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Small-world networks

■ An experimental study of the small world problem, Travers and Milgram, 
Sociometry 1969 

■ Abstract:  Arbitrarily selected individuals (N=296) in Nebraska and Boston are asked to generate 
acquaintance chains to a target person in Massachusetts, employing “the small world method” 
(Milgram, 1967). Sixty-four chains reach the target person. Within this group the mean number of 
intermediaries between starters and targets is 5.2. Boston starting chains reach the target person 
with fewer intermediaries than those starting in Nebraska; subpopulations in the Nebraska group do 
not differ among themselves. The funneling of chains through sociometric “stars” is noted, with 48 
per cent of the chains passing through three persons before reaching the target. Applications of the 
method to studies of large scale social structure are discussed. 

■ One of the earliest instances of “crowdsourcing”
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Small-world networks 
Travers-Milgram

■ Structural:
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■ Algorithmic:
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Small-world networks 
Travers-Milgram — methodology

■ Arbitrary “target” person and a group of “starters” selected 
■ Each starter given a document and asked to start moving it by mail towards the target 
■ The document described the experiment, named the target and asked the recipient to 

participate by forwarding it 
■ Document could be forwarded only to a first-name-based acquaintance of the sender 
■ Sender urged to choose recipient to advance progress of document towards target along an 

acquaintance chain 
■ Chain would end by either by reaching the target or when someone along the way declined to 

participate  
■ Information about the target (stockbroker in Boston) given to guide the choice of next recipient
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Small-world networks 
Travers-Milgram — methodology

■ Starters: 296 volunteers total, 196 were residents of Nebraska, while 100 were 
recruited from the Boston area
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Small-world networks 
Travers-Milgram — results

■ Distribution of lengths of completed chains 
■ Only 64 out of the 296 initial chains completed
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Small-world networks 
Travers-Milgram — results

■ Number of chains that die after making some progress

7 © Babaoglu

Small-world networks 
Travers-Milgram — results

■ Many of the completed chains passed through a very small number of 
penultimate individuals — “funnels” 

■ A certain Mr. G. responsible for forwarding 16 (out of 64) chains to the target 
■ Mr. D. and Mr. P. responsible for 10 and 5 chains, respectively 
■ “Connectors” or “hubs” with high degree often exist in social networks 
■ Target need not be a “connector” for small-world phenomenon to exist 
■ Like “hub” airports in air traffic
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Small-world networks 
Columbia Small Worlds Project

■ An Experimental Study of Search in Global Social Networks, Dodds et al., 
Science 2003 

■ Modern incarnation of Travers-Milgram 
■ Web-based, email tracking 
■ 18 targets from 13 countries 
■ On-line registration of participants, electronic tracking 
■ 99K persons registered, 24K initiated chains, only 384 reached targets
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Small-world networks 
Columbia Small Worlds Project

■ Highlights of results: 
■ Less than 5% of chains went through the same penultimate person (no “funneling”) 
■ “Large degree” rarely a reason for forwarding choice (less than 10%) 
■ Interesting “algorithmic” choices as a function of chain length (“geographic” early on, 

“work” later) 
■ Reason for choosing next recipient as a function of completed steps
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chains were far less likely than those in in-
complete chains to send messages to hubs
(1.6 versus 8.2%) (table S6). We also find no
evidence of message “funneling” (3, 9)
through a single acquaintance of the target:
At most 5% of messages passed through a
single acquaintance of any target, and 95% of
all chains were completed through individu-
als who delivered at most three messages. We
conclude that social search appears to be
largely an egalitarian exercise, not one whose
success depends on a small minority of ex-
ceptional individuals.

Although the average participation rate
(about 37%) was high relative to those report-
ed in most e-mail–based surveys (26), the
compounding effects of attrition over multi-
ple links resulted in exponential attenuation
of chains as a function of their length and
therefore an extremely low chain completion
rate (384 of 24,163 chains reached their
targets). Chains may have terminated (i)
randomly, because of individual apathy or
disinclination to participate (3, 27); (ii) pref-
erentially at longer chain lengths, corre-
sponding to the claim that chains get “lost” or
are otherwise unable to reach their targets (13);
or (iii) preferentially at short chain lengths,
because, for example, individuals nearer the
target are more likely to continue the chain.

Our findings support the random-failure
hypothesis for two reasons. First, with the
exception of the first step (which is special
because senders register rather than receive
a message from an acquaintance), the attri-
tion rate remains almost constant for all
chain lengths at which we have a sufficient-
ly large N; hence small confidence intervals
(Fig. 1A). Second, senders who did not
forward their messages after one week were
asked why they had not participated. Less
than 0.3% of those contacted claimed that
they could not think of an appropriate re-
cipient, suggesting that lack of interest or
incentive, not difficulty, was the main rea-
son for chain termination.

