
Network Science:
Peer-to-Peer Systems

Ozalp Babaoglu
Dipartimento di Informatica — Scienza e Ingegneria

Università di Bologna
www.cs.unibo.it/babaoglu/

© Babaoglu

Introduction

■ Peer-to-peer (P2P) systems are extremely popular and account for much of the
current Internet traffic

■ Distributed systems where all nodes are peers without distinction between
servers and clients

■ Each node can be both a server and a client:
■ May provide services to other peers
■ May consume services from other peers
■ Very different from the client-server model

2

© Babaoglu

P2P History: 1969 — 1990

■ The original Arpanet was P2P
■ Each node was capable of:
■ Performing routing (locate machines)
■ Accepting ftp connections (file sharing)
■ Accepting telnet connections (distributed computation)

3 © Babaoglu

P2P History: 1999 — today

■ The advent of Napster:
■ Jan 1999: the first version of Napster was released by Shawn Fanning, student at

Northeastern University
■ July 1999: Napster Inc. founded
■ Feb 2001: Napster closed down

4

© Babaoglu

Napster

Central Index Server

Napster Client 4

Napster Client 3

Napster Client 2Napster Client 1

Your Computer
Query: song.mp3

Client 2

Copy: song.mp3

■ Client/Server search
■ P2P download
■ Napster was not “pure P2P”

© Babaoglu

Client/Server vs. Peer-to-Peer

■ Servers well connected to the
“core” of the Internet

■ Servers carry out critical tasks
■ Clients only talk to servers

■ Nodes located at the “periphery of the
Internet”

■ Tasks distributed across all nodes
■ Clients talk to other clients

© Babaoglu

Example — Video sharing

Client-Server: YouTube

Advantages
■ Client can disconnect after upload
■ Uploader needs little bandwidth
■ Other users can find the file easily

(just use search on server webpage)

Disadvantages
■ Server may not accept file or remove it later

(according to content policy)
■ Whole system depends on the server

(can be shut down)
■ Server storage and bandwidth

can be expensive

uploader

downloader downloader

downloader

downloaderdownloader

© Babaoglu

Example — Video sharing

Peer-to-peer: BitTorrent

Advantages
■ Does not depend on a central server
■ Bandwidth shared across nodes
■ High scalability, low cost

Disadvantages
■ Uploader must remain on-line to guarantee file

availability
■ Content is more difficult to find

(no central directory)
■ Freeloaders may cheat by only downloading

without ever uploading

peer peer

peer peer

peer peer

© Babaoglu

P2P vs. client-server
Client-server

Asymmetric: client and servers carry out
different tasks
Global knowledge: servers have a global
view of the network
Centralization: communications and
management are centralized
Single point of failure: a server failure brings
down the system
Limited scalability: servers easily overloaded
Expensive: server storage and bandwidth
capacity is not cheap

Peer-to-peer

Symmetric: No distinction between nodes;
they are peers
Local knowledge: nodes only know a small
set of other nodes
Decentralization: no global knowledge, only
local interactions
Robustness: several nodes may fail with
little or no impact
High scalability: high aggregate capacity,
load distribution
Low-cost: storage and bandwidth are
contributed by users

© Babaoglu

P2P and Overlay Networks

■ Peer-to-Peer systems are usually structured as “overlays”
■ Logical structures built on top of a physical routed communication infrastructure

(IP) that creates the allusion of a completely-connected graph
■ Links based on logical “knows” relationships rather than physical connectivity

10

© Babaoglu

Overlay networks

Physical network: “who has a communication link to whom”
© Babaoglu

Overlay networks

Logical network: “who can communicate with whom”
Typically fully-connected

© Babaoglu

Overlay networks

Overlay network (ring): “who knows whom”
© Babaoglu

Overlay networks

Overlay network (binary tree): “who knows whom”

© Babaoglu

P2P Environment

■ Completely decentralized control with limited local states
■ High latency, low bandwidth communication
■ Churn
■ Nodes may disconnect temporarily
■ New nodes are continuously joining the system, while others leave permanently
■ Security
■ P2P clients runs on machines under the total control of their owners
■ Malicious users may try to bring down the system
■ Selfishness
■ Users may run hacked clients in order to avoid contributing resources

15 © Babaoglu

Why P2P?	

