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Universal structural properties

■ Networks are typically very different at the microscopic level 
■ Are there macroscopic structural properties that are common to a large variety of 

real networks? 
■ Universal structural properties: 
■ Heavy-tailed degree distributions — “hubs”, “connectors” 
■ Small diameter — “six degrees of separation” 
■ Highly clustered — “friends of a friend are friends” 
■ Well connected — only one giant component 
■ Need to make precise the notions “heavy”, “small”, “highly” and “well” 
■ Examine real networks to support or refute the claims
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Degree distributions
■ Recall the Math Reviews co-authorship network 
■ 401,000 different authors (nodes) 
■ 676,000 edges 
■ Average number of co-authors per author is 3.36
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Heavy-tailed distributions

Properties of real networks: degree 
distribution

Nodes with small degrees are most frequent.
The fraction of highly connected nodes decreases, but is not zero.
Look closer: use a logarithmic plot.
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Heavy-tailed distributions

■ Nodes with small degree are most frequent 
■ Fraction of high-degree nodes decreases but much more slowly than what is 

predicted by the random models with Poisson or Normal degree distributions 
which decay exponentially 

■ Typical of networks that have a few hub or connector nodes with very high 
degree and many nodes with small degree 

■ What are the signatures of heavy-tailed distributions? 
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Plotting degree distributions

■ Examine closely two different forms for the distribution function: 
■ Exponential:   f(x)=c−x 
■ Power-law:    f(x)=cx−α 
■ Plot the two forms on different choices for the scales
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Plotting degree distributions
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Plotting degree distributions

■ A straight line on a log-log scale becomes the signature of power-law 
distributions 
f(x) = cx−α 

log( f(x)) = log(cx−α) 

log( f(x)) = log(c) + log(x−α) 

log( f(x)) = log(c) − αlog(x) 
■ If we plot log( f(x)) as a function of log(x), we obtain a straight line with slope −α
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Power-law distributions in the wild 
Math Reviews co-authorship

Erdos Number Project Revisited 
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Power-law distributions in the wild 
More co-authorshipsNetworks of science collaborations also 

have power-law degree distributions
Coauthor, neurosci.
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Coauthor, HEP
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M. E. J. Newman, Phys. Rev. E 64, 016131 (2001)

A.-L. Barabási et al., cond-mat/0104162 (2001)
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Power-law distributions in the wild 
Web, power grid

Actor Collaborations; Web; Power Grid [Barabasi and Albert] 

Web

Actor Collaborations; Web; Power Grid [Barabasi and Albert] 

Power grid
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Power-law distributions in the wild 
Internet routers, Actor collaborationPower-law degree distributions were found in  

diverse networks
Actor collaboration

331 ��| )k()k(P42.)( �| kkP

A.-L. Barabási, R. Albert, Science 286, 509 (1999)

R. Govindan, H. Tangmunarunkit, IEEE Infocom (2000)

Internet, router level
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Power-law distributions in the wild 
Web graph

Figures 3 and 4: In- and out-degree distributions show a remarkable similarity over two crawls, run in May and
October 1999. Each crawl counts well over 1 billion distinct edges of the web graph.

Undirected connected components.  In the next set of experiments we treat the web graph as an undirected graph
and find the sizes of  the undirected components. We find a giant component of 186 million nodes in which fully
91% of the nodes in our crawl are reachable from one another by following either forward or backward links. This
is done by running the WCC algorithm which simply finds all connected components in the undirected web graph.
Thus, if one could browse along both forward and backward directed links, the web is a very well connected
graph.   Surprisingly, even the distribution of the sizes of WCC's exhibits a power law with exponent roughly 2.5
(Figure 5).

 

Figures 5 and 6: Distribution of  weakly connected components  and strongly connected components on the web.
The sizes of these components also follow a power law.

