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Decentralized network formation

■ Network formation models such as Erdős-Rényi and Watts-Strogatz are “full 
information” models in that they build the network from a “bird’s eye” point of 
view 
■ The set of all nodes is known 
■ It is static 
■ In practical settings, this is unrealistic because 
■ The set of nodes is not known 
■ The set of nodes is huge (think Internet) 
■ The set of nodes is dynamic and continuously changing
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Decentralized network formation

■ In these settings, we want to impose algorithmic constraints similar to those of 
Kleinberg for the navigation problem 
■ The degree of nodes is a constant c independent of the total number of nodes n 
■ At any given time, nodes know only their immediate neighbors 
■ The set of all nodes may change due to new nodes entering the system and existing 

nodes leaving the system either voluntarily or because of failures 
■  The dynamics leading to changes in the set of nodes is called churn
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Decentralized network formation

■ Many Internet-scale applications (file sharing, content delivery, collaborative 
work, network storage, etc.)  rely on an overlay network that needs to be built 
and maintained under these circumstances 

■ How to construct an overlay network with properties similar to an Erdős-Rényi 
network in a totally decentralized manner (based on local information only)?
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Newscast

■ Decentralized protocol that creates and maintains a random overlay 
■ Highly resilient to churn 
■ Extremely simple design based on information gossip: 
■ Each node only knows the set of its immediate neighbors called its view 
■ Each node periodically picks a node at random from its view 
■ The two nodes exchange their views and update them 
■ The random view exchange makes the algorithm very robust to failures and 

changes in the overlay
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Newscast

■ The view of a node consists of c entries, where c is a parameter and 
entry={node address, timestamp} 

■ Protocol proceeds in fixed-length time intervals called rounds 
■ At each round, node P  executes the following steps: 
■ select random entry, say Q , from local view  
■ send to node Q the local view plus a fresh entry for self 
■ receive view of node Q and merge it with local view 
■ keep the c most recent entries as the new local view 
■ The view of a node changes at each round
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Newscast
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Newscast

1. Pick random peer Q from current view
2. Send each other current views plus fresh link to self
3. Keep c freshest links (remove own info, duplicates)
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Newscast
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1. Pick random peer Q from current view
2. Send each other current views plus fresh link to self
3. Keep c freshest links (remove own info, duplicates) © Babaoglu

Newscast

■ Extremely robust to node and link failures and node dynamism (churn) 
■ Builds and maintains a connected, approximately random topology 
■ Has low overhead 
■ Is scalable
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Newscast 
Average path length: Network size
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Newscast Experiments

■ Simulation studies: 100,000 nodes, view size c=20 
■ Dynamic scenarios: 
■ Star: start with no nodes, add 5000 nodes each round (connecting them to first node 

only) 
■ Lattice: start with regular linear lattice (each node connected to k nearest nodes) 
■ Churn: between cycles 20 and 40 replace 10% of nodes at each round
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Newscast 
Average path length: Convergence

round

Erdős-Rényi

log(n)/log(z)=log(100,000)/log(20)=3.84
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Newscast 
Average path length: Churn
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Newscast 
Clustering Coefficient

Erdős-Rényi

round

p=z/(n−1)=20/(100,000−1)=0.0002
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Newscast 
In-Degree Distribution

Erdős-Rényi
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Robustness of networks

■ Network components (nodes, links) can either fail or can be attacked to cause 
maximum harm 

■ Model failures by removing nodes or links selected at random — included in 
churn 

■ Model attacks by removing nodes that have the largest degree and links that are 
bridges 

■ Measures of robustness based on 
■ how removal of nodes/links affects connectivity 
■ how removal of nodes/links affects average path length 
■ Depending on the severity of these effects, label networks as being more or less 

robust or resilient
17 © Babaoglu

Robustness of networks

■ Suppose two nodes fail 
■ Distance between A and B increases from 2 to 5 
■ Fraction of nodes in the giant component decreases from 100% to 40%
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Robustness of networks

■ Situation would have been very different if two other nodes were to fail 
■ Distinguish two different failure models: 
■ Random node removals (model normal failure scenarios) 
■ Preferential node removals (model “attack” scenarios)
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Robustness of networks

Let us start from a connected network, and at each
time step remove a node. The disappearance of the node
implies the removal of all edges that connect to it, dis-
rupting some of the paths between the remaining nodes
(Fig. 31). One way to monitor the disruption of an ini-
tially connected network is to study the relative size of
the largest cluster that remains connected, S , and the
average path length l of this cluster, as a function of the
fraction f of the nodes removed from the system. We
expect that the size of the largest cluster will decrease
and its average path length increase as an increasing
number of nodes are removed from the network.

