

Primitive types are numbers, booleans, lists, strings, along with the
usual operations (+, -, *, /, ^, >, >=, =, !=, <, <=, and, or, not, xor).

All numbers are floating points, be aware of approximations. When
performing arithmetic operations be aware of spaces: the lack of
parenthesis might bring ambiguity in parsing the operation and
result in something different.

Conditionals

if (<condition>) [<command(s)>]

ifelse (<condition>)
 [<command(s) if true]
 [<command(s) if false]

ifelse-value (<condition>)
 [<reporter(s) if true]
 [<reporter(s) if false]

if (random-float 1 < 0.5)
 [show "heads"]

ifelse (random-float 1 < 0.5)
 [show "head"]
 [show "tails"]

ask turtles [
 set color ifelse-value (energy < 0)
 [red]
 [green]
]

Loops

loop [<command(s)>] loop [ifelse (counter > 100)
 [stop]
 [set counter counter + 1]
]

repeat <num> [<command(s)>] repeat 5 [
 ask one-of turtles [set color red]
]

Lists

(list <element(s)>)

In NetLogo lists are immutable, ordered and potentially heterogeneous.

(list 1 "two" true)

[<element(s)] [1 "two" true]

Program structure

 global variable declaration;
 agent variable declaration;
 setup procedure, in which global variables are initialized,
agents are created and the environment is initialized;
 go procedure, which implements one cycle of the simulation.

The flexibility of NetLogo and its agent-centered way of building
models quickly escalates to complex models that are difficult to
work with.

Try to keep your structure as close as possible to:
1.
2.
3.

4.

Some useful features

Higher-order procedure

Even though NetLogo is not a higher-order language we can simulate this
behaviour using anonymous procedures/reporters.

[[<var(s)>] -> <body>] [[x y] -> setxy y x]

Higher-order procedure

When an anonymous procedure is assigned to a variable it is called a task. A
task can be run using the primitive run.

globals [stack push]
to setup
 set stack []
 set push [
 el -> set stack lput el stack
]
end

(run push 1)

Higher-order reporter

Similarly to procedures, a task can be created from an anonymous reporter. It
can then be evaluated using runresult.

let square [a -> a * a] (runresult square 5)

Higher-order example

to-report update [payoff]
 report [a -> (runresult payoff a) + 1]
end

to-report apply [payoff argument]
 report (runresult payoff argument)
end

We want to define an update function that takes as input a payoff p and
returns a new payoff p' s.t. p'(n) = p(n) + 1.

apply (update p) n = (apply p n) + 1

Map, filter and reduce

Map, filter and reduce are basic constructors that allows efficient and elegant
operations on lists.

Map applies an anonymous-reporter to every element in a list.

map [a -> a * a] [1 2 3] ; results in [1 4 9]

Filter applied a predicate (in the form of anonymous-reporter) to a list and
returns only those items that entails the predicate.

filter [a -> a < 5] [1 9 2] ; results in [1 2]

Map, filter and reduce

Reduce applies an anonymous-reporter from left to right, resulting in a single
value.

reduce [[a b] -> a + b] [1 9 2] ; results in 12

Breeds

In NetLogo breeds are a way to "subclass" the turtle type.

breed [<single name> <agentset name>]

Graphing

setup, where you need to set the whole graph range (x-axis) along with
each special agent pen properties, such as color and pen mode

update, where you need to draw data. Update is called at every tick.

Graphing can be confusing at times in NetLogo. Always think of it as a special

agent that moves through the graph.

It is composed of two phases:

