Network Science: Erdős-Rényi Model for Network Formation

Ozalp Babaoglu
Dipartimento di Informatica - Scienza e Ingegneria
Università di Bologna
uww.cs.unibo.it/babaoglu/

Modeling approaches

- Random models - choices independent of current network structure
- Erdős-Rényi (ER)
- Watts-Strogatz (clustered)
- Strategic models - choices depend on current network structure
- Barabási-Albert (preferential attachment)
- Limited knowledge models - choices based on local information only
- Newscast
- Cyclone

Why model?

- Simpler representation of possibly very complex structures
- Can gain insight into how networks form and how they grow
- May allow mathematical derivation of certain properties
- Can serve to "explain" certain properties observed in real networks
- Can predict new properties or outcomes for networks that do not even exist
- Can serve as benchmarks for evaluating real networks

Erdős-Rényi model

- Network is undirected
- Start with all isolated nodes (no edges) and add edges between pairs of nodes one at a time randomly
- Perhaps the simplest (dumbest) possible model
- Very unlikely that real networks actually form like this (certainly not social networks)
- Yet, can predict a surprising number of interesting properties
- Two possible choices for adding edges randomly:
- Randomize edge presence or absence
- Randomize node pairs

Erdős-Rényi model

Randomize edge presence/absence

- Two parameters
- Number of nodes: n
- Probability that an edge is present: p
- For each of the $n(n-1) / 2$ possible edges in the network, flip a (biased) coin that comes up "heads" with probability p
- If coin flip is "heads", then add the edge to the network
- If coin flip is "tails", then don't add the edge to the network
- Also known as the " $G(n, p)$ model" (graph on n nodes with probability p)
\qquad

Erdős-Rényi model Randomize edge presence/absence

- Expected mean node degree: $p(n-1)$
- What about node degree distribution?

Erdős-Rényi model

Randomize edge presence/absence

- Example: $n=5, p=0.6$

- Number of possible edges: $n(n-1) / 2=5 \times 4 / 2=10$
- Ten flips of a coin that comes up heads 60%, tails 40%
(1)
(1) $\oplus(H$
$(\mathbb{H})(4)$
$\mathbb{(1)} \oplus \mathbb{H}$
- Add the edges corresponding to the "heads" outcomes
\qquad

Erdős-Rényi model
Degree distribution

- Expected mean node degree: $p(n-1)=0.6 \times 4=2.4$
- Observed mean node degree: $(3+3+2+2+0) / 5=2.0$
- Distribution

Erdős-Rényi model Degree distribution

- Need to quantify the probability that a node has degree k for all $0 \leq k \leq(n-1)$
- A node has degree zero if all coin flips are "tails"
- A node has degree $(n-1)$ if all coin flips are "heads"
- For a node to have degree k, the ($n-1$) coin flips must have resulted in k "heads" and ($n-1-k$) "tails"
- Since the probability of a "heads" is p, the probability of a "tails" is ($1-p$)

Erdős-Rényi model Binomial distribution

- Mean of the binomial distribution is $\mu=p(n-1)$ (which is also the average node degree we saw earlier)

Erdős-Rényi model
 Degree distribution

- The outcome " k "heads" and ($n-1-k$) "tails"" occurs with probability

$$
p^{k}(1-p)^{n-1-k}
$$

- Since the order of the flip results does not matter, there are several ways for this outcome to occur
- In fact, there are exactly "($n-1$) choose k " ways in which this outcome can occur
- Thus, the probability that a given node has degree k is given by the Binomial distribution

$$
\binom{n-1}{k} p^{k}(1-p)^{n-1-k}
$$

\qquad

Erdős-Rényi model Binomial distribution-approximations

$$
\begin{array}{cc}
\begin{array}{c}
\text { Binomial } \\
\text { for } p \text { smal }
\end{array} & \binom{n-1}{k} p^{k}(1-p)^{n-1-k} \\
\begin{array}{c}
\text { Poisson } \\
\text { for n large }
\end{array} & \frac{\mu^{k} e^{-\mu}}{k!} \\
\text { Normal (Gaussian) } & \frac{1}{\sigma \sqrt{2 \pi}} e^{-} \frac{(k-\mu)^{2}}{2 \sigma^{2}}
\end{array}
$$