1. Random network, random node removal

We start by investigating the response of a random
network to the random removal of its nodes [see Fig.

32(a), !], looking at the changes in the relative size of
the largest cluster S (i.e., the fraction of nodes contained
in the largest cluster) and its average path length l as an
increasing number of nodes are randomly removed.

As expected, for a random network, the size S of the
largest cluster decreases from S!1 as f increases. If only
the removed nodes were missing from the largest cluster,
S would follow the diagonal corresponding to S!1 for
f!0 and S!0 for f!1. While for small f , S follows this
line, as f increases the decrease becomes more rapid,
indicating that clusters of nodes become isolated from
the main cluster. At a critical fraction fc , S drops to 0,
indicating that the network breaks into tiny isolated
clusters. These numerical results indicate an inverse per-
colation transition. Indeed, percolation theory can be
used to calculate the critical fraction fc (Sec. IX.B).

The behavior of the average path length l also con-
firms this percolationlike transition: it starts from a value
characteristic of an unperturbed random graph, in-
creases with f as paths are disrupted in the network, and
peaks at fc [Fig. 32(c), filled squares]. After the network
breaks into isolated clusters, l decreases as well, since in
this regime the size of the largest cluster decreases very
rapidly.

When f is small we can use the prediction of random-
graph theory, Eq. (16), indicating that l scales as
ln(SN)/ln(!k"), where !k" is the average degree of the
largest cluster (Sec. IV.G). Since the number of edges
decreases more rapidly than the number of nodes during
node removal (the disruption of each node inducing the
disruption of several edges), !k" decreases faster with
increasing f than SN , and consequently l increases.
However, for f!fc the prediction of percolation theory
becomes valid, and Eq. (44) indicates that l no longer
depends on !k" and decreases with S .

2. Scale-free network, random node removal

While a random network undergoes an inverse perco-
lation transition when a critical fraction of its nodes are
randomly removed, the situation is dramatically differ-
ent for a Barabási-Albert network [Figs. 32(b) and (d),
square datapoints]. Simulations indicate that while the
size of the largest cluster decreases, it reaches 0 at a
higher f . At the same time, l increases much more
slowly than in the random case, and its peak is much less
prominent. The behavior of the system still suggests a
percolation transition, but analytical calculations indi-
cate that this is merely a finite size effect, and fc→1 for
a scale-free network as the size of the network increases
(Sec. IX.B). In simple terms, scale-free networks display
an exceptional robustness against random node failures.

3. Preferential node removal

In the case of an intentional attack, when the nodes
with the highest number of edges are targeted, the net-
work breaks down faster than in the case of random
node removal. The general breakdown scenario again
follows an inverse percolation transition, but now the
critical fraction is much lower than in the random case.

FIG. 31. Illustration of the effects of node removal on an ini-
tially connected network. In the unperturbed state the distance
between nodes A and B is 2, but after two nodes are removed
from the system, it increases to 6. At the same time the net-
work breaks into five isolated clusters.

FIG. 32. The relative size S (a),(b) and average path length l
(c),(d) of the largest cluster in an initially connected network
when a fraction f of the nodes are removed. (a),(c) Erdős-
Rényi random network with N!10 000 and !k"!4; (b),(d)
scale-free network generated by the Barabási-Albert model
with N!10 000 and !k"!4. !, random node removal; ", pref-
erential removal of the most connected nodes. After Albert,
Jeong, and Barabási (2000).
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□■ random node removal

○● preferential node removal
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Fraction of nodes removed
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The removal of a fraction f of the most connected nodes
results in a random removal of a fraction f̃ of edges from
the remaining nodes. The probability that an edge leads
to a deleted node equals the fraction of edges belonging
to deleted nodes,

f̃!

