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Clustered models

How to extend the ER model to be a better predictor of real network properties
First, address the poor prediction of clustering

ER model ignorant of current network structure in adding edges — all edges
have exactly the same probability of appearing in the network regardless of their
position

In real networks, the formation of edges is often highly biased

Bias towards connecting friends of friends

Clustered models

In social networks, people introduce their friends to each other

People that have common friends have more occasions to meet each other and
become friends themselves — triadic closure

People who have common friends often also have common interests —
homophily

First idea: select edges randomly, but with a bias towards friends of friends

The more common neighbors two nodes share, the more likely they will be
connected

Clustered models
The a model

Bias the connections towards nodes that have common neighbors

For some arbitrary pair of nodes, let x denote the number of neighbors they
currently have in common

Let y be the probability of adding an edge between a pair of nodes that have x
common neighbors

Assume that y ~ p + (x/n)* for some constants p and a
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= The model needs to be “tuned” (setting &) and is able to achieve high clustering
= Get small diameter “for free”
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Start with a highly regular network capturing relations that correspond to
geographic, social proximity

Such a network typically has high clustering but large diameter

Idea (‘rewire”): replace (a few) local edges with random “long distance” (short-
cut) edges corresponding to occasional contacts outside of usual social circles

A balanced set of “local” and “long distance” edges may exhibit high clustering
while reducing the diameter
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= Start with a K-regular lattice (ring, grid, cube, etc.) where each node is
connected to its K nearest neighbors

= Example: n=8, K=4
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= Clustering coefficient is 0.5 while the diameter is order n (need to go half-way
around the ring)
= “Rewire” with probability ¢ to a random node (no duplicates, no self edges)

Clustered models
Watts-Strogatz

= Clustering coefficient is 0.5 while the diameter is order n (need to go half-way
around the ring)
= “Rewire” with probability ¢ to a random node (no duplicates, no self edges)

= NetlLogo Library/Networks/Small Worlds and *SmalWorldWs”
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= As the rewiring probability ¢ increases from O to 1, we get more and more
random networks passing through a region called “small-world” networks

Regular Small-world Random
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= Origin of small-world networks

= Diameter is governed by the number of random shortcuts (gn)
= Clustering is governed by the fraction of random shortcuts (q)
= Fact: roughly 5 random shortcuts reduce average path length by factor of 2,

independent of n

= For large n, a small number of random shortcuts will reduce the diameter
substantially while leaving clustering mostly unchanged
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= Just like the a model, Watts-Strogatz needs to be “tuned” by setting the rewire
probability ¢
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® Clustering coefficient of K-regular lattice is ———==
= Converges to 3/4 in the limit for large K

= Average path length for a d-dimensional hypercube scales as nld which grows

4K -1)

much faster than logarithmic
= For the WS model, the clustering coefficient is

3K(K - 1)
2K(2K — 1) + 8gK? + 4¢> K>

= While the average path length is

1/d
= flgkn)

where f(gKn) is a universal scaling function
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