To estimate the reachability of all targets,
we first aggregate the 384 completed chains
across targets (Fig. 1B), finding the average
chain length to be !L" # 4.05. However,
this number is misleading because it repre-
sents an average only over the completed
chains, and shorter chains are more likely to
be completed. An “ideal” frequency distribu-
tion of chain lengths n$(L) (i.e., the chain
lengths that would be observed in the hypo-
thetical limit of zero attrition) may be esti-
mated by accounting for observed attrition as
follows: n$%L) # n(L) /& i#0

L'1(1'ri) (Fig.
1C, bars), where n(L) is the observed number

of chains completed after L steps (Fig. 1B)
and rL is the maximum-likelihood attrition
rate from step L to step L ( 1 (Fig. 1A,
circles). Using the observed values of rL, we
have reconstructed the most likely ideal dis-
tribution n$(L) (Fig. 1C, bars) under our as-
sumption of random attrition. Because the tail
of the distribution is poorly specified (owing
to the small number of observed chains at
large, L), we measure its median L* rather
than its mean. We find L* # 7, and this can
be thought of as the typical ideal chain length
for a hypothetical average individual. By re-
peating the above procedure for chains that
started and ended in the same country (L* #
5) or in different countries (L* # 7), we can
disentangle to some extent the different un-
derlying distributions of chains, yielding an
estimated range of typical chain lengths 5 !
L* ! 7, depending on the geographical sep-
aration of source and target.

Although the range of L* and the variation
in attrition rates across targets do not appear
great, the compounding effects of attrition
over the length of a message chain can nev-
ertheless generate large differences in mes-
sage completion rates. For example, a
decrease of 15% in attrition rates, when
compounded over the same ideal distribution
with L* # 6, can generate an 800% increase
in completion rate. The same attrition rates
[e.g., r0 # 0.75, rL # 0.63 (L " 1)], when
applied over chains with L* # 5 and 7,
respectively, can lead to completion rates that
vary by up to a factor of three.

Taken together, this evidence suggests a
mixed picture of search in global social net-
works. On the one hand, all targets may in
fact be reachable from random initial senders
in only a few steps, with surprisingly little
variation across targets in different countries
and professions. On the other hand, small
differences in either participation rates or the
underlying chain lengths can have a dramatic
impact on the apparent reachability of differ-
ent targets. Target 5 (a professor at a promi-
nent U.S. university) stands out in this re-
spect. Because 85% of senders were college
educated and more than half were American,
participants may have anticipated little diffi-
culty in reaching him, thus accounting for his
chains’ attrition rate (54%) being much lower
than that of any other target (60 to 68%).
Target 5 received a notable 44% of all
completed chains, yet this result is consis-
tent with his “true” reachability being little
different from that of other targets; his
allocated senders may simply have been
more confident of success.

Our results therefore suggest that if indi-
viduals searching for remote targets do not
have sufficient incentives to proceed, the
small-world hypothesis will not appear to
hold (13), but that even a slight increase in
incentives can render social searches success-

Table 2. Reason for choosing next recipient. All quantities are percentages. Location, recipient is
geographically closer; Travel, recipient has traveled to target’s region; Family, recipient’s family originates
from target’s region; Work, recipient has occupation similar to target; Education, recipient has similar
educational background to target; Friends, recipient has many friends; Cooperative, recipient is considered
likely to continue the chain; Other, includes recipient as the target.

L N Location Travel Family Work Education Friends Cooperative Other

1 19,718 33 16 11 16 3 9 9 3
2 7,414 40 11 11 19 4 6 7 2
3 2,834 37 8 10 26 6 6 4 3
4 1,014 33 6 7 31 8 5 5 5
5 349 27 3 6 38 12 6 3 5
6 117 21 3 5 42 15 4 5 5
7 37 16 3 3 46 19 8 5 0

Fig. 1. Distributions of message chain lengths.
(A) Average per-step attrition rates (circles)
and 95% confidence interval (triangles). (B)
Histogram representing the number of chains
that are completed in L steps (!L" # 4.01).
(C) “Ideal” histogram of chain lengths recov-
ered from (B) by accounting for message attri-
tion (A). Bars represent the ideal histogram
recovered with average values of r [circles in
(A)] for the histogram in (B); lines represent a decomposition of the complete data into chains that
start in the same country as the target (circles) and those that start in a different country
(triangles).
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Small-world networks 
Columbia Small Worlds Project

■ Average attrition rates as a function of chain length
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chains were far less likely than those in in-
complete chains to send messages to hubs
(1.6 versus 8.2%) (table S6). We also find no
evidence of message “funneling” (3, 9)
through a single acquaintance of the target:
At most 5% of messages passed through a
single acquaintance of any target, and 95% of
all chains were completed through individu-
als who delivered at most three messages. We
conclude that social search appears to be
largely an egalitarian exercise, not one whose
success depends on a small minority of ex-
ceptional individuals.