!
k!K̃

K

kP"k #

$k0%
!f(2"&)/(1"&), (147)

for &#2. We can see that in the limit &→2 any nonzero
f will lead to f̃→1 and thus to the breakdown of the
whole network. Even in a finite network, where the up-
per cutoff of Eq. (145) is K!N , in the limit &!2, f̃
!ln(Nf/m), thus very small f values can lead to the de-
struction of a large fraction of the edges.

Since for random node deletion the probability of an
edge’s leading to a deleted node equals the fraction of
deleted nodes, Cohen et al. (2001) argue that the net-
work after undergoing an attack is equivalent to a scale-
free network with cutoff K̃ that has undergone random
removal of a fraction f̃ of its nodes. Replacing f with f̃
and K with K̃ in Eq. (135), we obtain the following
equation for K̃ :

" K̃
m # 2"&

"2!
2"&

3"&
m$ " K̃

m # 3"&

"1% . (148)

This equation can be solved numerically to obtain K̃
as a function of m and &, and fc(m ,&) can then be de-
termined from Eq. (146). The results indicate that a
breakdown phase transition exists for &#2, and fc is
very small for all & values, on the order of a few percent.
An interesting feature of the fc(&) curve is that it has a
maximum around &!2.25. It is not surprising that
smaller & values lead to increased vulnerability to at-
tacks due to the special role the highly connected nodes
play in connecting the system. However, Cohen et al.
(2001) argue that the cause of the increased susceptibil-
ity of high & networks is that for these even the original
network is formed by several independent clusters, and
the size of the largest cluster decreases with increasing &.
Indeed, the results of Aiello, Chung, and Lu (2000; see
also Sec. V) indicate that for 2$&$3.478 the original
network contains an infinite cluster and several smaller
clusters of size at most ln N, and for &#3.478 the origi-
nal network has no infinite cluster.

D. The robustness of real networks

Systematic studies of the error and attack tolerance of
real networks are available for three systems highly rel-
evant to science and technology.

1. Communication networks

The error and attack tolerance of the Internet and the
World Wide Web was investigated by Albert, Jeong, and
Barabási (2000). Of the two networks, the Internet’s ro-
bustness has more practical significance, as about 0.3%

of the routers regularly malfunction (random errors),
and the Internet is occasionally subject to hacker attacks
targeting some of the most connected nodes. The re-
sults, based on the latest map of the Internet topology at
the interdomain (autonomous system) level, indicate
that the average path length on the Internet is unaf-
fected by the random removal of as many as 60% of the
nodes, while if the most connected nodes are eliminated
(attack), l peaks at a very small f [Fig. 35(a)]. Similarly,
the large connected cluster persists for high rates of ran-
dom node removal, but if nodes are removed in the at-
tack mode, the size of the fragments that break off in-
creases rapidly, the critical point appearing at a very
small threshold, fc

I!0.03 [Fig. 35(c)].
The World Wide Web study was limited to a subset of

the web containing 325 729 nodes, the sample investi-
gated in Albert, Jeong, and Barabási (1999). As the
World Wide Web is directed, not all nodes can be
reached from all nodes, even for the starting network.
To resolve this problem, only distances between nodes
that had a path between them were included in the av-
erage distance between nodes. Second, directed net-
works cannot be separated into clusters unambiguously:
two nodes can be seen as part of the same cluster when
starting from a certain node, yet they appear to be in
separate clusters when starting from another. Hence the
number of independent clusters was ambiguous, but the
largest cluster could still be determined. Third, when
simulating an attack on the World Wide Web, the nodes
with the highest number of outgoing edges were re-
moved, since kout can be readily obtained by looking at
a web document, while kin can only be determined from

FIG. 35. The relative size S (a),(b) and average path length l
(c),(d) of the largest cluster in two communication networks
when a fraction f of the nodes are removed: (a),(c) Internet at
the domain level, N!6209, $k%!3.93; (b),(d) subset of the
World Wide Web (WWW) with N!325 729 and $k%!4.59. !,
random node removal; ", preferential removal of the most
connected nodes. After Albert, Jeong, and Barabási (2000).
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Internet n=6,209  z=3.93

