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Universal structural properties

= Networks are typically very different at the microscopic level
= Are there macroscopic structural properties that are common to a large variety of
real networks?
= Universal structural properties:
= Heavy-tailed degree distributions — “hubs”, “connectors”
= Small diameter — “six degrees of separation”
= Highly clustered — “friends of a friend are friends”
= Well connected — only one giant component

= Need to make precise the notions “heavy’, “small”, “highly” and “well”
= Examine real networks to support or refute the claims
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Degree distributions

= Recall the Math Reviews co-authorship network
= 407,000 different authors (nodes)
* 676,000 edges
= Average number of co-authors per author is 3.36
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Heavy-tailed distributions
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Heavy-tailed distributions

Nodes with small degree are most frequent
Fraction of high-degree nodes decreases but much more slowly than what is
predicted by the random models with Poisson or Normal degree distributions
which decay exponentially
Typical of networks that have a few hub or connector nodes with very high
degree and many nodes with small degree
\What are the signatures of heavy-tailed distributions?

Plotting degree distributions

= Examine closely two different forms for the distribution function:
Exponential:  fix)=c=

Power-law:  fix)=cx—

Plot the two forms on different choices for the scales
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Plotting degree distributions
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Plotting degree distributions

= A straight line on a log-log scale becomes the signature of power-law
distributions

fix) =cxa
log(fx)) = log(cx~«)
log(f(x)) =log(c) + log(x~*)
log(f(x)) = log(c) — alog(x)
= | we plot log( f{x)) as a function of log(x), we obtain a straight line with slope —a
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Power-law distributions in the wild
Math Reviews co-authorship

Erdos Number Project
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Power-law distributions in the wild
More co-authorships
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Power-law distributions in the wild
Web, power grid
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Power grid

Power-law distributions in the wild
Internet routers, Actor collaboration

Internet, router level

Actor collaboration

10
nodes: routers o

. —1 r

edges: cables 10 - o (a) 1k (b) _
0t L T E%%%%
3 0 E
0N T T | A

n (o]
P(k)zk—um4 . o, 1L Da% %
5 F & 5 ]
10 é_ CQ) 4 F qam—?
10_5“ T R BRI | T T B
10° 10" 10* 10° 10" 10> 10°

k

_ nodes: actors

] edges: cast jointly

EP(k)z(31+k)‘3




© Babaoglu

humber of pages

le+ld
le+@9
le+@s
le+@7
le+dd
188888
1888a
1888
188
18

1

Power-law distributions in the wild
Web graph
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Power-law distributions in the wild
Metabolic networks
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Power-laws and popularity

= Power-laws arise in many settings other than degree distributions

Popularity of actors, books, movies, songs, web pages are some examples
Popularity is a phenomenon characterized by extreme imbalances due to

network effects

population
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Result of positive feedback or reinforcement due to correlated decisions in a

The "rich-get-richer” phenomenon

Popularity of Web pages

= Use the number of in-edges as a measure of popularity

= As a function of k, what fraction of Web pages have k in-edges”?

= Supposes pages decide independently and randomly to link to other pages

= Then, the total number of in-edges at a Web page would be the sum of (many)
independent random quantities — the presence of absence of a link from other
pages

= By the Central Limit Theorem, we would expect the distribution of the number of
in-edges at a page to be normal (“bell curve”)

= |n other words, the number of Web pages with & in-edges should decay
exponentially as k grows large
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Rich-get-richer

= Yet, for the Web, the fraction of pages that have k in-edges follows a power-law
and is approximately proportional to k2

= The fraction of cities with population & is roughly k<

= The fraction of books that have sold k copies is roughly k=<

= Switching from “blockbuster” view to “niche” view, a power-law function remains
power-law
= The fraction of songs that have been downloaded & times is roughly &<

= The number of times that the k-th most popular song has been downloaded is roughly
ke
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Rich-get-richer
iIPhone app popularity

x 10

=)
=

%0

\,
]
o

)

)

number of reviews
S
log(number of reviews)

[N}

~
T

o
o

L n . L n L L n
20 40 B0 80 100 120 0 1 2 3, 4 5 B 7 8 9
rank by number of reviews log(rank by number of reviews)

o

Rich-get-richer

= Once the rich-get-richer process gets going, the dynamics of popularity
continue to enforce it

= But, how doss the process get ignited in the first place?

