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Diffusion

■ Viral spread of diseases, information, ideas — simple diffusion (contagion) 
■ Spread of new technologies, behaviors, opinions, fads, fashion — complex 

diffusion (peer-effects) 
■ Choices, decisions — games on networks (cascades)
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Spatial networks

■ Implicit networks that arise due to geographic proximity 
■ Nodes: individuals, edges: physical proximity 
■ Similar to Kleinberg’s small-world model: each node connected to its four 

compass neighbors
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Simple diffusion in spatial networks

■ Spread of forest fire in a two-dimensional grid 
■ Single “density” parameter sets the probability of a grid position being “forest” or 

“empty” 
■ Fire starts at a random grid position and spreads to all neighbors 
■ Observe the “spread” of diffusion (fire) as a function of forestation density
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Simple diffusion in spatial networks

■ The density parameter p is the probability that a grid position is forest (empty with 
probability (1−p)) 

■ Fire will spread to all nodes in the connected component of the network 
containing the source node 

■ Run Library/Earth Science/Fire
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Tipping phenomenon

■ An abrupt change occurs as the density increases from 57% to 62% — the 
percentage of burnt forest suddenly increases from small values to almost 100% 

■ Sudden, massive increase in diffusion is a “tipping” phenomenon (also known as 
“threshold” or “critical” phenomena) 

■ Similar to the formation of a giant component in the ER model as the edge 
probability is increased
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Tipping phenomenon

■ “The last straw that broke the camel’s back” 
■ Non-linear relation with a discontinuity 
■ What property of the camel exhibits a tipping phenomenon?
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Percolation

■ Can we get from top to bottom touching only grey squares? 
■ Analogy to water “percolating” through coffee grinds or oil seeping into the 

ground
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Percolation

■ Percolation depends on the “density” of the coffee grinds 
■ Random model where each square is grey (empty) with probability p and brown 

(coffee) with probability 1−p
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■ NetLogo Library/Earth Science/Fire and Percolation demos
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Percolation

■ Related to the formation of giant components in random networks 
■ “Shape” of the component and not its size 
■ Model for “breakthrough” developments in different fields 
■ All of the pieces have to “fall in the right place” 
■ When a missing piece “falls in place”, the breakthrough may be enabled in several 

different ways
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Simple Diffusion (Contagion) in 
networks 

■ Diffusion or contagion can be formulated on any arbitrary network (not just 
grids) 

■ Susceptible-Infected (SI) model 
■ Population divided into two groups 
■ Susceptible (S) 
■ Infected (I) 
■ To make the model more realistic, we can add a parameter “infection rate” which 

is the probability of disease spreading from an infected node to a susceptible 
node 

■ NetLogo ERDiffusion (random network) 
■ NetLogo BADiffusion (preferential attachment network)

11 © Babaoglu

Simple diffusion in networks 
SIS model

■ Susceptible-Infected-Susceptible (SIS) model 
■ After being infected, individuals remain susceptible 
■ Appropriate for modeling recurring diseases 
■ NetLogo “SmallWorldDiffusionSIS” (small-world network)
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Simple diffusion in networks 
SIR model

■ Susceptible-Infected-Resistant (SIR) model 
■ Allows resistance or immunity to be gained after infection 
■ Add a new “Recovered” state and in addition to the infection rate, add a new 

parameter “recovery rate” 
■ We can also add a parameter “gain resistance” if infection does not guarantee 

resistance with certainty 
■ NetLogo “Library/Networks/Virus on a Network”
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Simple diffusion in networks 
SIR model

■ Two-parameter SIR model: 
■ a: infection rate 
■ b: recovery rate 
■ Population divided into three groups: 
■ Let S(t) be the number of susceptible at time t 
■ Let I(t) be the number of infected at time t 
■ Let R(t) be the number of recovered at time t 

■  

■  

■

dS
dt

= − aSI
dI
dt

= aSI − bI = I(aS − b)
dR
dt

= bI
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Simple diffusion in networks 
SIR model
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Simple diffusion in networks 
SIR model

■ Assume S(t) is constant around t=0  

■ We can solve the differential equation   

■  
■ In other words, if  the infected population will start to grow exponentially and we 

will have an epidemic

dI
dt

= I(aS0 − b)
I(t) = e(aS0−b)t

aS0 − b > 0
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Simple diffusion in networks 
SIR model

■ Rewrite   as    

■  is a critical parameter in epidemiology 

■ If , the infected population will start to grow exponentially leading to an epidemic 
■ If , the infected population will extinguish 

■ We can decrease  by 
■ decreasing the infection rate a (washing hands, social distancing), 
■ by decreasing the initial susceptible population  (vaccination), 
■ by increasing the recovery rate b (better health care, usually difficult)

aS0 − b > 0 aS0
b

> 1

R = aS0
b

R > 1
R < 1

R

S0
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Simple diffusion in networks 
SIR model

■ Covid-19 total infections as of 28 March 2020
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Simple diffusion in networks 
SIR model

■ Covid-19 total recovered as of 28 March 2020
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Simple diffusion in networks 
SIR model

■ Covid-19 confirmed cases as of 26 March 2020
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Simple diffusion in networks 
SEIR model

