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Why model?

■ Simpler representation of possibly very complex structures 
■ Can gain insight into how networks form and how they grow 
■ May allow mathematical derivation of certain properties 
■ Can serve to “explain” certain properties observed in real networks 
■ Can predict new properties or outcomes for networks that do not even exist 
■ Can serve as benchmarks for evaluating real networks
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Modeling approaches

■ Random models — choices independent of current network structure 
■ Erdős-Rényi (ER) 
■ Watts-Strogatz (clustered) 
■ Strategic models — choices depend on current network structure 
■ Barabási-Albert (preferential attachment) 
■ Limited knowledge models — choices based on local information only 
■ Newscast 
■ Cyclone
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Erdős-Rényi model

■ Network is undirected 
■ Start with all isolated nodes (no edges) and add edges between pairs of nodes 

one at a time randomly 
■ Perhaps the simplest (dumbest) possible model 
■ Very unlikely that real networks actually form like this (certainly not social 

networks) 
■ Yet, can predict a surprising number of interesting properties 
■ Two possible choices for adding edges randomly: 
■ Randomize edge presence or absence 
■ Randomize node pairs
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Erdős-Rényi model 
Randomize edge presence/absence

■ Two parameters 
■ Number of nodes: n 
■ Probability that an edge is present: p 
■ For each of the n(n−1)/2 possible edges in the network, flip a (biased) coin that 

comes up “heads” with probability p 
■ If coin flip is “heads”, then add the edge to the network 
■ If coin flip is “tails”, then don’t add the edge to the network 
■ Also known as the “G(n, p) model” (graph on n nodes with probability p)
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Erdős-Rényi model 
Randomize edge presence/absence

■ Example: n=5, p=0.6
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■ Number of possible edges: n(n−1)/2=5×4/2=10

■ Ten flips of a coin that comes up heads 60%, tails 40%
ꊴ ꋀ ꋀ ꊴ ꊴ ꋀ ꊴ ꊴꋀ

■ Add the edges corresponding to the “heads” outcomes
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Erdős-Rényi model 
Randomize edge presence/absence

■ Expected mean node degree: p(n−1) 
■ What about node degree distribution?
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Erdős-Rényi model 
Degree distribution

■ Expected mean node degree: p(n−1)=0.6×4=2.4 
■ Observed mean node degree: (3+3+2+2+0)/5=2.0 
■ Distribution
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Erdős-Rényi model 
Degree distribution

■ Need to quantify the probability that a node has degree k for all    0 ≤ k ≤ (n−1) 
■ A node has degree zero if all coin flips are “tails” 
■ A node has degree (n−1) if all coin flips are “heads” 
■ For a node to have degree k, the (n−1) coin flips must have resulted in k “heads” 

and (n−1−k) “tails” 
■ Since the probability of a “heads” is p, the probability of a “tails” is (1−p)
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Erdős-Rényi model 
Degree distribution

■ The outcome “k “heads” and (n−1−k) “tails”” occurs with probability 

■ Since the order of the flip results does not matter, there are several ways for this 
outcome to occur 

■ In fact, there are exactly “(n−1) choose k” ways in which this outcome can occur 
■ Thus, the probability that a given node has degree k is given by the Binomial 

distribution
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Erdős-Rényi model 
Binomial distribution

■ Mean of the binomial distribution is µ=p(n−1) (which is also the average node 
degree we saw earlier)
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n=8, p=0.5 n=8, p=0.1
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Erdős-Rényi model 
Binomial distribution—approximations

Binomial

Poisson

Normal (Gaussian)

for p small

for n large
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Erdős-Rényi model 
Binomial distribution

■ Random network with n=50, p=0.08
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Random�Network
p=.08,�50�nodes
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Erdős-Rényi model 
Binomial distribution

■ Degree distribution of random network with n=50, p=0.08
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Actual data
Poisson approximation
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Normal distribution with different 
means and standard deviations

Erdős-Rényi model 
Binomial distribution

µ

Poisson distribution 
with different means

Exponential decay
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Erdős-Rényi model 
Randomize node pairs

