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Graph theory

■ Branch of mathematics for the study of discrete structures called graphs for 
modeling pairwise relations between objects 

■ Invented by Swiss mathematician Leonhard Euler (15 April 1707 — 18 
September 1783)
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■ Gives us the language and basic concepts to reason about networks
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Graph theory 
Terminology and notation

■ Formally, a graph is a pair G = (N, E ) where N  is the set of nodes (vertices) and 
E is the set of edges (links, arcs) 

■ We let n denote the number of nodes and m denote the number of edges in the 
graph 

■ Example (n = 4, m = 4): 
Use letters to label nodes, node pairs to label edges 

N ={A, B, C, D} 
E ={(A, B), (A, C), (A, D), (B, D)}
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Graph theory 
Graph visualization

■ It is customary to draw the nodes as circles and the edges as lines that join two 
nodes

4

A B

C D
■ Is a visualization for the graph 

G = ({A, B, C, D}, {(A, B), (A, C), (A, D), (B, D)})
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Graph theory 
Graph visualization

■ The graph is defined by the list of nodes and edges, not by its particular 
visualization 

■ The same graph may have many different visualizations
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■ All represent the same graph but some visualizations can be better than others
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Graph theory 
Binary relations

■ Graphs represent arbitrary binary relations among objects 
■ Nodes are the objects, the presence of an edge indicates that some relation R  

holds between the nodes, the absence indicates that relation R  does not hold
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A B A R B  is true

A B A R B  is false

Examples of binary relation R : 
“greater than”, “is a friend of”, “trusts”, “loans money to”,  “co-authored paper with”, “sits on 
a board-of-directors with”
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Graph theory 
Binary relations

■ Note that binary relations are limiting 
■ For example, co-authorship among three people cannot be expressed through 

binary relations 
■ If authors A, B and C publish a paper together, the co-authorship graph will 

represent this through three binary relations
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A B

C

■ But loses the information that they actually co-authored a common paper
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Graph theory 
Directed graphs

■ An edge as we have defined it, is undirected and corresponds to a symmetric 
binary relation
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A B A R B  is true and  B R A is true

■ An asymmetric binary relation holds in one direction only and is represented by a directed 
edge

A B A R B  is true and  B R A is false

Examples of asymmetric binary relations: 
“follows (on Twitter)”, “trusts”, “connected by a direct flight”, “loans money to”, “has a URL to”
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Graph theory 
Directed graphs

■ Directed graphs are more general than undirected graphs
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A B is equivalent to A B

Edge (A, B) Edges (A, B) and (B, A)
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Graph theory 
Weighted graphs

■ Both directed and undirected graphs can have a weight associated with edges 
to represent the strength of the relation 

■ Examples of weighted graphs: 
■ “co-authorship” (how many joint publications) 
■ “actors” (number of joint films) 
■ “citations” (number of times one author cites another) 
■ “flight routes” (number of daily non-stop flights) 
■ “interstate highway” (distance between cities) 
■ “Internet” (transmission capacity of a link)
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Graph theory 
Some basic facts

■ What is the maximum number of edges that an undirected graph with n nodes 
can have? 
■ Every node has an edge to every other node 
■ Excluding self edges, each node will have n−1 edges, for a total of   n(n−1)/2 edges 

(corrected for double counting) 
■ Thus, for any undirected graph, m ≤ n(n−1)/2 
■ How many different undirected graphs with n nodes can there be? 
■ There can be at most n(n−1)/2 edges 
■ Each edge can be present or absent 
■ Resulting in a total of 2n(n−1)/2 combinations
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Graph theory 
Some basic facts

■ How many different undirected graphs with 3 nodes can there be? 
23(3−1)/2 = 23 = 8
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Graph theory 
Some basic facts

■ How does  2n(n−1)/2 grow with the number of nodes?
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n 2n(n−1)/2