Erdős-Rényi model
 Binomial distribution

- Random network with $n=50, p=0.08$

Erdős-Rényi model
Binomial distribution

Poisson distribution
with different means

Exponential decay

Normal distribution with different means and standard deviations

Erdős-Rényi model

Binomial distribution

- Degree distribution of random network with $n=50, p=0.08$

\qquad

Erdős-Rényi model Randomize node pairs

- Alternative method for adding edges randomly
- Two parameters
- Number of nodes: n
- Number of edges: m
- Pick a pair of nodes at random among the n nodes and add an edge between them if not already present
- Repeat until exactly m edges have been added
- Also known as the " $G(n, m)$ model" (graph on n nodes with m edges)
- For large n, the two versions of ER are equivalent

Erdős-Rényi model
 Randomize node pairs

- Example: $n=5, m=4$

- The two versions of the model are related through the equation for the number of edges: $m=p n(n-1) / 2$
- In the first case we pick p, and m is established by the model
- In the second case we pick m, and p is established by the model
- The above example corresponds to the second case where $p=2 \mathrm{~m} / n(n-1)=2 \times 4 /(5 \times 4)=0.4$
\qquad

Erdős-Rényi diameter

- Recall that the diameter of a network is the longest shortest path between pairs of nodes
- Equivalently, the average distance between two randomly selected nodes
- In a connected network with n nodes, the diameter is in the range 1 (completely connected) to n-1 (linear chain)
- For a given n as we vary the model parameter p from 0 to 1 , at some critical value of p, the diameter becomes finite (network becomes connected) and continues to decrease, becoming 1 when $p=1$
- What is the relation between the diameter and p in the region where the network is connected?

Erdős-Rényi model vs real networks Degree distribution

- The ER model is a poor predictor of degree distribution compared to real networks
- The ER model results in Poisson degree distributions that have exponential decay
- Whereas most real networks exhibit power-law degree distributions that decay much slower than exponential
\qquad

Erdős-Rényi diameter

- Suppose the model results in a tree-structured network of nodes with identical degrees, all equal to the mean $z=p(n-1)$
- Starting from a given node, how many nodes can we reach in ℓ steps?

At step 1, reach z nodes
then, reach $z(z-1)$ new nodes
then, reach $z(z-1)^{2}$ new nodes
the number of new nodes reached
grows exponentially with steps

Erdős-Rényi diameter

- After ℓ steps, we have reached a total of
$z+z(z-1)+z(z-1)^{2}+\ldots+z(z-1)^{\ell-1}$
- nodes, which is
$z\left((z-1)^{\ell}-1\right) /(z-2)$
- which is roughly $(z-1)^{e}$
- How many steps are required to reach $(n-1)$ nodes?
$(z-1)^{\ell}=(n-1)$
- Solving for ℓ we conclude has to be on the order of $\log (n) / \log (z)$
\qquad

Erdős-Rényi model vs real networks Diameter

- The ER model is a good predictor of diameter and average path length compared to real networks
- The model results in networks with small diameters, capturing very well the "small-world" property observed in many real networks

Erdős-Rényi diameter

- The diameter will be roughly twice $\log (n) / \log (z)$
- Confirms the empirical data we observed in real networks
- Can be shown to hold for the general ER model without the strong assumptions
- In reality, not all nodes have the same degree
- In reality, not tree-structured (there could be backwards edges)
- Proof based on a weaker set of conditions
- n large
- $z \geq(1-\varepsilon) \log (n)$ for some $\varepsilon>0$ (connected)
- $z / n \rightarrow 0$ (but not too connected)
\qquad

Erdős-Rényi clustering coefficient

- Recall clustering coefficient of a node: probability that two randomly selected friends of it are friends themselves

- In the ER model, an edge between any two nodes is present with probability p (independent of their context)
- So, the clustering coefficient of the ER random network is equal to p

Erdős-Rényi clustering coefficient

- Example: $n=5, p=0.6$
- $C C=(0+1+1+2 / 3+2 / 3) / 5=0.6667$
- Compare with p which is 0.6
\qquad