Although the average participation rate
(about 37%) was high relative to those report-
ed in most e-mail–based surveys (26), the
compounding effects of attrition over multi-
ple links resulted in exponential attenuation
of chains as a function of their length and
therefore an extremely low chain completion
rate (384 of 24,163 chains reached their
targets). Chains may have terminated (i)
randomly, because of individual apathy or
disinclination to participate (3, 27); (ii) pref-
erentially at longer chain lengths, corre-
sponding to the claim that chains get “lost” or
are otherwise unable to reach their targets (13);
or (iii) preferentially at short chain lengths,
because, for example, individuals nearer the
target are more likely to continue the chain.

Our findings support the random-failure
hypothesis for two reasons. First, with the
exception of the first step (which is special
because senders register rather than receive
a message from an acquaintance), the attri-
tion rate remains almost constant for all
chain lengths at which we have a sufficient-
ly large N; hence small confidence intervals
(Fig. 1A). Second, senders who did not
forward their messages after one week were
asked why they had not participated. Less
than 0.3% of those contacted claimed that
they could not think of an appropriate re-
cipient, suggesting that lack of interest or
incentive, not difficulty, was the main rea-
son for chain termination.

To estimate the reachability of all targets,
we first aggregate the 384 completed chains
across targets (Fig. 1B), finding the average
chain length to be !L" # 4.05. However,
this number is misleading because it repre-
sents an average only over the completed
chains, and shorter chains are more likely to
be completed. An “ideal” frequency distribu-
tion of chain lengths n$(L) (i.e., the chain
lengths that would be observed in the hypo-
thetical limit of zero attrition) may be esti-
mated by accounting for observed attrition as
follows: n$%L) # n(L) /& i#0

L'1(1'ri) (Fig.
1C, bars), where n(L) is the observed number

of chains completed after L steps (Fig. 1B)
and rL is the maximum-likelihood attrition
rate from step L to step L ( 1 (Fig. 1A,
circles). Using the observed values of rL, we
have reconstructed the most likely ideal dis-
tribution n$(L) (Fig. 1C, bars) under our as-
sumption of random attrition. Because the tail
of the distribution is poorly specified (owing
to the small number of observed chains at
large, L), we measure its median L* rather
than its mean. We find L* # 7, and this can
be thought of as the typical ideal chain length
for a hypothetical average individual. By re-
peating the above procedure for chains that
started and ended in the same country (L* #
5) or in different countries (L* # 7), we can
disentangle to some extent the different un-
derlying distributions of chains, yielding an
estimated range of typical chain lengths 5 !
L* ! 7, depending on the geographical sep-
aration of source and target.

Although the range of L* and the variation
in attrition rates across targets do not appear
great, the compounding effects of attrition
over the length of a message chain can nev-
ertheless generate large differences in mes-
sage completion rates. For example, a
decrease of 15% in attrition rates, when
compounded over the same ideal distribution
with L* # 6, can generate an 800% increase
in completion rate. The same attrition rates
[e.g., r0 # 0.75, rL # 0.63 (L " 1)], when
applied over chains with L* # 5 and 7,
respectively, can lead to completion rates that
vary by up to a factor of three.

Taken together, this evidence suggests a
mixed picture of search in global social net-
works. On the one hand, all targets may in
fact be reachable from random initial senders
in only a few steps, with surprisingly little
variation across targets in different countries
and professions. On the other hand, small
differences in either participation rates or the
underlying chain lengths can have a dramatic
impact on the apparent reachability of differ-
ent targets. Target 5 (a professor at a promi-
nent U.S. university) stands out in this re-
spect. Because 85% of senders were college
educated and more than half were American,
participants may have anticipated little diffi-
culty in reaching him, thus accounting for his
chains’ attrition rate (54%) being much lower
than that of any other target (60 to 68%).
Target 5 received a notable 44% of all
completed chains, yet this result is consis-
tent with his “true” reachability being little
different from that of other targets; his
allocated senders may simply have been
more confident of success.

Our results therefore suggest that if indi-
viduals searching for remote targets do not
have sufficient incentives to proceed, the
small-world hypothesis will not appear to
hold (13), but that even a slight increase in
incentives can render social searches success-

Table 2. Reason for choosing next recipient. All quantities are percentages. Location, recipient is
geographically closer; Travel, recipient has traveled to target’s region; Family, recipient’s family originates
from target’s region; Work, recipient has occupation similar to target; Education, recipient has similar
educational background to target; Friends, recipient has many friends; Cooperative, recipient is considered
likely to continue the chain; Other, includes recipient as the target.