5 1,024
6 32,768
7 2,097,152
8 268,435,456
9 68,719,476,736
10 35,184,372,088,832
15 40,564,819,207,303,340,847,894,502,572,032
20 1.569 × 1057

24 1.214 × 1083

30 8.872 × 10130
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Node degree

■ Degree of a node counts the number of edges that are incident on it — its 
neighbors
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■ For a directed graph, we distinguish between the in-degree and the 
out-degree of a node
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21

2

in: 0 
out: 1

in: 2 
out: 1

in: 1 
out: 1

in: 1 
out: 1
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Node degree distribution

■ In a graph with n nodes, the node degrees are in the range between 0 and n−1 
(excluding self loops) 

■ How are node degrees distributed in this interval? 
■ Are all degrees equally likely or are some degrees more common than others?
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Paths, cycles

■ A path in a graph is an alternating sequence of nodes and edges of the graph
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A B

C D

■ If the graph is directed, the path must respect the direction of  edges 
■ A simple path is a path where the nodes do not repeat 
■ A cycle is a path where the first and last nodes are the same, but otherwise all nodes are 

distinct

CABD
CAD
ADBAC
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Paths, cycles
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A B

C D

■ CABD:  simple path
■ ADBAC:  path but not a simple path
■ BDAB:  cycle
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Distance

■ The length of a path in a graph is the number of steps it contains from beginning 
to end — the number of edges
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■ The distance between two nodes in a graph is the length of the shortest path between them 
■ Distance between C and G is 2 
■ Distance between A and B is 1 
■ Distance between A and C is infinite (or undefined)

CHDEFG     length 5
CDFG          length 3
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H CDG            length 2

© Babaoglu

Diameter

■ Diameter of a graph is the longest of the distances between all pairs of nodes 
— the longest shortest path
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Connectivity, components

■ A subgraph is connected if there is a path between every pair of nodes 
■ A component of a graph is a maximal connected subgraph
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Component 2

Not a component 
(not maximal)

Component 1
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Connectivity, components

■ A graph is connected if it contains a single component
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Not connected Connected
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Connectivity, components

■ For directed graphs, definitions extended to strongly-connected components 
and strongly-connected graphs taking into consideration the direction of edges
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Strongly-connected component Strongly-connected graph
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Giant components

■ If the largest component of a graph contains a significant proportion of all nodes, 
it is called the giant component
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Bridge

■ An edge in a graph is a bridge if deleting it increases the number of components 
of the graph
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Bridge

Bridge
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Clustering coefficient of a node

■ Clustering is a measure of how “bunched up” (unevenly distributed) the edges 
of a graph are 

■ Formally, the clustering coefficient of node A is defined as the probability that 
two randomly selected friends of A are friends themselves 

■ The fraction of all pairs of A’s friends who are also friends 
■ Defined only if A has at least two friends (otherwise 0) 
■ The clustering coefficient is always between 0 and 1
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■ A has four friends 
■ Among the four friends, there are (4×3)/2=6 possible friendships 
■ But only four of them are actually present 
■ Two are missing 
■ Thus, the clustering coefficient of node A is 4/6=0.6666

Clustering coefficient of a node
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AMissing edges

© Babaoglu

Clustering coefficient of a graph

■ The clustering coefficient CC of graph G  is the average of the clustering 
coefficients of all nodes in G
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1/(2×1/2)=1

3/(4×3/2)=1/2

1/(2×1/2)=1

2/(3×2/2)=2/3

2/(3×2/2)=2/3

CC = (1+2/3+2/3+1+1/2)/5 = 0.7666
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Clustering coefficient of a graph
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■ All nodes are identical and have 4 neighbors

■ Possible edges between pairs of neighbors is 4×3/2 = 6 
■ How many pairs of neighbors are actually connected? 3
■ Clustering coefficient of any node: 3/6 = 0.5 
■ Clustering coefficient of the entire graph: CC = 0.5
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Clustering coefficient of a graph