■ Decentralization enables deployment of applications that are:
■ Highly available
■ Fault-tolerant
■ Self organizing
■ Scalable
■ Difficult or impossible to shut down
■ This results in a “grassroots” approach and “democratization” of the Internet

16

© Babaoglu

P2P Problems

■ Overlay construction and maintenance
■ e.g., random, two-level, ring, etc.
■ Data location
■ locate a given data object among a large number of nodes
■ Data dissemination
■ propagate data in an efficient and robust manner
■ Global reasoning with local information
■ maintain local views with small per node state
■ Tolerance to churn
■ maintain system invariants (e.g., topology, data location, data availability) despite node

arrivals and departures
17 © Babaoglu

P2P Applications

■ Sharing of content:
■ File sharing, content delivery networks
■ Gnutella, eMule, Akamai
■ Sharing of storage:
■ Distributed file systems
■ Sharing of CPU time:
■ Parallel computing, Grid
■ Seti@home, Folding@home, FightAids@home (typically not pure P2P)

18

© Babaoglu

P2P Topologies

■ Unstructured
■ Structured
■ Centralized
■ Hierarchical
■ Hybrid

19 © Babaoglu

Evaluating topologies

■ Manageability
■ How hard is it to keep working?
■ Information coherence
■ How authoritative is the info?
■ Extensibility
■ How easy is it to grow?
■ Fault tolerance
■ How well can it handle failures?
■ Censorship
■ How hard is it to shut down?

20

© Babaoglu

Some Common Topologies

■ Flat unstructured: a node can connect to any other node
■ only constraint: maximum degree dmax
■ fast join procedure
■ good for data dissemination, bad for location
■ Two-level unstructured: nodes connect to a superpeer
■ superpeers form a small overlay
■ used for indexing and forwarding
■ high load on superpeer
■ Flat structured: constraints based on node ids
■ allows for efficient data location
■ constraints require long join and leave procedures

21 © Babaoglu

Data location in unstructured
networks:

■ Problem: find the set of nodes that store a copy of a given object
■ Flooding: forward the search message to all neighbors
■ A search message contains either keywords or an object id
■ Advantages:
■ simplicity
■ no topology constraints
■ Disadvantages:
■ high network overhead (huge traffic generated by each search request)
■ flooding stopped by Time-To-Live (TTL) which produces search horizon
■ only applicable to small number of nodes

22

© Babaoglu

Data location in unstructured networks:
Flooding

■ Flooding in a flat unstructured network:

23

search horizon for
TTL = 2

Objects that lie outside of the horizon are not found

obj

query

© Babaoglu

Data location in unstructured networks:
Superpeers

■ Two-Level Overlay

24

response
queryobj

© Babaoglu

Data location in structured networks:
Key-Based Routing

■ Structured networks: use a routing algorithm that implements Key-Based
Routing (KBR) [Chord, Pastry, Overnet, Kad, eMule]

■ KBR (also known as Distributed Hash Tables) works as follows:
■ nodes are (randomly) assigned unique node identifiers (Id)
■ given a key k, the node with the smallest Id greater than or equal to k among all nodes

in the network is known as the root of key k
■ given a key k, a KBR algorithm can route a message to the root of k in a small number

of hops, usually O(log n)
■ the location of object objectId is tracked by the root of key objectId
■ thus, one can find the location of an object by routing a message to the root of its

objectId and querying the root for the location of the object
25 © Babaoglu

Structured overlay network: Chord

Basics

Each peer is assigned a unique m-bit identifier id .
Every peer is assumed to store data contained in a file.
Each file has a unique m-bit key k .
Peer with smallest identifier id � k is responsible for
storing file with key k .
succ(k): The peer (i.e., node) with the smallest identifier
p � k .

Note
All arithmetic is done modulo M = 2m. In other words, if
x = k ·M +y , then x mod M = y .

22 / 53

© Babaoglu

Structured overlay network: Chord

Basics

Each peer is assigned a unique m-bit identifier id .
Every peer is assumed to store data contained in a file.
Each file has a unique m-bit key k .
Peer with smallest identifier id � k is responsible for
storing file with key k .
succ(k): The peer (i.e., node) with the smallest identifier
p � k .