L N Location Travel Family Work Education Friends Cooperative Other

1 19,718 33 16 11 16 3 9 9 3
2 7,414 40 11 11 19 4 6 7 2
3 2,834 37 8 10 26 6 6 4 3
4 1,014 33 6 7 31 8 5 5 5
5 349 27 3 6 38 12 6 3 5
6 117 21 3 5 42 15 4 5 5
7 37 16 3 3 46 19 8 5 0

Fig. 1. Distributions of message chain lengths.
(A) Average per-step attrition rates (circles)
and 95% confidence interval (triangles). (B)
Histogram representing the number of chains
that are completed in L steps (!L" # 4.01).
(C) “Ideal” histogram of chain lengths recov-
ered from (B) by accounting for message attri-
tion (A). Bars represent the ideal histogram
recovered with average values of r [circles in
(A)] for the histogram in (B); lines represent a decomposition of the complete data into chains that
start in the same country as the target (circles) and those that start in a different country
(triangles).
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Small-world networks 
Columbia Small Worlds Project

■ Distribution of completed chain lengths (mean 4.05)
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chains were far less likely than those in in-
complete chains to send messages to hubs
(1.6 versus 8.2%) (table S6). We also find no
evidence of message “funneling” (3, 9)
through a single acquaintance of the target:
At most 5% of messages passed through a
single acquaintance of any target, and 95% of
all chains were completed through individu-
als who delivered at most three messages. We
conclude that social search appears to be
largely an egalitarian exercise, not one whose
success depends on a small minority of ex-
ceptional individuals.

Although the average participation rate
(about 37%) was high relative to those report-
ed in most e-mail–based surveys (26), the
compounding effects of attrition over multi-
ple links resulted in exponential attenuation
of chains as a function of their length and
therefore an extremely low chain completion
rate (384 of 24,163 chains reached their
targets). Chains may have terminated (i)
randomly, because of individual apathy or
disinclination to participate (3, 27); (ii) pref-
erentially at longer chain lengths, corre-
sponding to the claim that chains get “lost” or
are otherwise unable to reach their targets (13);
or (iii) preferentially at short chain lengths,
because, for example, individuals nearer the
target are more likely to continue the chain.

Our findings support the random-failure
hypothesis for two reasons. First, with the
exception of the first step (which is special
because senders register rather than receive
a message from an acquaintance), the attri-
tion rate remains almost constant for all
chain lengths at which we have a sufficient-
ly large N; hence small confidence intervals
(Fig. 1A). Second, senders who did not
forward their messages after one week were
asked why they had not participated. Less
than 0.3% of those contacted claimed that
they could not think of an appropriate re-
cipient, suggesting that lack of interest or
incentive, not difficulty, was the main rea-
son for chain termination.

To estimate the reachability of all targets,
we first aggregate the 384 completed chains
across targets (Fig. 1B), finding the average
chain length to be !L" # 4.05. However,
this number is misleading because it repre-
sents an average only over the completed
chains, and shorter chains are more likely to
be completed. An “ideal” frequency distribu-
tion of chain lengths n$(L) (i.e., the chain
lengths that would be observed in the hypo-
thetical limit of zero attrition) may be esti-
mated by accounting for observed attrition as
follows: n$%L) # n(L) /& i#0

L'1(1'ri) (Fig.
1C, bars), where n(L) is the observed number

of chains completed after L steps (Fig. 1B)
and rL is the maximum-likelihood attrition
rate from step L to step L ( 1 (Fig. 1A,
circles). Using the observed values of rL, we
have reconstructed the most likely ideal dis-
tribution n$(L) (Fig. 1C, bars) under our as-
sumption of random attrition. Because the tail
of the distribution is poorly specified (owing
to the small number of observed chains at
large, L), we measure its median L* rather
than its mean. We find L* # 7, and this can
be thought of as the typical ideal chain length
for a hypothetical average individual. By re-
peating the above procedure for chains that
started and ended in the same country (L* #
5) or in different countries (L* # 7), we can
disentangle to some extent the different un-
derlying distributions of chains, yielding an
estimated range of typical chain lengths 5 !
L* ! 7, depending on the geographical sep-
aration of source and target.

Although the range of L* and the variation
in attrition rates across targets do not appear
great, the compounding effects of attrition
over the length of a message chain can nev-
ertheless generate large differences in mes-
sage completion rates. For example, a
decrease of 15% in attrition rates, when
compounded over the same ideal distribution
with L* # 6, can generate an 800% increase
in completion rate. The same attrition rates
[e.g., r0 # 0.75, rL # 0.63 (L " 1)], when
applied over chains with L* # 5 and 7,
respectively, can lead to completion rates that
vary by up to a factor of three.

Taken together, this evidence suggests a
mixed picture of search in global social net-
works. On the one hand, all targets may in
fact be reachable from random initial senders
in only a few steps, with surprisingly little
variation across targets in different countries
and professions. On the other hand, small
differences in either participation rates or the
underlying chain lengths can have a dramatic
impact on the apparent reachability of differ-
ent targets. Target 5 (a professor at a promi-
nent U.S. university) stands out in this re-
spect. Because 85% of senders were college
educated and more than half were American,
participants may have anticipated little diffi-
culty in reaching him, thus accounting for his
chains’ attrition rate (54%) being much lower
than that of any other target (60 to 68%).
Target 5 received a notable 44% of all
completed chains, yet this result is consis-
tent with his “true” reachability being little
different from that of other targets; his
allocated senders may simply have been
more confident of success.