□■ random node removal

○● preferential node removal

WWW n=325,729  z=4.59

Robustness of networks
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Newscast 
Robustness

100.000 nodes
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Newscast 
Robustness

Erdős-Rényi

Newscast

Newscast sustains up to 
68% of nodes that fail 

Random sustains up to 
80% of nodes that fail
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Newscast summary

■ Newscast generates networks that are 
■ Resilient to churn 
■ Fairly robust 
■ In-degree distributions close to binomial 
■ High clustering coefficient 
■ Small average path length (diameter) — small world 
■ High clustering coefficient is bad for: 
■ Flooding algorithms: result in many redundant messages 
■ Robustness: large clusters weakly connected to the rest of the network
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Cyclon

■ How to modify Newscast to generate networks with small diameter and small 
clustering coefficients? 

■ Idea: instead of node P  picking a random node from its current view, it picks the 
oldest node, say Q 

■ Replace Q ’s entry at P  with self and current time 
■ Exchange up to ℓ random entries from view with Q 
■ Discard self entries, keep all others, first by filling empty slots, then replacing 

entries among the ones sent to Q
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Cyclon
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Cyclon

1.  Pick oldest peer Q from current view 
2.  Replace Q ’s entry at P  with self and current time
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Cyclon

1.  Pick oldest peer Q from current view 
2.  Replace Q ’s entry at P  with self and current time
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3.  Exchange up to ℓ random entries with Q 
4.  Update current view by filling empty slots and replacing entries among the ones sent to Q
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Cyclon 
Advantages

■ Connectivity is always guaranteed 
■ Uses less bandwidth — Only small part of the view is exchanged
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Cyclon 
Average path length

Erdős-Rényi

round
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Cyclon 
Clustering Coefficient

Erdős-Rényi
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Cyclon 
Clustering Coefficient (log scale)

Erdős-Rényi
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Cyclon 
In-Degree distribution

Erdős-Rényi
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Cyclon 
Robustness

Erdős-Rényi

Cyclon sustains up to 
80% of nodes that fail
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Cyclon summary

■ Small clustering coefficient 
■ Small average path length 
■ Cyclon generated graphs are closer to random (rather than small world)
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Topology management

■ Certain applications run more efficiently on a structured overlay network topology 
such as a mesh, ring, hypercube, etc. 

■ How to construct and maintain overlay networks that have desired topological 
properties in a manner that is 
■ Decentralized 
■ Self-organizing (insensitive to initial state) 
■ Scalable (insensitive to network size) 
■ Robust (insensitive to churn) 
■ If this topology management problem can be solved efficiently and rapidly, it can 

be used to satisfy application topological needs on-demand
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Developmental biology

■ Morphogenesis attempts to understand the processes that control the organized 
spatial distribution of cells during embryonic development and that give rise to 
the characteristic forms of tissues, organs, and overall body anatomy 

■ An interesting theory based on “differential cell adhesion” 
■ different cell types “sort out” based on “likes” and “dislikes” for each other 
■ any cell configuration has an energy level 
■ cells try to minimize the free energy in the system by a stochastic movement process
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Developmental biology

“Cells from different parts of an early amphibian embryo sort out according to their origins”    
(Townes & Holtfreter 1955)
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Back to topology management

■ In biological systems, adhesion limited by physical constraints 
■ In overlay networks, we have the freedom to define peer relationships as we 

wish, resulting in a vast range of potential target topologies 
■ Notion of “like” and “dislike” captured by a ranking function 
■ Each ranking function defines a particular target topology 
■ Target topology can be changed on-the-fly by informing all nodes to start using 

the appropriate ranking function (after having distributed it)
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T-Man

■ Each node maintains a local view of neighbors 
■ Periodically, each node exchanges its view with a peer selected at random 

among its current view 
■ Each node updates its local view by applying the ranking function to the union of 

the two views 
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T-Man Torus example: initial state
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T-Man Torus example: after 3 rounds
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T-Man Torus example: after 5 rounds
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T-Man Torus example: after 8 rounds
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T-Man Torus example: after 15 rounds
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T-Man Torus example: The movie
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T-Man 
Sorting example
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T-Man 
Exponential convergence — time
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T-Man 
Exponential convergence — network size
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