Note
All arithmetic is done modulo M = 2m. In other words, if
x = k ·M +y , then x mod M = y .

22 / 53 © Babaoglu

Example

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

Peer�9�stores
files�with�keys
5,�6,�7,�8,�9

Peer�1�stores
files�with�keys
29,�30,�31,�0,�1

Peer�20�stores
file�with�key�21

23 / 53

21

© Babaoglu

Efficient lookups

Partial view = finger table

Each node p maintains a finger table FTp[] with at most m

entries:
FTp[i] = succ(p +2i�1)

Note: FTp[i] points to the first node succeeding p by at
least 2i�1.
To look up a key k , node p forwards the request to node
with index j satisfying

q = FTp[j] k < FTp[j +1]

If p < k < FTp[1], the request is also forwarded to FTp[1]

24 / 53 © Babaoglu

Example finger tables

succ(p�+�2����)i-10 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4
2 4
3 9
4 9
5 18

1 9
2 9
3 9
4 14
5 20

1 11
2 11
3 14
4 18
5 28

1 14
2 14
3 18
4 20
5 28

1 18
2 18
3 18
4 28
5 1

1 20
2 20
3 28
4 28
5 4

1 21
2 28
3 28
4 28
5 41 28

2 28
3 28
4 1
5 9

1 1
2 1
3 1
4 4
5 14

i

25 / 53

© Babaoglu

Example lookup: 15@4

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

1 FT4[4] 15 < FT4[5]
) 4! 14

2 p = 14 < 15 < FTp[1]
) 14! 18

26 / 53 © Babaoglu

Example lookup: 15@4

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

1 FT4[4] 15 < FT4[5]
) 4! 14

2 p = 14 < 15 < FTp[1]
) 14! 18

26 / 53

© Babaoglu

Example lookup: 15@4

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

1 FT4[4] 15 < FT4[5]
) 4! 14

2 p = 14 < 15 < FTp[1]
) 14! 18

26 / 53 © Babaoglu

Example lookup: 22@4

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

1 FT4[5] 22
) 4! 20

2 FT20[1] 22 < FT20[2]
) 20! 21

3 p = 21 < 22 < FT21[1]
) 21! 28

27 / 53

© Babaoglu

Example lookup: 22@4

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

1 FT4[5] 22
) 4! 20

2 FT20[1] 22 < FT20[2]
) 20! 21

3 p = 21 < 22 < FT21[1]
) 21! 28

27 / 53 © Babaoglu

Example lookup: 22@4

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

1 FT4[5] 22
) 4! 20

2 FT20[1] 22 < FT20[2]
) 20! 21

3 p = 21 < 22 < FT21[1]
) 21! 28

27 / 53

© Babaoglu

Example lookup: 22@4

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

1 FT4[5] 22
) 4! 20

2 FT20[1] 22 < FT20[2]
) 20! 21

3 p = 21 < 22 < FT21[1]
) 21! 28

27 / 53 © Babaoglu

Example lookup: 18@20

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14 1 p = 20 ⌅ 18 < FTp[1]
6) 20! 21

2 FT20[5] < 18
) 20! 4

3 FT4[4] 18 < FT4[5]
) 4! 14

4 p = 14 < 18 < FTp[1]
) 14! 18

28 / 53

© Babaoglu

Example lookup: 18@20

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14 1 p = 20 ⌅ 18 < FTp[1]
6) 20! 21

2 FT20[5] < 18
) 20! 4

3 FT4[4] 18 < FT4[5]
) 4! 14

4 p = 14 < 18 < FTp[1]
) 14! 18

28 / 53 © Babaoglu

Example lookup: 18@20

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14 1 p = 20 ⌅ 18 < FTp[1]
6) 20! 21

2 FT20[5] < 18
) 20! 4

3 FT4[4] 18 < FT4[5]
) 4! 14

4 p = 14 < 18 < FTp[1]
) 14! 18

28 / 53

© Babaoglu

Example lookup: 18@20

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14 1 p = 20 ⌅ 18 < FTp[1]
6) 20! 21