Our results therefore suggest that if indi-
viduals searching for remote targets do not
have sufficient incentives to proceed, the
small-world hypothesis will not appear to
hold (13), but that even a slight increase in
incentives can render social searches success-

Table 2. Reason for choosing next recipient. All quantities are percentages. Location, recipient is
geographically closer; Travel, recipient has traveled to target’s region; Family, recipient’s family originates
from target’s region; Work, recipient has occupation similar to target; Education, recipient has similar
educational background to target; Friends, recipient has many friends; Cooperative, recipient is considered
likely to continue the chain; Other, includes recipient as the target.

L N Location Travel Family Work Education Friends Cooperative Other

1 19,718 33 16 11 16 3 9 9 3
2 7,414 40 11 11 19 4 6 7 2
3 2,834 37 8 10 26 6 6 4 3
4 1,014 33 6 7 31 8 5 5 5
5 349 27 3 6 38 12 6 3 5
6 117 21 3 5 42 15 4 5 5
7 37 16 3 3 46 19 8 5 0

Fig. 1. Distributions of message chain lengths.
(A) Average per-step attrition rates (circles)
and 95% confidence interval (triangles). (B)
Histogram representing the number of chains
that are completed in L steps (!L" # 4.01).
(C) “Ideal” histogram of chain lengths recov-
ered from (B) by accounting for message attri-
tion (A). Bars represent the ideal histogram
recovered with average values of r [circles in
(A)] for the histogram in (B); lines represent a decomposition of the complete data into chains that
start in the same country as the target (circles) and those that start in a different country
(triangles).
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Small-world networks 
Microsoft Instant Messenger

■ Worldwide buzz: Planetary-scale views on an instant-messaging network, 
Leskovec and Horvitz, 2008 

■ “Structural” study based on 240M Microsoft IM user accounts active in 2008 
■ Two users considered “connected” if they communicated at least once during a 

month-long observation period  
■ No need for “tracers” since the full social graph is known 
■ Shortest paths computed on the graph using “breadth-first search”
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Small-world networks 
Microsoft Instant Messenger

■ Single giant component 
■ Average shortest path distance 6.6, median 7 
■ Shortest path distribution for (only) 1000 users:

14

2.3. DISTANCE AND BREADTH-FIRST SEARCH 37

Figure 2.11: The distribution of distances in the graph of all active Microsoft Instant Mes-
senger user accounts, with an edge joining two users if they communicated at least once
during a month-long observation period [273].

step connections to CEOs and political leaders don’t yield immediate payo↵s on an everyday

basis, the existence of all these short paths has substantial consequences for the potential

speed with which information, diseases, and other kinds of contagion can spread through

society, as well as for the potential access that the social network provides to opportunities

and to people with very di↵erent characteristics from one’s own. All these issues — and

their implications for the processes that take place in social networks — are rich enough

that we will devote Chapter 20 to a more detailed study of the small-world phenomenon and

its consequences.

Instant Messaging, Paul Erdös, and Kevin Bacon. One reason for the current em-

pirical consensus that social networks generally are “small worlds” is that this has been

increasingly confirmed in settings where we do have full data on the network structure. Mil-

gram was forced to resort to an experiment in which letters served as “tracers” through a

global friendship network that he had no hope of fully mapping on his own; but for other

kinds of social network data where the full graph structure is known, one can just load it

into a computer and perform the breadth-first search procedure to determine what typical
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Small-world networks 
Facebook study

■ Four degrees of separation, L. Backstrom et al., 2012  
■ “Structural” study based on 721M active Facebook users with 69B friendship 

links 
■ Again, not a random sample from general population but by 2012, Facebook 

much more representative than IM in 2008 
■ Repeated in 2016 with 1.59B Facebook users 
■ The biggest technical feat of this study is the ability to process huge datasets 

algorithmically
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Small-world networks 
Facebook study — results

■ Growth of active Facebook users
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Small-world networks 
Facebook study — 2012 results

■ Shortest path length: current distribution and averages over the years 
■ Overall average path length: 4.74
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it se itse us fb
Original 14.8 (83%) 14.0 (86%) 15.0 (82%) 17.2 (82%) 20.1 (86%)

LLP 10.3 (58%) 10.2 (63%) 10.3 (56%) 11.6 (56%) 12.3 (53%)

Table 1: The number of bits per link and the compression ratio (with respect to the information-theoretical lower bound)
for the current graphs in the original order and for the same graphs permuted by layered label propagation [2].
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Figure 2: The probability mass functions of the distance
distributions of the current graphs (truncated at distance 10).

data shows. In particular, the it and se subgraphs from
January 1, 2007 were highly disconnected, as shown by the
incredibly low percentage of reachable pairs we estimate in
Table 9. Even Facebook itself was rather disconnected, but
all the data we compute stabilizes (with small oscillations)
after 2009, with essentially all pairs reachable. Thus, we con-
sider the data for 2007 and 2008 useful to observe the evolu-
tion of Facebook, but we do not consider them representative
of the underlying human social-link structure.