Erdős-Rényi model vs real networks Clustering coefficient

- The ER model is a poor predictor of clustering compared to real networks
- The model results in clustering coefficients that are too small and too close to the edge density
- Whereas most real networks are often highly clustered with clustering coefficients that are much greater (sometimes several orders of magnitude) than their edge densities

Erdős-Rényi clustering coefficient

- Recall edge density of a network: actual number of edges in proportion to the maximum possible number of edges
- In the ER model, on average, $p n(n-1) / 2$ edges are added, thus $m=p n(n-1) / 2$
- Edge density of ER network:

$$
\rho=\frac{2 m}{n(n-1)}=\frac{2(p n(n-1) / 2)}{n(n-1)}=p
$$

- Since the edge density is exactly equal to the background probability of triangles being closed, the networks produced by the ER model cannot be considered highly clustered
\qquad

Erdős-Rényi giant component

- Suppose we add edges randomly with probability p
- If $p=0$, no edges added, so edge density of the network is 0
- As p tends towards 1 , the edge density tends towards 1
- In fact, for the ER model, edge density follows the edge probability exactly
- What structural properties are likely at a given density ρ ?
- When do certain structures emerge as a function of ρ ?
- Many interesting properties occur at small densities
- And they occur very suddenly (tipping points)

Erdős-Rényi giant component Tipping point

- Note that at edge density ρ, the expected node degree is
$\rho(n-1) \sim \rho n$ for large n
- Run the NetLogo Library/Networks/GiantComponent simulation
- In the ER model, giant components start forming at very low values of edge density
- For large n, we can show that
- If $\rho<1 / n$, the probability of a giant component tends to 0
- If $\rho>1 / n$, the probability of a giant component tends to 1 and all other components have size at most $\log (n)$
- At the tipping point $\rho=1 / n$, the average node degree is $\rho n=1$
- Network is very sparse but ER uses edges very efficiently
\qquad

Erdős-Rényi giant component Tipping point

- How many potential edges are missing?
- The number of cross component edges is $\sim n / 2 \times n / 2=n^{2} / 4$
- Compare to the total number of possible edges: $n(n-1) / 2$
- In other words, more than half of all possible edges are missing
- Selecting a new edge to add that is not one of the missing "cross edges" becomes increasingly more unlikely
- Imagine enrolling 10,000 friends to Facebook asking them to keep their friendships strictly among themselves
- Impossible to maintain since all it takes is just one of the 10,000 to make one external friendship

Erdős-Rényi giant component Tipping point

- Why is it very unlikely that two large components form?
- Run the NetLogo ErdosRenyiTwoComponents simulation
- Suppose two large components containing roughly half the nodes each do form in the ER model

Erdős-Rényi giant component Tipping point

- In those rare cases where two giant components have co-existed for a long time, their merger is sudden and often dramatic
- Imagine the arrival of the first Europeans in the Americas some 500 years ago
- Until then, the global socio-economic-technological network likely consisted of two giant components - one for the Americas, another for Europe-Asia
- In the two components, not only technology, but also human diseases developed independently
- When they came in contact, the results were disastrous
\qquad

Erdős-Rényi diameter Tipping point

- In the ER model, emergence of small diameter is also sudden and has a tipping point
- For large n, we can show that
- If $\rho<n^{-5 / 6}$, the probability of the network having diameter 6 or less tends to 0
- If $\rho>n^{-5 / 6}$, the probability of the network having diameter 6 or less tends to 1
- For the US, $n=300 \mathrm{M}$ and the tipping point is $\rho n \sim 25.8$
- For the world, $n=7 \mathrm{~B}$ and the tipping point is $\rho n \sim 43.7$

Erdős-Rényi Other tipping points

- In fact, we can prove a much more general result
- In the ER model, any monotone property of the network has a tipping point
- In networks, a property is monotone if it continues to hold as we add more edges to the network
- Examples of monotone properties:
- The network has a giant component
- The diameter of the network is at most k
- The network contains a cycle of length at most k
- The network contains at most k isolated nodes
- The network contains at least k triangles

Erdős-Rényi
 Summary

- The ER model is able explain
- Small diameter, path lengths
- Giant components
- The ER model is not able explain
- Degree distributions
- Clustering