2 FT20[5] < 18
) 20! 4

3 FT4[4] 18 < FT4[5]
) 4! 14

4 p = 14 < 18 < FTp[1]
) 14! 18

28 / 53 © Babaoglu

Example lookup: 18@20

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28

1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14 1 p = 20 ⌅ 18 < FTp[1]
6) 20! 21

2 FT20[5] < 18
) 20! 4

3 FT4[4] 18 < FT4[5]
) 4! 14

4 p = 14 < 18 < FTp[1]
) 14! 18

28 / 53

© Babaoglu

The Chord Graph

14

4

9

11
18

20

21

28
1

© Babaoglu

Chord: path lengths

Observation
With dn

2 (i , j) = min{|i� j |,n� |i� j |}, we can see that every peer
is joined with another peer at distance 1

2n, 1
4n, 1

8n, . . . ,1.

7.5

7.0

6.5

6.0

5.5

2 4 6 8 10 12 14 16 18 20

A
v
e

ra
g

e
�p

a
th

�l
e

n
g

th

Network�size�(x�1000)

30 / 53

© Babaoglu

Chord: degree distribution

600

500

400

300

200

100

20 40 60 80 100

Indegree

O
c
c
u

rr
e

n
c
e

s

11 12 13 14 15 16 17

3500

2500

1500

500

Outdegree

O
c
c
u

rr
e

n
c
e

s

31 / 53 © Babaoglu

Chord: clustering coefficient

0.12

0.11

0.10

0.09

201 5 10 15

Note
CC is computed over undirected Chord graph; x-axis shows
number of 1000 nodes.

32 / 53

© Babaoglu

Effects of Churn
■ Churn can have several effects on a P2P system:
■ data objects may be become unavailable if all replicas disconnect
■ routing tables may become inconsistent

(e.g., entries may point to disconnected nodes)
■ the overlay may become partitioned if many nodes suddenly disconnect:

47 © Babaoglu

Churn — Preventing Partitions
■ A naïve approach to preventing partitions is to increase the average node degree

■ Ring partitions can be avoided by keep a list of successor nodes

48

© Babaoglu

Churn Tolerance

■ Node arrivals and departures must not disrupt the normal behavior of the system
■ system invariants must be maintained
■ connected overlay (i.e., no partitions), low average path length
■ data objects accessible from anywhere in the network

■ Two types of churn tolerance:
■ dynamic recovery: ability to react to changes in the overlay to maintain

system invariants (e.g., heal partitions)
■ static resilience: ability to continue operating correctly before adaptation

occurs (e.g., route messages through alternate paths)

49 © Babaoglu

Security

■ Security in P2P systems is hard to enforce:
■ Users have full control of their computers
■ Modified clients may not follow the standard protocol
■ Data may be corrupted
■ Private data stored on remote computers may disclosed

50

© Babaoglu

Security — Weak identities
■ The user may leave the system and rejoin it with a new identity (different user id)
■ If an attack is detected, the attacker can re-enter the system with a new id
■ An attacker may create a large number of false identities (Sybil attack)

51

A

S1 S2

S3

S4S5

S6

Example of Sybil attack:

■ Nodes S1 to S6 are actually 6 instances of
the P2P client running on the same machine

■ The attacker can intercept all traffic coming
from or going to node A

© Babaoglu

Security — Strong identities

■ The user cannot change its identity
■ Solution: use a centralized, trusted Certification Authority (CA)
■ Each new user must obtain an identity certificate
■ The certificate is digitally signed by the CA, whose public key is known by all users
■ A certificate cannot be forged (require the CA’s private key)
■ To prove his identity, a user signs a message with his private key, and attaches the

corresponding certificate signed by the CA
■ Strong identities prevent Sybil Attacks
■ If an attacker is caught, it cannot easily rejoin the system

52

© Babaoglu

Security — Weak vs. Strong identities

■ Strong identities require a centralized CA
■ New nodes must contact the CA before joining the network:
■ The CA response may be slow
■ If the CA is unavailable, new nodes cannot join

■ The security of the system depends on CA:
■ The CA must correctly verify the identity of the requester
■ The CA’s private key must be secret

■ Many P2P systems use weak identities
■ IP addresses already gives some identity information
■ Some systems ensure anonymity

53