it se itse us fb
2007 1.31 3.90 1.50 119.61 99.50
2008 5.88 46.09 36.00 106.05 76.15
2009 50.82 69.60 55.91 111.78 88.68
2010 122.92 100.85 118.54 128.95 113.00
2011 198.20 140.55 187.48 188.30 169.03

current 226.03 154.54 213.30 213.76 190.44

Table 4: Average degree of the datasets.
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Figure 3: The average distance graph. See also Table 6.

it se itse us fb
2007 0.04 10.23 0.19 100.00 68.02
2008 25.54 93.90 80.21 99.26 89.04

Table 9: Percentage of reachable pairs 2007–2008.

4.4 The distribution

Figure 2 displays the probability mass functions of the cur-
rent graphs. We will discuss later the variation of the average
distance and spid, but qualitatively we can immediately dis-
tinguish the regional graphs, concentrated around distance
four, and the whole Facebook graph, concentrated around
distance five. The distributions of it and se, moreover, have
significantly less probability mass concentrated on distance
five than itse and us. The variance data (Table 7 and Fig-
ure 4) show that the distribution became quickly extremely
concentrated.
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it se itse us fb
Original 14.8 (83%) 14.0 (86%) 15.0 (82%) 17.2 (82%) 20.1 (86%)

LLP 10.3 (58%) 10.2 (63%) 10.3 (56%) 11.6 (56%) 12.3 (53%)

Table 1: The number of bits per link and the compression ratio (with respect to the information-theoretical lower bound)
for the current graphs in the original order and for the same graphs permuted by layered label propagation [2].
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Figure 2: The probability mass functions of the distance
distributions of the current graphs (truncated at distance 10).

data shows. In particular, the it and se subgraphs from
January 1, 2007 were highly disconnected, as shown by the
incredibly low percentage of reachable pairs we estimate in
Table 9. Even Facebook itself was rather disconnected, but
all the data we compute stabilizes (with small oscillations)
after 2009, with essentially all pairs reachable. Thus, we con-
sider the data for 2007 and 2008 useful to observe the evolu-
tion of Facebook, but we do not consider them representative
of the underlying human social-link structure.

it se itse us fb
2007 1.31 3.90 1.50 119.61 99.50
2008 5.88 46.09 36.00 106.05 76.15
2009 50.82 69.60 55.91 111.78 88.68
2010 122.92 100.85 118.54 128.95 113.00
2011 198.20 140.55 187.48 188.30 169.03

current 226.03 154.54 213.30 213.76 190.44

Table 4: Average degree of the datasets.
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Figure 3: The average distance graph. See also Table 6.

it se itse us fb
2007 0.04 10.23 0.19 100.00 68.02
2008 25.54 93.90 80.21 99.26 89.04

Table 9: Percentage of reachable pairs 2007–2008.

4.4 The distribution

Figure 2 displays the probability mass functions of the cur-
rent graphs. We will discuss later the variation of the average
distance and spid, but qualitatively we can immediately dis-
tinguish the regional graphs, concentrated around distance
four, and the whole Facebook graph, concentrated around
distance five. The distributions of it and se, moreover, have
significantly less probability mass concentrated on distance
five than itse and us. The variance data (Table 7 and Fig-
ure 4) show that the distribution became quickly extremely
concentrated.
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Small-world networks 
Facebook study — 2016 results

https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/
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The navigation problem

■ Suppose you are a node in a very large social network 
■ You want to find a short path to another node in the network 
■ You do not have a global view of the network 
■ You only know who your immediate neighbors are 
■ You can ask your neighbors to make introductions 
■ Relevant not only for social networks but also in many technological contexts — 

Internet packet routing, peer-to-peer file sharing

19 © Babaoglu

The navigation problem

■ Two aspects for solving the navigation (search) problem: 
■ Verify the existence of short paths in the network — structural 
■ Allow people to actually find these short paths using only distributed, local information 

— algorithmic 
■ Algorithmic constraints 
■ Only know your immediate neighbors 
■ Limited information about the target 
■ Simple heuristic strategies

20
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Small-world networks 
Kleinberg’s model

■ Recall that to find short paths in networks 
■ Short paths must exist (structural property — small diameter) 
■ Must be able to find these short paths using only local forwarding information 

(algorithmic property) 
■ Kleinberg’s model:  abstract formulation of the navigation problem in a small-

world network to study the structural and algorithmic constraints 
■ Navigation in a small world, J. Kleinberg, Nature 2000

21 © Babaoglu

Small-world networks 
Kleinberg’s model — definition

■ Start with a k×k regular grid of nodes (n=k2) 
■ Each node connected to its 4 compass neighbors 
■ Each node gets one additional random “long-distance” edge

22
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Small-world networks 
Kleinberg’s model — definition

■ Let d denote the “grid (Manhattan) distance” between two nodes

23

d=6

d=4
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Small-world networks 
Kleinberg’s model — definition