= During the early phases, the process is very sensitive to unpredictable
fluctuations

= What would happen if we could roll-back time and repeat history”?
= Reasonable to expect popularity to obey power-law in each instance
= But not necessarily with the same ranking of popularity
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Rich-get-richer

Difficult to roll back time and repeat history
But, we can conduct experiments to see what happens
Salgankik, Dodds, and Watts designed such an experiment

Created fake music download site populated with 48 obscure songs written by

real groups

Visitors could listen to the songs, see their “download count” and download
them it they wanted to




Rich-get-richer

= |n reality, there were 8 “parallel” copies of the site and each visitor was assigned
to one at random on arrival

= The parallel sites started out in identical states with the same list of 48 songs but
evolved independently

® |n the end, the relative popularity of the 48 songs varied considerably among the
8 sites (although the “best” songs were never in the bottom and “worst” songs
were never in the top)

= Some users were directed to a 9th site that had no “feedback” through
download counters

= |n this site, there was significantly less variation among the popularities of the 48
s0oNgs
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Scale-free networks

= Networks with degree distributions that are described by power-laws are also
called scale-free

= A function f{x) is called scale-free if
Abx) = C(b):f(x)
where C(b) is some constant that depends only on b

= |n other words, the overall form of the function does not change when
considering values for x that are a factor b larger

= Related to fractals in mathematics

Scale-free networks

= Power-law distributions are scale-free
= | et f{x) be a power-law function: fix)=cx—«
fibx) = c(bx)~*= b~ c x—2= C(b)f(x)
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= Different but the form of the function remains the same
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Diameters, path lengths

= Consider a connected network
= Recall definition of diameter: the longest shortest path
= Smallest diameter: 1 (independent of n)

Largest diameter: n—1 (grows linearly in n)
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Diameters, path lengths

= Network exhibits small diameter if it is not constant but grows sublinearly with

network size — log n, loglog n, etc.
= Travers and Milgram (1969)
= diameter ~5-6, n ~200M
= Economics co-authorship (2004)
= diameter ~9.5, n ~81,000
= Microsoft messenger (2008)
= diameter ~6.5, n ~180M
= Facebook social graph
= diameter ~4.74, n ~7.21M (2012)
= diameter ~3.57, n ~1.59B (2016)
= Facebook social graph diameter has been shrinking
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Diameters, path lengths

Alternative definition for diameter: expected shortest path distance between a
random pair of nodes

Thus, diameters and path lengths behave similarly
Let z denote the average node degree

Under some weak assumptions, it can be shown that for large n, the average
shortest path length and the diameter are roughly proportional to log(n)/log(z)

Diameters, path lengths

= ‘Ad health” dataset from 84 high schools

Average shortest path length
%\

log(n)/log(z)

Diameters, path lengths

“Six degrees of separation” confirmation
Take the current world adult population as 7 billion people

Assume each person knows on the average 50 other people among friends,
relatives, colleagues, etc.

Then, log(n)/log(z) = log(7x10%)/log(50) = 5.79




Clustering coefficient

= Recall clustering coefficient of a node: probability that two randomly selected
friends of it are friends themselves — probability that the “triangle” closed

= Recall edge density of a network: actual number of edges in proportion to the
maximum possible number of edges

= Recall we consider a network to exhibit high clustering if the clustering coefficient
is significantly greater than the edge density

= For the “Fiorentine family network”, the clustering coefficient is 0.46 and the edge
density is 2x20/(16x15)=0.1666, so the network is highly clustered
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Real networks

Summary

log n
Network n z 7 log z €< P
WWW, site level, undir. 153127 3521 31 335 0.1078  0.00023
Internet, domain level ~ 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001
Movie actors 225226 61 3.65 2.99 0.79 0.00027
LANL co-authorship 52909 9.7 59 479 043 1.8x10°*
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066  1.1x107°
SPIRES co-authorship 56627 173 4.0 2.12 0.726 0.003
NCSTRL co-authorship 11994 3.59 9.7 7.34 049  3x107*
Math. co-authorship 70975 39 9.5 82 059  54x107°
Neurosci. co-authorship 209293 11.5 6 5.01 076  5.5%x10°°
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026
E. coli, reaction graph 315 283 2.62 1.98 0.59 0.09
Ythan estuary food web 134 8.7 243 226 022 0.06
Silwood Park food web 154 475 3.40 325 0.15 0.03
‘Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006
Power grid 4941 2.67 18.7 124 0.08 0.005
C. Elegans 282 14 2.65 2.25 0.28 0.05

z  average node degree
CC clustering coefficient

¢ average path length
p edge density

Real networks
Universal properties

Heavy-tailed degree distribution

Small diameter and average path length

Highly clustered

Very few (typically just one) connected components

Is there a natural, simple mode/ of network formation and growth that can explain
how these properties arise”?
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