■ Alternative method for adding edges randomly 
■ Two parameters 
■ Number of nodes: n 
■ Number of edges: m 
■ Pick a pair of nodes at random among the n nodes and add an edge between 

them if not already present 
■ Repeat until exactly m edges have been added 
■ Also known as the “G(n, m) model” (graph on n nodes with m edges) 
■ For large n, the two versions of ER are equivalent
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Erdős-Rényi model 
Randomize node pairs

■ The two versions of the model are related through the equation for the number of edges:  
m=pn(n−1)/2 

■ In the first case we pick p, and m is established by the model 
■ In the second case we pick m, and p is established by the model 
■ The above example corresponds to the second case where 

p=2m/n(n−1)=2×4/(5×4)=0.4
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■ Example: n=5, m=4
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Erdős-Rényi model vs real networks 
Degree distribution

■ The ER model is a poor predictor of degree distribution compared to real 
networks 

■ The ER model results in Poisson degree distributions that have exponential 
decay 

■ Whereas most real networks exhibit power-law degree distributions that decay 
much slower than exponential
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Erdős-Rényi diameter

■ Recall that the diameter of a network is the longest shortest path between pairs of nodes 
■ Equivalently, the average distance between two randomly selected nodes 
■ In a connected network with n nodes, the diameter is in the range 1 (completely connected) to 

n−1 (linear chain) 
■ For a given n as we vary the model parameter p from 0 to 1, at some critical value of p, the 

diameter becomes finite (network becomes connected) and continues to decrease, becoming 
1 when p=1 

■ What is the relation between the diameter and p in the region where the network is connected?
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Erdős-Rényi diameter
■ Suppose the model results in a tree-structured network of nodes with identical degrees, all equal to 

the mean z=p(n−1) 
■ Starting from a given node, how many nodes can we reach in ! steps?
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At step 1, reach z nodes

then, reach z(z−1) new nodes

then, reach z(z−1)2 new nodes
…

the number of new nodes reached 
grows exponentially with steps
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Erdős-Rényi diameter

■ After ! steps, we have reached a total of 

z + z(z − 1) + z(z − 1)2 + …+ z(z − 1)!−1 

■ nodes, which is 

z((z − 1)! − 1) / (z − 2) 

■ which is roughly (z − 1)! 

■ How many steps are required to reach (n − 1) nodes? 

(z − 1)! = (n − 1)  

■ Solving for ! we conclude has to be on the order of log(n)/log(z)
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Erdős-Rényi diameter

■ The diameter will be roughly twice log(n)/log(z) 
■ Confirms the empirical data we observed in real networks 
■ Can be shown to hold for the general ER model without the strong assumptions 
■ In reality, not all nodes have the same degree 
■ In reality, not tree-structured (there could be backwards edges) 

■ Proof based on a weaker set of conditions 
■ n large 
■ z ≥ (1 − ε)log(n)  for some ε>0 (connected) 
■ z/n → 0 (but not too connected)
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Erdős-Rényi model vs real networks 
Diameter

■ The ER model is a good predictor of diameter and average path length 
compared to real networks 

■ The model results in networks with small diameters, capturing very well the 
“small-world” property observed in many real networks
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Is the edge present?

Erdős-Rényi clustering coefficient

■ Recall clustering coefficient of a node: probability that two randomly selected 
friends of it are friends themselves
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■ In the ER model, an edge between any two nodes is present with probability p (independent 
of their context) 

■ So, the clustering coefficient of the ER random network is equal to p
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Erdős-Rényi clustering coefficient

■ Example: n=5, p=0.6
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■ CC=(0+1+1+2/3+2/3)/5=0.6667 
■ Compare with p which is 0.6
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Erdős-Rényi clustering coefficient

■ Recall edge density of a network: actual number of edges in proportion to the 
maximum possible number of edges 

■ In the ER model, on average, pn(n−1)/2 edges are added, thus m=pn(n−1)/2 
■ Edge density of ER network: 

