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Diffusion

= \iiral spread of diseases, information, ideas — simple diffusion (contagion)

= Spread of new technologies, behaviors, opinions, fads, fashion — complex
diffusion (peer-effects)

= Choices, decisions — games on networks (cascades)

Spatial networks

= |mplicit networks that arise due to geographic proximity

= Nodes: individuals, edges: physical proximity

= Similar to Kleinberg's small-world model: each node connected to its four
compass neighbors
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Simple diffusion in spatial networks

Spread of forest fire in a two-dimensional grid

‘empty”
® Fre starts at a random grid position and spreads to all neighbors
Observe the “spread” of diffusion (fire) as a function of forestation density

Single “density” parameter sets the probability of a grid position being “forest” or




Simple diffusion in spatial networks
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= The density parameter p is the probability that a grid position is forest (empty with
probability (1-p))

= Fre will spread to all nodes in the connected component of the network
containing the source node
= Run Library/Earth Science/Fire
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Tipping phenomenon

= An abrupt change occurs as the density increases from 57% to 62% — the
percentage of burnt forest suddenly increases from small values to aimost 100%

= Sudden, massive increase in diffusion is a “tipping” phenomenon (also known as
“threshold” or “critical” phenomena)

= Similar to the formation of a giant component in the ER model as the edge
probability is increased
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Tipping phenomenon

® “The last straw that broke the camel’'s back”
= Non-linear relation with a discontinuity

= \What property of the camel exhibits a tipping phenomenon”?

Weight
Height

S

Pieces of straw

Pieces of straw

Percolation

With the addition of
- just one grey square,
we have not one but
two percolation

No percolation

= Can we get from top to bottorn touching only grey squares?

= Analogy to water “percolating” through coffee grinds or oil seeping into the
ground
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Percolation

= Percolation depends on the “density” of the coffee grinds

= Random model where each square is grey (empty) with probability p and brown
(coffee) with probability 1—p

1+

6(p) Probabilty of percolation

= NetlLogo Library/Earth Science/Fire and Percolation demos
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Percolation

Related to the formation of giant components in random networks
“Shape” of the component and not its size

Model for “breakthrough” developments in different fields

= All of the pieces have to “fall in the right place”

= When a missing piece “falls in place”, the breakthrough may be enabled in several
different ways

Simple Diffusion (Contagion) in
networks

= Diffusion or contagion can be formulated on any arbitrary network (not just
grids)

= Susceptible-Infected (SI) model

= Population divided into two groups
= Susceptible (S)
= Infected ())

= To make the model more realistic, we can add a parameter “infection rate” which
is the probability of disease spreading from an infected node to a susceptible
node

= NetlLogo ERDiffusion (random network)

= NetLogo BADiIffusion (preferential attachment network)
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Simple diffusion in networks
SIS model

Susceptible-Infected-Susceptible (SIS) model

After being infected, individuals remain susceptible
Appropriate for modeling recurring diseases

NetLogo “SmallWorldDiffusionSIS” (small-world network)




Simple diffusion in networks
SIR model

= Susceptible-Infected-Resistant (SIR) model
Allows resistance or immunity to be gained after infection

Add a new “Recovered” state and in addition to the infection rate, add a new
parameter “recovery rate”

We can also add a parameter “gain resistance” if infection does not guarantee
resistance with certainty

NetlLogo “Library/Networks/Virus on a Network”
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Simple diffusion in networks
SIR model

= Two-parameter SIR model:
= a: infection rate
= b. recovery rate
= Population divided into three groups:
= et S(7) be the number of susceptible at time ¢
= Let I(¢) be the number of infected at time ¢

= Let R(¢) be the number of recovered at time ¢
das

« — =—aSI
dt
dl
« — =aSI— bl = I(aS — b)
dt
R
"oar
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Simple diffusion in networks
SIR model
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Simple diffusion in networks
SIR model

= Assume S(?) is constant around =0
dl
= We can solve the differential equation = = I(aS, — D)

- I([) — e(aSO—b)t

= |n other words, if aSy — b > 0 the infected population will start to grow exponentially and we
will have an epidemic
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Simple diffusion in networks
SIR model

‘ asy
s Rewrte aSy—b >0 as > > 1

« R= %SO is a critical parameter in epidemiology
= If R > 1, the infected population will start to grow exponentially leading to an epidemic
= If R < 1, the infected population will extinguish
= \We can decrease R by
= decreasing the infection rate a (washing hands, social distancing),
= by decreasing the initial susceptible population S, (vaccination),
= by increasing the recovery rate b (better health care, usually difficult)
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Simple diffusion in networks
SIR model

= Covid-19 total infections as of 28 March 2020
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Simple diffusion in networks
SIR model

= Covid-19 total recovered as of 28 March 2020
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Simple diffusion in networks
SIR model