■ Clustering quantifies the likelihood that nodes that share a common neighbor are 
neighbors themselves
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■ In social networks, it is very likely that triangles will indeed close over time — triadic 
closure

Are they neighbors?
Pick two neighbors
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Clustering coefficient of a graph

■ Alternative definition of clustering coefficient of a graph: 
■ Proportion of all possible triangles that are actually closed
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■ Number of possible triangles is 10 (5 choose 3 = 5!/3!2!) 
■ Number of closed triangles is 3 
■ Clustering coefficient is 3/10=0.3 (compare to 0.7666)
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Highly clustered

■ Recall that clustering quantifies the likelihood that nodes that share a common neighbor 
are neighbors themselves
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Is the “triangle” closed?

■ Clustering coefficient of the entire graph, CC, is the proportion of all possible triangles that 
are actually closed
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Highly clustered

■ Is CC alone sufficient to conclude that a graph is “highly clustered”? 
■ CC close to 1 ⇒ highly clustered? 
■ CC close to 0 ⇒ not highly clustered? 
■ Not necessarily true! 
■ Some number of triangles in a graph could be closed simply by chance 
■ A graph is highly clustered only if the actual likelihood of a triangle being closed 

is substantially greater than what we would expect due to pure chance

32
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Edge density

■ Edge density of a graph is the actual number of edges in proportion to the maximum 
possible number of edges 

■ Clearly, the edge density of any graph is between 0 and 1 
■ Suppose we pick two nodes of a graph at random without regard to the graph structure 

(e.g., whether the two nodes share a common neighbor or not) 
■ What is the probability p that the two nodes are connected? 
■ It is given exactly by the edge density of the graph
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Sparse and dense graphs

■ If ! is small, then graph is sparse 
■ If ! is large, then the graph is dense
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Sparse (!=3/(8×7/2)=3/28=0.1071) Denser (!=11/28=0.3928)
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Highly clustered

■ We will compare the clustering coefficient CC of a graph to its edge density ! 
■ We consider a graph to be highly clustered if CC ≫ !
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Highly clustered

■ Consider a ring with eight nodes
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■ What if there are one thousand nodes?

Clustering coefficient: CC=0 
Edge density:  !=2x8/56=0.2857

Clustering coefficient: CC=0 
Edge density:   !=2×1000/(1000×999)=0.002
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Highly clustered

■ Consider an augmented ring with eight nodes
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■ What if there are one thousand nodes?

Clustering coefficient: CC=0.5 
Edge density:  !=2x16/56=0.5714

Clustering coefficient: CC=0.5 
Edge density:   !=2×2000/(1000×999)=0.004
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Centrality metrics

■ For nodes in a graph, centrality metrics try to formalize notions such as 
“important”, “influential” or “popular”
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Pucci

Castellan

Peruzzi

Strozzi
Ridolfi

Barbadori

Bischeri

Tornabuon

Acciaiuol
Salvati

Pazzi

Albizzi

Ginori

Guadagni Lambertes

Medici

■ Why was the Medici an important family in 15th century Florence?
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Centrality metrics

■ Different notions of centrality 
■ Degree — well connectedness 
■ Betweenness — criticality for connectedness 
■ Closeness — short distances to the rest of the graph 
■ Eigenvector — importance 
■ Centrality is a property of a single node but in the context of the entire graph 
■ We can also define a global notion of centrality that applies to the entire graph — 

centralization
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Centrality metrics

■ Degree centrality — the greater the degree of a node, the more “important” 
■ Appropriate for some settings (social networks) since nodes with high degree are better 

connected and can serve as introducers
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Centrality metrics

■ Problems with degree-based centrality
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Betweenness

■ Degree-based centrality is not able to capture the notion of brokerage — ability 
of a node in a graph to act as a bridge between different components 

■ Define betweenness of node u to be the fraction of all pairwise shortest paths 
that go through u 

where 
gij = total number of shortest paths between i, j 
gij(u) = number of shortest paths between i, j that go through u