■ Susceptible → Exposed → Infected → Removed
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Simple diffusion in networks 
SEIR model

■ Epidemic Calculator 
■ http://gabgoh.github.io/COVID/index.html
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Diffusion in networks 
Peer-effects

■ The “infection rate” is often not a constant but depends on how many nodes are 
already infected 

■ Captures the notion of “peer-effects” (or “network-effects”)— we are more likely 
to adopt the behavior or choices of our peers 

■ The greater the number of my peers who dress, talk, walk, eat or vote one way, 
the higher the probability that I will dress, talk, walk, eat or vote that way too
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Peer-effects 
S-shape curves

Griliches (1957): Hybrid Corn Diffusion
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Peer-effects 
Bass model

■ No explicit network 
■ Two states/behaviors: 0 and 1 
■ States are irreversible — cannot switch back and forth 
■ Let F(t) denote the fraction of population who have adopted state 1 at time t 
■ Let p denote the rate of spontaneous adoption 
■ Let q denote the rate of peer-effect adoption 
■ How does the fraction of adoption vary with time?
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Peer-effects 
Bass model

■ When F(t) nears 1,  dF(t)/dt nears 0 
■ When F(t)=0,  dF(t)/dt=p 
■ When F(t)=ε for some ε,  dF(t)/dt=( p+qε)(1−ε) 
■ To get initial convexity, ( p+qε)(1−ε) must be greater than p 
■ Or q(1−ε)>p and for small ε, this is equivalent to q > p 
■ Thus, we get the “S-shape” if q > p
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Peer-effects 
Bass model

where
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Complex diffusion in networks

■ Simple diffusion: just one node sufficient to “infect” another node (with some 
fixed probability) 

■ Peer-effects diffusion: probability of infection depends on number of nodes 
already infected 

■ Complex diffusion: a node being “infected” depends on choices or decisions 
made by the node 

■ Appropriate for modeling adoption of new technologies, behaviors, opinions, 
fashion trends, etc.
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Complex diffusion in networks

■ Example:  Suppose a node will adopt a behavior (get a tattoo) only if two of its 
neighbors have adopted the behavior 

■ NetLogo “SmallWorldDiffusionComplex” (adopt if two neighbors share opinion) 
■ In general, the decision to adopt or not could be much more complex 
■ Can be modeled as a “network coordination game”
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Network coordination game

■ Two possible behaviors: A and B 
■ Two nodes that are neighbors have an incentive to adopt the same behavior 
■ Units of measure (Metric vs Imperial) 
■ Sports (Basketball vs Soccer) 
■ Social networking (Instagram vs TikTok) 
■ Payoff matrix
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A B
A a, a 0, 0

B 0, 0 b, b
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BA

Network coordination game

■ Each node plays a copy of the game with each of its neighbors 
■ The utility of a node is the sum of the payoffs obtained from the individual games 
■ Consider a node v with d neighbors of which a fraction p have chosen A
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v

pd (1−p)d
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Network coordination game

■ If node v chooses A, its utility will be pda 
■ If it chooses B, its utility will be (1−p)db 
■ Thus, A is a better choice if pda ≥ (1−p)db or p ≥ b/(a+b) 
■ In other words, if at least b/(a+b) fraction of v’s neighbors chose A, then v should 

chose A as well 
■ if b/(a+b) is small, A is the more attractive choice 
■ if b/(a+b) is large, B is the more attractive choice
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Cascading behavior

■ There are two obvious equilibria: everyone chooses A, or everyone chooses B 
■ Suppose that the network is in the second equilibrium: everyone has chosen B 
■ Can the network be “tipped over” to the other equilibrium by flipping the choices 

of a small number of “initial adopter” nodes? 
■ Answer depends on the network structure, the ratio b/(a+b) and the choice of 

initial adopters 
■ Initial adopters switch for reasons external to the game 
■ The other nodes continue to play the coordination game
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Cascading behavior

■ Chain reaction of switches from decision B to decision A is called a cascade 
■ Cascades can be either complete — the entire network eventually switches to 

the other decision — or they can be partial
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Cascading behavior
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Cascading behavior 
Application to viral marketing

■ Partial cascades result in situations in which two (or more) decisions coexist 
■ Suppose A and B are two competing products or technologies and the 

manufacturer of A wants to dominate the market (obtain a complete cascade) 
■ Manufacturer of A has two possible strategies: 
■ Make its product more “competitive” (increase a) 
■ Pick very carefully the set of its initial adopters 
■ Usually, modifying the network structure is not an option
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Cascading behavior 
Application to viral marketing

■ Pursuing the first strategy, suppose the manufacturer of A is able to increase a 
from 3 to 4 (while b remains at 2) 

■ The threshold for adopting A reduces from 2/5 to 1/3 
■ In the example, the adoption of A becomes a complete cascade 
■ Pursuing the second strategy, suppose the manufacturer of A is able to 

convince two additional nodes
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Cascading behavior 
Application to viral marketing

■ Convince two additional nodes
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Cascading behavior 
Application to viral marketing

■ Or, pick a different set of initial adopters
39
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