Network Science: Cooperation in Selfish Environments

Ozalp Babaoglu Dipartimento di Informatica — Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/

Structure vs dynamics

- *Structure* shape of the network
- degree distribution
- clustering
- diameter
- *Dynamics* what is happening in the network
- navigation
- gossiping
- topology building (newscast, cyclone, T-Man)
- aggregation
- synchronization
- Structure and dynamics are often interrelated
- effects of topology on aggregation

Rational dynamics

- So far, the dynamics have been "blind" nodes have no "free will" or "purpose" but pass around information blindly
- When in fact, nodes are often individuals or other active entities with intent, goals and self-interests
- This results in *rational dynamics*
- Game theory is a tool for studying rational dynamics
- Strategies model intent

C Babaool

• Utility — measure achievement of goals

Rational dynamics Elements of game theory

- Set of participants called *players*
- Each player has a set of options for behavior called *strategies*
- For each choice of strategies, a player receives a *payoff* that may depend on the strategies selected by other players
- Summarized in the form of a *payoff matrix*

© Babaogli

Rational dynamics Elements of game theory

- Each players knows everything about the structure of the game:
- who the other players are
- the set of all possible strategies
- the payoff matrix

C Babaoo

- but does not know the strategies chosen by the other players
- Players are *rational* each tries to maximize her own payoff, given her beliefs about the strategies used by other players

Rational dynamics Iterated network games

- Large number of players (nodes in the network)
- A network mediates the interactions between players
- Payoffs depend only on local interactions (between nodes that are neighbors in the network)
- Payoff matrix specifies value for each configuration of local neighborhood (without exhaustive enumeration)
- Interested not in "one-shot" outcomes but in the dynamics of *iterated* plays
- The node's overall *utility* is the running average of its payoffs from repeated interactions

Cooperation in selfish environments Peer-to-peer applications

- Peer-to-peer applications such as file sharing are totally decentralized and "open"
 anyone can join them
- They are subject to "free-riding" selfish users that enjoy the benefits without contributing their share
- they download but do not allow uploads
- they store their files but do not contribute disk space for others
- High levels of free-riding can render these systems useless
- How to reduce the level of selfishness (and increase the level of cooperation)?
- "Copy-and-wire" algorithm

Cooperation in selfish environments "Copy-and-rewire"

- Two logically distinct networks:
- Random overlay network to maintain connectivity
- Application-dependent interaction network
- Periodically, node *P* compares its utility with that of a peer *Q* selected at random (from the connectivity network)
- If *q* has been achieving higher utility
- P copies Q's strategy
- $\ensuremath{\mathscr{P}}$ rewires its links to the neighbors of $\ensuremath{\boldsymbol{Q}}$
- With (very) small probability, node ${\cal P}$
- "Mutates" its strategy (picks an alternative strategy at random)
- Drops all of its current links
- Links to a random node

© Babaoglu

Cooperation in selfish environments Gossip framework instantiation

Style of interaction: pull

C Babaool

- Local state s: Current utility, strategy and neighborhood within an interaction network
- Method SelectPeer(): Single random sample
- Method Update(): Copy strategy and neighborhood if the peer is achieving better utility

Cooperation in selfish environments "Copy-and-rewire" algorithm

Cooperation in selfish environments "Copy-and-rewire" algorithm

Cooperation in selfish environments "Copy-and-rewire" algorithm

C Babaoo

Cooperation in selfish environments Prisoner's Dilemma

- Note that (C, C) represents an *equilibrium* state neither prisoner can improve her payoff by changing her strategy
- No other pair of strategies is an equilibrium some prisoner is always better off by changing her strategy
- "Dilemma" because both prisoners would have been much better off if both had chosen "Deny"
- But (*D*, *D*) is *not* an equilibrium state
- In general, just because the players are at equilibrium in a game does not mean that they are *happy*

Cooperation in selfish environments Prisoner's Dilemma

- Test the "copy-and-rewire" algorithm with repeated iterations of Prisoner's Dilemma played on the interaction network
- Only pure strategies are played (always *C* or always *D*)
- In each round, a node plays with one random neighbor selected from the interaction network
- Mutation: flip current strategy
- Utility: average payoff achieved so far

Cooperation in selfish environments Simulation results

- 500 nodes
- Connectivity network generated using Newscast
- Initial state:

C Babaoo

- All nodes are selfish
- Random interaction network

Cooperation in selfish environments Prisoner's Dilemma @ round 180

Cooperation in selfish environments Resulting dynamics

- "Copy-and-rewire" causes the interaction network to evolve, resulting in the nodes to "move" in search of better neighborhoods
- Equilibrium states achieve very high levels of cooperation
- Group-like selection between clusters
- Clusters of cooperative nodes grow and persist
- Selfish nodes tend to become isolated
- Can be seen as a "strategic" (as opposed to "stochastic") network formation process

Homophily

- Homophily "Birds of a feather flock together"
- Individuals seek similar individuals
- Homophily is observed across race, gender, age, religion, income in a wide variety of networks — neighborhood, friendship, marriage, loans, etc.
- Some reasons for homophily:
- Opportunity
- Social pressure
- Cost/benefit
- Social competition
- Peer effects related but different property where individuals *adopt* the behavior of their peers

Homophily Segregation

Population of individuals

© Babaoo

C Babacoli

- Each individual has a "type"
- Individuals achieve a "utility" based on the types of other individuals in their neighborhood in comparison to their own type
- Individuals care about where they live
- Individuals can move if they are not happy about their current neighborhood

Segregation in the wild (race)

 For the occupant of location X, the payoff matrix would still need to have 3⁸ entries

© Babaoglu

© Babaogl

Neighborhood of location X

Schelling's threshold model As an iterated network game

- Let h denote the percentage of neighboring cells that have the same type as the occupant of location X
- For Schelling's Model with threshold *t*, the payoff matrix for occupant of location X can be condensed to just 2 entries:
- if $h \ge t$ then payoff is 1
- if h < t then payoff is 0
- Not interested in "one-shot" but iterated plays
- Players can change their strategy by moving
- move to a random empty cell if payoff is 0
- Equilibrium dynamics (when it exists) where all players are happy with payoff 1

Schelling's threshold model Cascading moves

NetLogo "Library/Social Science/Segregation"

Schelling's threshold model Remarks

- Difficult to infer collective behavior from individual preferences
- Tolerance of 51% (almost perfect *desegregation*) led to 94% of the individuals having similar type neighbors (almost total segregation)
- True also in other *decentralized* systems
- Possible counter examples in *centralized* systems (people not allowed to move unilaterally but are told where to live by a central authority)
- Similar to solving a system of equations (individual preferences or PageRanks) in a constrained system

© Babaoglu

© Babaoolu