Why model?

Network Science: Erdős-Rényi Model for Network Formation

Ozalp Babaoglu Dipartimento di Informatica — Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/

• Simpler representation of possibly very complex structures

- Can gain insight into how networks *form* and how they *grow*
- May allow mathematical derivation of certain properties
- Can serve to "explain" certain properties observed in real networks
- Can predict new properties or outcomes for networks that do not even exist
- Can serve as benchmarks for evaluating real networks

Modeling approaches

- Random models choices independent of current network structure
- Erdős-Rényi (ER)
- Watts-Strogatz (clustered)
- Strategic models choices depend on current network structure
- Barabási-Albert (preferential attachment)
- Limited knowledge models choices based on local information only
- Newscast
- Cyclone

C Babacoli

Erdős-Rényi model

- Network is undirected
- Start with all isolated nodes (no edges) and add edges between pairs of nodes one at a time randomly
- Perhaps the simplest (dumbest) possible model
- Very unlikely that real networks actually form like this (certainly not social networks)
- Yet, can predict a surprising number of interesting properties
- Two possible choices for adding edges randomly:
- Randomize edge presence or absence
- Randomize node pairs

© Babaoglu

© Babaoo

Erdős-Rényi model Degree distribution

- Need to quantify the probability that a node has degree k for all $0 \le k \le (n-1)$
- A node has degree zero if all coin flips are "tails"
- A node has degree (n-1) if all coin flips are "heads"
- For a node to have degree k, the (n-1) coin flips must have resulted in k "heads" and (n-1-k) "tails"
- Since the probability of a "heads" is p, the probability of a "tails" is (1-p)

Erdős-Rényi model Degree distribution

• The outcome "k "heads" and (n-1-k) "tails"" occurs with probability

 $p^k(1-p)^{n-1-k}$

- Since the order of the flip results does not matter, there are several ways for this outcome to occur
- In fact, there are exactly "(n-1) choose k" ways in which this outcome can occur
- Thus, the probability that a given node has degree k is given by the Binomial distribution $\binom{n-1}{k}p^k(1-p)^{n-1-k}$

Erdős-Rényi model Binomial distribution

Mean of the binomial distribution is µ=p(n-1) (which is also the average node degree we saw earlier)

Erdős-Rényi model Binomial distribution—approximations

C Babaoo

 $\binom{n-1}{k}p^k(1-p)^{n-1-k}$

 $\frac{\frac{\mu^k e^{-\mu}}{k!}}{\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(k-\mu)^2}{2\sigma^2}}}$

© Babaoglu

C Babaoo

Erdős-Rényi model Erdős-Rényi model **Binomial distribution Binomial distribution** • Degree distribution of random network with n=50, p=0.08• Random network with n=50, p=0.080.25 ---- Actual data Poisson approximation 0.2 C Babao © Baba Erdős-Rényi model Erdős-Rényi model Randomize node pairs **Binomial distribution** Exponential decay Alternative method for adding edges randomly Two parameters U=0 $\sigma^2=10$ $= 0. \sigma^2 = 5.0.$ • Number of nodes: *n* $\sigma^2 = 0.5$ 0.3 • Number of edges: m Pick a pair of nodes at random among the *n* nodes and add an edge between 0.3 them if not already present • Repeat until exactly *m* edges have been added • Also known as the "G(n, m) model" (graph on n nodes with m edges) • For large *n*, the two versions of ER are equivalent Normal distribution with different Poisson distribution means and standard deviations with different means © Babaoo C Babaoo

Erdős-Rényi model Randomize node pairs

• Example: n=5, m=4

- The two versions of the model are related through the equation for the number of edges: m = pn(n-1)/2
- In the first case we pick p, and m is established by the model
- In the second case we pick m, and p is established by the model
- The above example corresponds to the second case where $p=2m/n(n-1)=2\times4/(5\times4)=0.4$

Erdős-Rényi model vs real networks Degree distribution

- The ER model is a poor predictor of *degree distribution* compared to real networks
- The ER model results in Poisson degree distributions that have exponential decay
- Whereas most real networks exhibit power-law degree distributions that decay much slower than exponential

Erdős-Rényi diameter

- Recall that the diameter of a network is the longest shortest path between pairs of nodes
- Equivalently, the average distance between two randomly selected nodes
- In a connected network with n nodes, the diameter is in the range 1 (completely connected) to n-1 (linear chain)
- For a given n as we vary the model parameter p from 0 to 1, at some critical value of p, the diameter becomes finite (network becomes connected) and continues to decrease, becoming 1 when p=1
- What is the relation between the diameter and *p* in the region where the network is connected?

Erdős-Rényi diameter

- Suppose the model results in a tree-structured network of nodes with identical degrees, all equal to the mean *z=p(n-1)*
- Starting from a given node, how many nodes can we reach in ℓ steps?

