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Processes on networks

■ Networks serve as the underlying transport mechanism for processes that are 
being carried out on top of them 

■ Interested in studying the effects of the underlying network on the dynamics of 
the higher-level process 

■ Processes already studied 
■ Gossiping 
■ Heartbeat synchronization 
■ Formation creation 
■ Today we will study 
■ Aggregation
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 Aggregation (collective computation)

■ Initially, each node has a (numeric) local state 
■ Want to compute in a decentralized manner a (global) aggregate function over 

the initial values 
■ In the end, the aggregate value must be known (locally) at each node 
■ Examples of aggregate functions: 
■ Average 
■ Min-max 
■ Geometric mean 
■ Variance 
■ Network size
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Aggregation 
Gossip framework instantiation

■ Style of interaction:  push-pull 
■ Local state S:  Current estimate of global aggregate 
■ Method SelectPeer():  Single random neighbor 
■ Method Update():  Numerical function defined according to desired global 

aggregate (arithmetic/geometric mean, min, max, etc.)
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Aggregation 
Gossip framework instantiation

■ Local variable Sp contains current estimate of the aggregate 
■ Need to give implementations for 

■ SelectPeer() 
■ Update(Sp,Sq) 

■ SelectPeer() picks a random neighbor 

■ Update(Sp,Sq)= 

■ Update(Sp,Sq)= 
■ Update(Sp,Sq)= max(Sp,Sq)  (maximum) 

■ More complex functions built by combining the above

(Sp+Sq)
2 (average)

q
(SpSq) (geometric mean)
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Aggregation 
Averaging example
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Aggregation 
Averaging example: Round 0
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Aggregation 
Averaging example: Round 1
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Aggregation 
Averaging example: Round 2
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Aggregation 
Averaging example: Round 3
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Aggregation 
Averaging example: Round 4
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Aggregation 
Averaging example: Round 5

© Babaoglu

Aggregation 
Exponential convergence
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Aggregation 
Exponential convergence

■ In gossip-based averaging, if the selected peer is a globally random sample, 
then the expected variance among the estimates decreases exponentially 

■ Convergence factor:
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Aggregation 
Convergence factor vs topology
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Aggregation 
Convergence factor vs topology
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Figure 7: Average convergence factor computed over a period of 20 cycles in networks of varying

size. Each curve corresponds to a different topology where W-S(β) stands for the Watts-Strogatz

model with parameter β.
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Figure 8: Variance reduction for a network of 105 nodes. Results are normalized so that all

experiments result in unit variance initially. Each curve corresponds to a different topology where

W-S(β) stands for the Watts-Strogatz model with parameter β.
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Aggregation 
Network size estimation

■ How can nodes within a network obtain an estimate for its current size? 
■ Just “freezing” the network and “counting” does not work 
■ Not decentralized 
■ Cannot deal with churn 
■ Not scalable (think of the Internet) 
■ Idea: Base the size estimate on an aggregate value that can be computed 

through a decentralized algorithm 
■ Compute the arithmetic mean starting from zeroes at all nodes except one that 

holds 1 
■ The mean value is 1/n and the network size n can be obtained simply by taking 

the inverse of the mean
22
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Aggregation 
Network size estimation

■ Idea works if there are no failures — no nodes fail and no messages are lost 
■ The estimate will be poor if failures occur during the early phases of the 

algorithm when the variance is greater 
■ Failures become less disruptive in later phases of the algorithm 
■ Worst-case failure scenario: the node with local value 1 fails immediately before 

exchanging local value with any node 
■ Idea: start multiple instances of the algorithm with different nodes holding the 

initial 1 value in each instance and average the results of the different instances 
to obtain the final estimate
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Aggregation 
Robustness — node failures

Single aggregation instance 
50% of nodes crash at the 
beginning of each cycle
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Figure 11: Network size estimation with protocol COUNT where 50% of the nodes crash suddenly.

The x-axis represents the cycle of an epoch at which the “sudden death” occurs.

7.1 Node Crashes

The crash of a node may have several possible effects. If the crashed node had a value smaller

than the actual global average, the estimated average (which should be 1/N ) will increase and

consequently the reported size of the network N will decrease. If the crashed node has a value

larger than the average, the estimated average will decrease and consequently the reported size of

the network N will increase.

The effects of a crash are potentially more damaging in the latter case. The larger the removed

value, the larger the estimated size. At the beginning of an epoch, relatively large values are

present, obtained from the first exchanges originated by the initial value 1. These observations

are confirmed by Figure 11, that shows the effect of the “sudden death” of 50% of the nodes in

a network of 105 nodes at different cycles of an epoch. Note that in the first cycles, the effect of

crashing may be very harsh: the estimate can even become infinite (not shown in the figure), if

all nodes having a value different from 0 crash. However, around the tenth cycle the variance is

already so small that the damaging effect of node crashes is practically negligible.

A more realistic scenario is a network subject to churn. Figure 12 illustrates the behavior

of aggregation in such a network. Churn is modeled by removing a number of nodes from the

network and substituting them with new nodes at each cycle. According to the protocol, the new

nodes do not participate in the ongoing approximation epoch. However this scenario is not fully

equivalent to a continuous node crashing scenario because these new nodes do participate in the

NEWSCAST network and so they are contacted by participating nodes. These contacts are refused

by the new nodes which results in an additional effect similar to link failure.

The size of the network is constant, while its composition is dynamic. The plotted dots cor-

respond to the average estimate computed over all nodes that still participate in the protocol at

the end of a single epoch (30 cycles), that is, that were originally part of the system at the start

of the epoch. Note that although the average estimate is plotted over all nodes, in cycle 30 the

estimates are practically identical as Figure 8 confirms. Also note that 2,500 nodes crashing in a

cycle means that 75% of the nodes ((30 × 2500)/105) are substituted during the epoch, leaving

25% of the nodes that make it until the end of the epoch.

The figure demonstrates that (even when a large number of nodes are substituted during an
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Aggregation 
Robustness — node failures
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Aggregation 
Robustness — communication 
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Aggregation 
Robustness — churn

Approximately 5% of nodes replaced each epoch 
(data obtained from real Gnutella trace)
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Figure 13: Network size estimation with protocol COUNT in the presence of churn according to a

Gnutella trace [24]. 50 experiments were run to calculate statistics (mean and standard deviation),

each epoch consisted of 30 cycles, each cycle lasted for 10 seconds.
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Figure 14: Convergence factor of protocol COUNT as a function of link failure probability.
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