■ Let the probability of the random edge connecting to a node at grid distance d 
be proportional to d−r for some r≥0 
■ Smaller r — most “long-distance” edges are uniform random 
■ Larger r — most “long-distance” edges are actually “local”

24

Kleinberg’s Model 
•  Start with an k by k grid of vertices (so N = k^2) 

–  each vertex connected to compass neighbors 
–  add a few random ”long-distance” connections to each vertex 
–  probability p(d) of connecting to a vertex at grid distance d: 

–  large r: heavy bias towards “more local” long-distance connections 
–  small r: approach uniformly random 

€ 

p(d)∝ (1/d)r,r ≥ 0

r=0
r=2
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Small-world networks 
Kleinberg’s model — constraints

■ Which values of r permit efficient navigation? 
■ “Efficient navigation” — the number of hops is bounded by a function loga(n) 
■ Choice of r constrains the problem structurally 
■ What are the algorithmic constraints? 
■ Nodes know the coordinates of their neighbors 
■ Nodes know the coordinate of the target 
■ Nodes always forward to neighbors closest to target in grid distance (“greedy” strategy 

excludes “backwards” hops even though they may lead to shorter paths) 
■ Forwarding based on local geometric information only (with global knowledge, the 

solution becomes trivial)

25 © Babaoglu

Small-world networks 
Kleinberg’s model — intuition

■ If r is too small (no local bias), we can get close to the target quickly but then 
need to use grid edges to conclude 

■ If r is too large (strong local bias), then “long-distance” edges are actually local 
and do not help much — short paths may not even exist 

■ “Efficient” navigation requires a delicate mix of local and long-distance edges 
■  SmallWorldSearch NetLogo demo

26
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Small-world networks 
Kleinberg’s model — intuition

■ r=0

27

 
When r=0, links are randomly distributed, ASP ~ log(n), n size of grid 
When r=0, any decentralized algorithm is at least a0n2/3 
 

 

geographical search when network lacks locality 

When r<2,  
expected 
time at  
least αrn(2-r)/3 

0~p p
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Small-world networks 
Kleinberg’s model — intuition

■ r=4

28

 
 
 

 

Overly localized links on a lattice 
When r>2  expected search time ~ N(r-2)/(r-1) 

4
1~p
d
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Small-world networks 
Kleinberg’s model — intuition

■ r=2

29

When r=2, expected time of a DA is at most C (log N)2 

2
1~p
d

Just the right balance 
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Small-world networks 
Kleinberg’s model — intuition

■ Navigability requires networks to be multiscale

30

Navigability 

T 

S 

R 
λ2|R|<|R�|<λ|R|  

k = c log2n calculate probability that s fails to have a link in R� 

R� 
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Small-world networks 
Kleinberg’s model — results

■ As n becomes large, for any decentralized navigation algorithm, the expected 
number of hops is bounded by a function proportional to: 
■ n(2−r)/3 if r<2 

■ n(r−2)/(r−1) if r>2 

■ log2 n if r=2 
■ Results can be generalized to d-dimensional lattices for any value of d≥1 
■ The critical value becomes r=d
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Navigation in a small world
It is easier to find short chains between points in some networks than others.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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Small-world networks 
Kleinberg’s model — results

■ Expected number of hops bounded by: 
■ n(2−r)/3 if r<2 

■ n(r−2)/(r−1) if r>2
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
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Navigation in a small world
It is easier to find short chains between points in some networks than others.
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Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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Small-world networks 
Kleinberg’s model — results

■ For any decentralized navigation algorithm, expected number of hops is 
proportional to: 
■ n(2−r)/3 if r<2 

■ n(r−2)/(r−1) if r>2 

■ log2 n if r=2
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The small-world phenomenon — the
principle that most of us are linked by
short chains of acquaintances — was

first investigated as a question in sociolo-
gy1,2 and is a feature of a range of networks
arising in nature and technology3–5. Experi-
mental study of the phenomenon1 revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed2–4, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments1, in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm3: they are rich
in structured short-range connections and
have a few random long-range connections. 

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, !, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. 1a). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply6.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent ! at which this is possible. 

When !"2, so that long-range connec-

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)2. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

nection that brings it as close as possible to
the target in lattice distance. Moreover,
!"2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d#1, with the critical value of
the clustering exponent becoming !"d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works7 and neuroanatomy8, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered9,10.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network. 

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
Jon M. Kleinberg
Department of Computer Science, Cornell
University, Ithaca, New York 14853, USA
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Navigation in a small world
It is easier to find short chains between points in some networks than others.

0
0 1 2 3 4

0.2

Clustering exponent (α)

Clustering exponent (α)

0.8

0.6

0.4.