© Babao

© Babao

At step 1, reach z nodes then, reach z(z-1) new nodes then, reach $z(z-1)^2$ new nodes

the number of new nodes reached grows exponentially with steps

© Babaoglu

Erdős-Rényi diameter	Erdős-Rényi diameter
 After ℓ steps, we have reached a total of z + z(z - 1) + z(z - 1)² ++ z(z - 1)^{ℓ-1} nodes, which is z((z - 1)^ℓ - 1) / (z - 2) which is roughly (z - 1)^ℓ How many steps are required to reach (n - 1) nodes? 	 The diameter will be roughly twice log(n)/log(z) Confirms the empirical data we observed in real networks Can be shown to hold for the general ER model without the strong assumptions In reality, not all nodes have the same degree In reality, not tree-structured (there could be backwards edges) Proof based on a weaker set of conditions n large z ≥ (1 - ε)log(n) for some ε>0 (connected)
 (z − 1)^ℓ = (n − 1) Solving for ℓ we conclude has to be on the order of log(n)/log(z) 	• $z/n \rightarrow 0$ (but not too connected)
D Bahangju	21 © Bataloglu
Erdős-Rényi model vs real networks	Erdős-Rényi clustering coefficient
Erdős-Rényi model vs real networks	Erdős-Rényi clustering coefficient • Recall <i>clustering coefficient</i> of a node: probability that two randomly selected <i>friends</i> of it are friends themselves Is the edge present?
Erdős-Rényi model vs real networks Diameter The ER model is a good predictor of <i>diameter</i> and <i>average path length</i> compared to real networks The model results in networks with small diameters, capturing very well the	Erdős-Rényi clustering coefficient • Recall <i>clustering coefficient</i> of a node: probability that two randomly selected <i>friends</i> of it are friends themselves Is the edge present?

Erdős-Rényi giant component Tipping point

- Note that at edge density ho, the expected node degree is

 $\rho(n-1) \sim \rho n$ for large n

- Run the NetLogo Library/Networks/GiantComponent simulation
- In the ER model, giant components start forming at very low values of edge density
- For large n, we can show that
- If ho < 1/n, the probability of a giant component tends to 0
- If ρ > 1/n, the probability of a giant component tends to 1 and all other components have size at most log(n)
- At the tipping point ho=1/n, the average node degree is ho n=1
- Network is very sparse but ER uses edges very efficiently

© Babaoglu

Erdős-Rényi giant component Tipping point

- Why is it very unlikely that two large components form?
- Run the NetLogo ErdosRenyiTwoComponents simulation
- Suppose two large components containing roughly half the nodes each do form in the ER model

Erdős-Rényi giant component Tipping point

- How many potential edges are missing?
- The number of cross component edges is $\sim n/2 \times n/2 = n^2/4$
- Compare to the total number of possible edges: n(n-1)/2
- In other words, more than half of all possible edges are missing
- Selecting a new edge to add that is *not* one of the missing "cross edges" becomes increasingly more unlikely
- Imagine enrolling 10,000 friends to Facebook asking them to keep their friendships strictly among themselves
- Impossible to maintain since all it takes is just one of the 10,000 to make one external friendship

Erdős-Rényi giant component Tipping point

- In those rare cases where two giant components have co-existed for a long time, their merger is sudden and often dramatic
- Imagine the arrival of the first Europeans in the Americas some 500 years ago
- Until then, the global socio-economic-technological network likely consisted of two giant components — one for the Americas, another for Europe-Asia
- In the two components, not only technology, but also human diseases developed independently
- When they came in contact, the results were disastrous

© Babaoo

© Babaoglu

Erdős-Rényi diameter Tipping point

- In the ER model, emergence of small diameter is also sudden and has a tipping point
- For large n, we can show that
- If $ho < n^{-5/6}$, the probability of the network having diameter 6 or less tends to 0
- If $ho>n^{-5/6}$, the probability of the network having diameter 6 or less tends to 1
- For the US, n=300M and the tipping point is $\rho n \sim 25.8$
- For the world, n=7B and the tipping point is $\rho n \sim 43.7$

Erdős-Rényi Other tipping points

- In fact, we can prove a much more general result
- In the ER model, any *monotone* property of the network has a tipping point
- In networks, a property is *monotone* if it continues to hold as we add more edges to the network
- Examples of monotone properties:
 - The network has a giant component
 - The diameter of the network is at most k
- The network contains a cycle of length at most k
- The network contains at most k isolated nodes
- The network contains at least k triangles

© Babaoo

Erdős-Rényi Summary

- The ER model is able explain
- Small diameter, path lengths
- Giant components
- The ER model *is not* able explain
- Degree distributions
- Clustering

© Babaoglu

© Babaook