Does this widespread connectivity result from a few nodes of large in-degree acting as "junctions"?  Surprisingly,

Graph structure in the web

http://www9.org/w9cdrom/160/160.html (7 de 15) [28/10/2003 18:08:36]
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Power-law distributions in the wild 
Metabolic networks

Metabolic networks have a power-law 
degree distribution

H. Jeong et al., Nature 407, 651 (2000)

Archaeoglobus f. E. coli

C. elegans

bipartite

nodes: metabolites,

reactions 

directed edges, 

out: reactant (substrate) 

in: product of reaction
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Power-laws and popularity

■ Power-laws arise in many settings other than degree distributions 
■ Popularity of actors, books, movies, songs, web pages are some examples 
■ Popularity is a phenomenon characterized by extreme imbalances due to 

network effects 
■ Result of positive feedback or reinforcement due to correlated decisions in a 

population 
■ The “rich-get-richer” phenomenon
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Popularity of Web pages

■ Use the number of in-edges as a measure of popularity 
■ As a function of k, what fraction of Web pages have k in-edges? 
■ Supposes pages decide independently and randomly to link to other pages 
■ Then, the total number of in-edges at a Web page would be the sum of (many) 

independent random quantities — the presence of absence of a link from other 
pages 

■ By the Central Limit Theorem, we would expect the distribution of the number of 
in-edges at a page to be normal (“bell curve”) 

■ In other words, the number of Web pages with k in-edges should decay 
exponentially as k grows large

16
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Rich-get-richer

■ Yet, for the Web, the fraction of pages that have k in-edges follows a power-law 
and is approximately proportional to k−2 

■ The fraction of cities with population k is roughly k−c 
■ The fraction of books that have sold k copies is roughly k−c 
■ Switching from “blockbuster” view to “niche” view, a power-law function remains 

power-law 
■ The fraction of songs that have been downloaded k times is roughly k−c 
■ The number of times that the k-th most popular song has been downloaded is roughly 

k−c
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Rich-get-richer 
iPhone app popularity

iPhone App Popularity iPhone App Popularity 
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Rich-get-richer

■ Once the rich-get-richer process gets going, the dynamics of popularity 
continue to enforce it 

■ But, how does the process get ignited in the first place? 
■ During the early phases, the process is very sensitive to unpredictable 

fluctuations 
■ What would happen if we could roll-back time and repeat history? 
■ Reasonable to expect popularity to obey power-law in each instance 
■ But not necessarily with the same ranking of popularity
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Rich-get-richer

■ Difficult to roll back time and repeat history 
■ But, we can conduct experiments to see what happens 
■ Salgankik, Dodds, and Watts designed such an experiment 
■ Created fake music download site populated with 48 obscure songs written by 

real groups 
■ Visitors could listen to the songs, see their “download count” and download 

them it they wanted to

20
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Rich-get-richer

■ In reality, there were 8 “parallel” copies of the site and each visitor was assigned 
to one at random on arrival 

■ The parallel sites started out in identical states with the same list of 48 songs but 
evolved independently 

■ In the end, the relative popularity of the 48 songs varied considerably among the 
8 sites (although the “best” songs were never in the bottom and “worst” songs 
were never in the top) 

■ Some users were directed to a 9th site that had no “feedback” through 
download counters 

■ In this site, there was significantly less variation among the popularities of the 48 
songs
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Scale-free networks

■ Networks with degree distributions that are described by power-laws are also 
called scale-free 

■ A function f(x) is called scale-free if 
f(bx) = C(b)⋅f(x) 
where C(b) is some constant that depends only on b 

■ In other words, the overall form of the function does not change when 
considering values for x that are a factor b larger 

■ Related to fractals in mathematics

22
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Scale-free networks

■ Power-law distributions are scale-free 
■ Let f(x) be a power-law function: f(x)=cx−α 

f(bx) = c(bx)−α = b−α c x−α= C(b)⋅f(x)
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that are a factor b larger. As it turns out, power-law distributions obey this
property, i.e., if f (x) = x�a, we find that

f (bx) = (bx)�a = b�a
· x�a = b�a f (x)

This can be nicely illustrated by our example scale-free graph G from Figure 7.8.
Figure 7.9 shows the degree distribution for nodes ranked between position 10
and 100, and between 100 and 1000, respectively. What is immediately clear
is that the form of the degree distribution is almost the same, i.e., independent
of the range of rankings we consider. This aspect is characteristic for scale-free
distributions.
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Figure 7.9: The degree distribution of nodes ranked between (a) 10 and 100,
and (b) between 100 and 1000.