■ Since the edge density is exactly equal to the background probability of triangles 
being closed, the networks produced by the ER model cannot be considered 
highly clustered
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Erdős-Rényi model vs real networks 
Clustering coefficient

■ The ER model is a poor predictor of clustering compared to real networks 
■ The model results in clustering coefficients that are too small and too close to 

the edge density 
■ Whereas most real networks are often highly clustered with  clustering 

coefficients that are much greater (sometimes several orders of magnitude) than 
their edge densities
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Erdős-Rényi giant component

■ Suppose we add edges randomly with probability p 
■ If p=0, no edges added, so edge density of the network is 0 
■ As p tends towards 1, the edge density tends towards 1 
■ In fact, for the ER model, edge density follows the edge probability exactly 
■ What structural properties are likely at a given density !? 
■ When do certain structures emerge as a function of !? 
■ Many interesting properties occur at small densities 
■ And they occur very suddenly (tipping points)

28



© Babaoglu

Erdős-Rényi giant component 
Tipping point

■ Note that at edge density !, the expected node degree is 
!(n−1)�!n for large n 

■ Run the NetLogo Library/Networks/GiantComponent simulation 
■ In the ER model, giant components start forming at very low values of edge density 
■ For large n, we can show that 
■ If ! < 1/n, the probability of a giant component tends to 0 
■ If ! > 1/n, the probability of a giant component tends to 1 and all other components have 

size at most log(n) 
■ At the tipping point !=1/n, the average node degree is !n=1  
■ Network is very sparse but ER uses edges very efficiently
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Erdős-Rényi giant component 
Tipping point

■ Why is it very unlikely that two large components form? 
■ Run the NetLogo ErdosRenyiTwoComponents simulation 
■ Suppose two large components containing roughly half the nodes each do form 

in the ER model
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edges
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Erdős-Rényi giant component 
Tipping point

■ How many potential edges are missing? 
■ The number of cross component edges is �n/2×n/2=n2/4 
■ Compare to the total number of possible edges: n(n−1)/2 
■ In other words, more than half of all possible edges are missing 
■ Selecting a new edge to add that is not one of the missing “cross edges” 

becomes increasingly more unlikely 
■ Imagine enrolling 10,000 friends to Facebook asking them to keep their 

friendships strictly among themselves 
■ Impossible to maintain since all it takes is just one of the 10,000 to make one 

external friendship
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Erdős-Rényi giant component 
Tipping point

■ In those rare cases where two giant components have co-existed for a long 
time, their merger is sudden and often dramatic 

■ Imagine the arrival of the first Europeans in the Americas some 500 years ago 
■ Until then, the global socio-economic-technological network likely consisted of 

two giant components — one for the Americas, another for Europe-Asia 
■ In the two components, not only technology, but also human diseases 

developed independently 
■ When they came in contact, the results were disastrous
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Erdős-Rényi diameter 
Tipping point

■ In the ER model, emergence of small diameter is also sudden and has a tipping 
point 

■ For large n, we can show that 
■ If ! < n−5/6, the probability of the network having diameter 6 or less tends to 0 
■ If ! > n−5/6, the probability of the network having diameter 6 or less tends to 1 

■ For the US, n=300M and the tipping point is !n�25.8 
■ For the world, n=7B and the tipping point is !n�43.7
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Erdős-Rényi 
Other tipping points

■ In fact, we can prove a much more general result 
■ In the ER model, any monotone property of the network has a tipping point 
■ In networks, a property is monotone if it continues to hold as we add more 

edges to the network 
■ Examples of monotone properties: 
■ The network has a giant component 
■ The diameter of the network is at most k 
■ The network contains a cycle of length at most k 
■ The network contains at most k isolated nodes 
■ The network contains at least k triangles
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Erdős-Rényi 
Summary

■ The ER model is able explain 
■ Small diameter, path lengths 
■ Giant components 
■ The ER model is not able explain 
■ Degree distributions 
■ Clustering
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