42
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Betweenness
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6×(6−1)/2=30/2=15  possible pairs among the 6 neighbors of the central node and all 
shortest paths go through it

4×3+1/2=12.5  the node gets full credit for the 12 shortest paths that go through it but 
only half the credit for the two shortest paths between the top and bottom nodes

4×4=16 all shortest paths between the 4 nodes to the left and the 4 nodes to the right
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Closeness
■ What if it is not important to have many friends 
■ Or  be in a “broker” position? 
■ Important to be in a “central” position, close to the rest of the graph
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■ Acciaiuol have degree 1, betweenness 0 but are just one hop from the Medici
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Closeness

■ Define closeness of node u based on the (inverse) average shortest path length 
between node u and every other node in the graph 

where 
d(u,i) = length of shortest path between nodes u and i
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Closeness
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0.1944 0.2413 0.3043 0.3333 0.35 0.3333 0.3043 0.2413 0.1944
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6/(1+2+2+2+2+2)=6/11=0.5454
7/(1+1+1+2+3+3+3)=7/14=0.5
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Closeness

47

Pucci 
0

Castellan

Peruzzi

Strozzi 
14/32=0.43

Ridolfi 
14/28=0.5

Barbadori 
14/32=0.43

Bischeri

Tornabuon 
14/29=0.48

Acciaiuol 
14/38=0.36

Salvati 
14/36=0.38

Pazzi

Albizzi

Ginori

Guadagni 
14/26=0.53

Lambertes

Medici 
14/25=0.56

© Babaoglu

Centrality metrics in directed graphs

■ Degree, betweenness and closeness centrality definitions extend naturally to 
directed graphs 

■ Out-degree centrality — based on out-degree 
■ In-degree centrality — based on in-degree 
■ Betweenness centrality of a node becomes the fraction of all pairwise shortest 

directed paths that go through it 
■ In-closeness — based on path lengths from all other nodes to the given node 
■ Out-closeness — based on path lengths from the given node to all other nodes
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Eigenvector centrality

■ Basic idea: the importance of a node in a graph is determined by the 
importance of its neighbors 

■ Recursive definition! 
■ Extremely relevant and important for the web graph 
■ Implemented for directed graphs by the PageRank algorithm that was the main 

technological innovation behind Google search 
■ On the web, what counts is not how many pages point to a given page but 

which pages point to that page 
■ The “slashdot effect”
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Eigenvector Centrality 
Page Rank

■ Informally, an important node in a directed graph is pointed to by lots of other 
important nodes

50

■ Let R(t, A) be the rank of A at time t and let out(A) be its out-degree 
■ A “distributes” its rank evenly over its out-edges so that each one receives R(t, A)/out(A) 
■ The rank of B at time t+1 is obtained by summing the ranks over all of its in-edges 

A BR(t, A)

out(A)
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Eigenvector Centrality 
Page Rank

■ We have an equation like this for every node in the graph: 

■ How to assign ranks to all nodes such that the set of equations for the entire 
graph is consistent (stable)? 

■ Formally, the solution is equivalent to solving for the eigenvector of a matrix 
(describing the connectivity of the graph) 

■ Can be approximated algorithmically by iterating — contribution of Larry Page 
and Sergey Brin while at Stanford that lead to the Google search engine
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Eigenvector Centrality 
Page Rank
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Recap 
Classes of graph properties

■ Global patterns — macroscopic aspects of graph structure 
■ Degree distribution 
■ Connectivity 
■ Path lengths 
■ Diameter 
■ Edge density 

■ Local patterns — microscopic aspects of graph structure 
■ Degree 
■ Clustering coefficient 

■ Centrality — a single node in context (position) of graph 
■ Betweenness 
■ Closeness 
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Software tools

■ Gephi: interactive visualization and exploration platform for networks 
■ https://gephi.github.io/ 
■ NetLogo: programmable multi-agent environment for modeling network 

dynamics 
■ https://ccl.northwestern.edu/netlogo/
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