ER random networks have been defined as graphs where there is a prob-
ability that two vertices are adjacent. Watts-Strogatz networks are con-
structed by rewiring edges, that is, changing a well-structured graph by
probabilistically repositioning its current edges between different vertices
regardless the degree of the original end points. As explained by Dorogovt-
sev et al. [2003] and Vega-Redondo [2007], scale-free graphs are fundamen-
tally different because it appears that we can construct them only through a
growth process combined with what is referred to as preferential attachment.
In other words, to understand the structure of real-world networks (which
are generally scale free), we need to concentrate on how they have come to
existence by observing how new nodes attach themselves to existing nodes.

Barabási and Albert [1999] were the first to devise a procedure for the
construction of scale-free networks. Their procedure combines the growing
of a network with attaching new nodes to existing ones with certain prefer-
ences. The algorithm is as follows:

174

■ Different but the form of the function remains the same
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Diameters, path lengths

■ Consider a connected network 
■ Recall definition of diameter: the longest shortest path 
■ Smallest diameter: 1 (independent of n)

24

■ Largest diameter: n−1 (grows linearly in n)
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Diameters, path lengths

■ Network exhibits small diameter if it is not constant but grows sublinearly with 
network size — log n, loglog n, etc. 

■ Travers and Milgram (1969) 
■ diameter ~5-6, n ~200M 
■ Economics co-authorship (2004) 
■ diameter ~9.5, n ~81,000 
■ Microsoft messenger (2008) 
■ diameter ~6.5, n ~180M 
■ Facebook social graph 
■ diameter ~4.74, n ~7.21M (2012) 
■ diameter ~3.57, n ~1.59B (2016) 
■ Facebook social graph diameter has been shrinking
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Diameters, path lengths

■ Alternative definition for diameter: expected shortest path distance between a 
random pair of nodes 

■ Thus, diameters and path lengths behave similarly 
■ Let z denote the average node degree 
■ Under some weak assumptions, it can be shown that for large n, the average 

shortest path length and the diameter are roughly proportional to log(n)/log(z)

26
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Diameters, path lengths

■ “Ad health” dataset from 84 high schools
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Diameters, path lengths

■ “Six degrees of separation” confirmation 
■ Take the current world adult population as 7 billion people 
■ Assume each person knows on the average 50 other people among friends, 

relatives, colleagues, etc. 
■ Then, log(n)/log(z) = log(7×109)/log(50) = 5.79

28
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Clustering coefficient

■ Recall clustering coefficient of a node: probability that two randomly selected 
friends of it are friends themselves — probability that the “triangle” closed 

■ Recall edge density of a network: actual number of edges in proportion to the 
maximum possible number of edges 

■ Recall we consider a network to exhibit high clustering if the clustering coefficient 
is significantly greater than the edge density 

■ For the “Fiorentine family network”, the clustering coefficient is 0.46 and the edge 
density is 2×20/(16×15)=0.1666, so the network is highly clustered
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Real networks 
Summary

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

n !                              CC          ρ 

 z      average node degree           !   average path length 
CC   clustering coefficient              ρ   edge density

z
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Real networks 
Universal properties

■ Heavy-tailed degree distribution 
■ Small diameter and average path length 
■ Highly clustered 
■ Very few (typically just one) connected components 
■ Is there a natural, simple model of network formation and growth that can explain 

how these properties arise?
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