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Clustered models

■ How to extend the ER model to be a better predictor of real network properties 
■ First, address the poor prediction of clustering 
■ ER model ignorant of current network structure in adding edges — all edges 

have exactly the same probability of appearing in the network regardless of their 
position 

■ In real networks, the formation of edges is often highly biased 
■ Bias towards connecting friends of friends
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Clustered models

■ In social networks, people introduce their friends to each other 
■ People that have common friends have more occasions to meet each other and 

become friends themselves  — triadic closure 
■ People who have common friends often also have common interests — 

homophily 
■ First idea: select edges randomly, but with a bias towards friends of friends 
■ The more common neighbors two nodes share, the more likely they will be 

connected
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Clustered models 

The ! model

■ Bias the connections towards nodes that have common neighbors 
■ For some arbitrary pair of nodes, let x denote the number of neighbors they 

currently have in common 
■ Let y be the probability of adding an edge between a pair of nodes that have x 

common neighbors 
■ Assume that y�p + (x/n)α  for some constants p and α
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Clustered models 

The ! model
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Clustered models 

The ! model
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Clustered models 

The ! model

■ The model needs to be “tuned” (setting α) and is able to achieve high clustering 
■ Get small diameter “for free”
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Clustered models 
Watts-Strogatz

■ Start with a highly regular network capturing relations that correspond to 
geographic, social proximity 

■ Such a network typically has high clustering but large diameter 
■ Idea (“rewire”): replace (a few) local edges with random “long distance” (short-

cut) edges corresponding to occasional contacts outside of usual social circles 
■ A balanced set of “local” and “long distance” edges may exhibit high clustering 

while reducing the diameter
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Clustered models 
Watts-Strogatz

■ Start with a K-regular lattice (ring, grid, cube, etc.) where each node is 
connected to its K nearest neighbors 

■ Example: n=8, K=4
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Clustered models 
Watts-Strogatz

■ Clustering coefficient is 0.5 while the diameter is order n (need to go half-way 
around the ring) 

■ “Rewire” with probability q to a random node (no duplicates, no self edges)
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Clustered models 
Watts-Strogatz

■ Clustering coefficient is 0.5 while the diameter is order n (need to go half-way 
around the ring) 

■ “Rewire” with probability q to a random node (no duplicates, no self edges)
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■ NetLogo Library/Networks/Small Worlds and “SmallWorldWS”
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Clustered models 
Watts-Strogatz

■ As the rewiring probability q increases from 0 to 1, we get more and more 
random networks passing through a region called “small-world” networks
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Rewiring networks from
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Clustered models 
Watts-Strogatz

■ Origin of small-world networks 
■ Diameter is governed by the number of random shortcuts (qn) 
■ Clustering is governed by the fraction of random shortcuts (q) 
■ Fact: roughly 5 random shortcuts reduce average path length by factor of 2, 

independent of n 
■ For large n, a small number of random shortcuts will reduce the diameter 

substantially while leaving clustering mostly unchanged
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Path Length and Clustering
vs. Random Rewiring
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Clustered models 
Watts-Strogatz

■ Just like the α model, Watts-Strogatz needs to be “tuned” by setting the rewire 
probability q
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Clustered models 
Watts-Strogatz

■ Clustering coefficient of K-regular lattice is 
■ Converges to 3/4 in the limit for large K 
■ Average path length for a d-dimensional hypercube scales as n1/d which grows 

much faster than logarithmic 
■ For the WS model, the clustering coefficient is  

■ While the average path length is 

where f(qKn) is a universal scaling function
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