= Covid-19 confirmed cases as of 26 March 2020

Country by country: how coronavirus case trajectories compare
Cumulative number of confirmed cases, by number of days since 100th case
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Simple diffusion in networks
SEIR model

= Susceptible = Exposed — Infected = Removed

Simple diffusion in networks

= Epidemic Calculator

SEIR model

= hitp://gabgoh.github.io/COVID/index.html

Diffusion in networks
Peer-effects

= The “infection rate” is often not a constant but depends on how many nodes are
already infected

= Captures the notion of “peer-effects” (or “network-effects”)— we are more likely
to adopt the behavior or choices of our peers

= The greater the number of my peers who dress, talk, walk, eat or vote one way,
the higher the probability that | will dress, talk, walk, eat or vote that way too
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Peer-effects
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Peer-effects
Bass model

No explicit network

Two states/behaviors: O and 1

= States are irreversible — cannot switch back and forth

Let F(f) denote the fraction of population who have adopted state 1 at time ¢
Let p denote the rate of spontaneous adoption

Let ¢ denote the rate of peer-effect adoption

How does the fraction of adoption vary with time?

dF
% =@ +qF®)1 - F@®)

Peer-effects
Bass model

dF
% =@ +qFO)1 - F@®)

When F(t) nears 1, dF(¢)/dt nears O

When F(£)=0, dF(¢)/dt=p

When F(t)=¢ for some ¢, dF(t)/dt=(p+qge)(1—¢)

To get initial convexity, (p+ge)(1—¢) must be greater than p
Or ¢g(1—e)>p and for small ¢, this is equivalent to ¢ > p
Thus, we get the “S-shape” if ¢ > p

Peer-effects
Bass model
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Complex diffusion in networks

Simple diffusion: just one node sufficient to “infect” another node (with some
fixed probability)

Peer-effects diffusion: probability of infection depends on number of nodes
already infected

Complex diffusion. a node being “infected” depends on choices or decisions
made by the node

Appropriate for modeling adoption of new technologies, behaviors, opinions,
fashion trends, etc.




Complex diffusion in networks

Example: Suppose a node will adopt a behavior (get a tattoo) only if two of its
neighbors have adopted the behavior

NetLogo “SmallWorldDiffusionComplex” (adopt if two neighbors share opinion)
® |n general, the decision to adopt or not could be much more complex
Can be modeled as a “network coordination game”

Network coordination game

= Two possible behaviors: A and B

= Two nodes that are neighbors have an incentive to adopt the same behavior
= Units of measure (Metric vs Imperial)
= Sports (Basketball vs Soccer)
= Social networking (Instagram vs TikTok)

= Payoff matrix n“

a, a 0,0

B o -
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Network coordination game

= Fach node plays a copy of the game with each of its neighbors
= The utility of a node is the sum of the payoffs obtained from the individual games
= Consider a node v with d neighbors of which a fraction p have chosen A

Network coordination game

If node v chooses A, its utility will be pda

It it chooses B, its utility will be (1-p)db

= Thus, A is a better choice if pda > (1-p)db or p > b/Aa+b)

In other words, if at least bAa+b) fraction of v's neighbors chose A, then v should
chose A as well

= if b/a+b) is small, A is the more attractive choice

= if b/(a+b) is large, B is the more attractive choice




Cascading behavior

= There are two obvious equilibria: everyone chooses A, or everyone chooses B
= Suppose that the network is in the second equilibrium: everyone has chosen B

= Can the network be “tipped over” to the other equilibrium by flipping the choices
of a small number of “initial adopter” nodes”?

= Answer depends on the network structure, the ratio b/Aa+b) and the choice of
initial adopters

= |nitial adopters switch for reasons external to the game
= The other nodes continue to play the coordination game

Cascading behavior

= Chain reaction of switches from decision B to decision A is called a cascade

= Cascades can be either complete — the entire network eventually switches to
the other decision — or they can be partial
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Initial adopters

Cascading behavior

Cascading behavior
Application to viral marketing

= Pgrtial cascades result in situations in which two (or more) decisions coexist
= Suppose A and B are two competing products or technologies and the
manufacturer of A wants to dominate the market (obtain a complete cascade)
= Manufacturer of A has two possible strategies:
= Make its product more “competitive” (increase a)
= Pick very carefully the set of its initial adopters
= Usually, modifying the network structure is not an option




Cascading behavior
Application to viral marketing

= Pyrsuing the first strategy, suppose the manufacturer of A is able to increase a

from 3 to 4 (while b remains at 2)

The threshold for adopting A reduces from 2/5 to 1/3

= |n the example, the adoption of A becomes a complete cascade

= Pyrsuing the second strategy, suppose the manufacturer of A is able to
convince two additional nodes

Cascading behavior

Application to viral marketing
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= Convince two additional nodes
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Cascading behavior
Application to viral marketing

/‘x \ Initial adopters

= Or, pick a different set of initial adopters
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