(α–2)/(α–1)(2–α)/3

7.0

5.0

6.0

 1  0   2

ua c

d

bv

a

b

c

Ex
po

ne
nt

 β
 in

lo
w

er
 b

ou
nd

 o
n 

T
In

 T
 fo

r  
gr

ee
dy

 a
lg

or
ith

m

Figure 1 The navigability of small-world networks. a, The network

model is derived from an n$n lattice. Each node, u, has a short-

range connection to its nearest neighbours (a, b, c and d ) and a

long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r%!, where r is the lat-

tice (‘Manhattan’) distance between u and v, and !#0 is a fixed

clustering exponent. More generally, for p,q#1, each node u has

a short-range connection to all nodes within p lattice steps, and q
long-range connections generated independently from a distribu-

tion with clustering exponent !. b, Lower bound from my charac-

terization theorem: when ! ≠ 2, the expected delivery time T
of any decentralized algorithm satisfies T#cn&, where

&"(2%!)/3 for 0'!(2 and &"(!%2)/(!%1) for !)2,

and where c depends on !, p and q, but not n. c, Simulation of

the greedy algorithm on a 20,000$20,000 toroidal lattice, with

random long-range connections as in a. Each data point is the

average of 1,000 runs.
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Small-world networks 
Where’s George

■ Further confirmation of Kleinberg’s results 
■ The scaling laws of human travel, Brockmann et al., Nature 2006 
■ Based on the “Where’s George?” dataset 
■ Tracks movement of dollar bills 
■ Illustration of multiscale networks 
■ Idea: movement of dollar bills can be a good proxy for movement of people

34
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Small-world networks 
Where’s George

■ https://youtu.be/kn32vavZqvg?t=28  
■ Movement of 4 dollar bills originating in 4 different cities
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Figure 1| Dispersal of bank notes and humans on geographical scales. a, Relative logarithmic 
population, report and initial entry densities P Pc log / P= ρ ρ , R Rc log /= ρ ρR  and 

IE IE IEc log /= ρ ρ  as functions of geographical coordinates. Colour encodes the densities relative to 

the nation-wide averages (3,109 counties) P 95.15ρ = , R 0.34ρ =  and IE 0.15ρ =  of individuals, 

reports and initial entries per , respectively. b, Trajectories of bank notes originating from four 
different places. Tags indicate initial, symbols secondary report locations. Lines represent short time 
trajectories with travelling time  days. Lines are omitted for the long time trajectories (initial 
entry: Omaha) with  days. The inset depicts a close-up of the New York area. Pie charts 
indicate the relative number of secondary reports coarsely sorted by distance. The fractions of sec-
ondary reports that occurred at the initial entry location (dark), at short (

2km

T 14<
T 100>

0 r 50< < km), intermediate 
( 50 km) and long ( km) distances are ordered by increasing brightness of hue. The 
total number of initial entries are 

r 800< < r 800>
N 2,055=  (Omaha), N 524=  (Seattle), N 231=  (New York), 

N 381=  (Jacksonville). c, The short time dispersal kernel. The measured probability density func-
tion p(r)  of traversing a distance  in less than Tr 4=  days is depicted by blue symbols. It is com-
puted from an ensemble of 20,540 short time displacements. The dashed black line indicates a 
power law  with an exponent of (1 )p(r) r − +β∼ 0.59β = . The inset depicts p(r)  for three classes of 
initial entry locations (black triangles for metropolitan areas, diamonds for cities of intermediate size, 
and circles for small towns). Their decay is consistent with the measured exponent  

(dashed line). d, The relative proportion  of secondary reports within a short radius ( km) 

of the initial entry location as a function of time. Blue squares depict  averaged over 25,375 

initial entry locations. Black triangles, diamonds, and circles show  for the same classes as in 

c. All curves decrease asymptotically as 

0.59β =

0P (t) 0r 20=

0P (t)

0P (t)

t−η  with an exponent 0.60 0.03η = ± indicated by the blue 
dashed line. Ordinary diffusion in two dimensions predicts an exponent 1.0η = (black dashed line). 
Lévy flight dispersal with an exponent 0.6β =  as suggested by b predicts an even steeper de-
crease,  (red dashed line). 3.33η =

© Babaoglu

Small-world networks 
Where’s George

P(d )=probability of traversing distance d in 4 days
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Small-world networks 
Physical models

■ Why do small-world networks form in the physical world? 
■ A model 
■ Each network has an associated “energy level” which the topology tries to 

minimize 
■ Define the energy level E as a weighted sum of two terms: 

E = λL + (1−λ)W 
where L is the average shortest distance in hops, W is the average Euclidian 
distance (in meters) and λ is a parameter between 0 and 1

37 © Babaoglu

Small-world networks 
Physical models

■ Varying λ from 0 to 1 
■ Optimization through “simulated annealing”

38

© Babaoglu
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Physical models

■ Varying λ from 0 to 1 
■ Allow the nodes to move in physical space using a “spring” algorithm
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Small-world networks 
Physical models

(a) Commuter rail network in the Boston area 
(b) Star graph 
(c) Minimum spanning tree 
(d) The model applied to the same set of stations
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