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Why model?

= Models are abstractions of reality that serve two purposes:
» Explain observed (past) behaviors
» Predict unobserved (future) or unobservable behaviors

= Models help us
= understand the world we live in
= understand and use data by turning it into knowledge
= make better decisions and designs
» become better citizens (models are everywhere)
= \What can be modeled?
= Just about anything
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Why model?

= |n our daily lives, we rely on sophisticated mental models to perform many
tasks: walk, ride a bicycle, drive a car, avoid collisions, hit a tennis ball, etc.

= These models are able to incorporate not only the physical world (Newtonian
mechanics) but also economic, social, cultural clues
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Why model?

= To be useful, a model has to be compact and simple while maintaining fidelity to
what is being modeled

= Abstract away the unnecessary details yet maintain the essence

= “Everything should be made as simple as possible, but no simpler” — Albert
Einstein (1933)

= “Essentially, all models are wrong, but some are useful” — George Box (1987)
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Tension between compactness and
fidelity

Sylvie and Bruno Concluded: The Man in the Moon, by Lewis Carroll, 1889
“That's another thing we've learned from your Nation,” said Mein Herr, “map-making. But we've carried it much
further than you. What do you consider the largest map that would be really useful?”
‘About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards to the mile. Then we tried a hundred yards
to the mile. And then came the grandest idea of alll We actually made a map of the country, on the scale of a mile
to the mile!”

“Have you used it much?” | enquired.

‘It has never been spread out, yet,” said Mein Herr: “the farmers objected: they said it would cover the whole
country, and shut out the sunlight! So we now use the country itself, as its own map, and | assure you it does
nearly as well.
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Well-known models:
Geographic maps
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Well-known models:
Plate Tectonics
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Well-known models:
Solar system

Well-known models:
Bohr’'s atom
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Well-known models:
Pandemics

= Modeling by the Institute for Health Metrics and Evaluation (IHME) at the University of Washington (as of 13

April 2020)
Sweden Deaths per day ®
24 days 560 covip-19 deaths
until projected peak in daily deaths projected on May 8, 2020
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Well-known models: Well-known models:
Pandemics Pandemics
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Models for Complex Systems

Cellular automata 1-Dimensional CA

= An (infinite) array of “cells”
= E£ach cell has a value from a k-ary state
= Eqch cell has has a position i in the array and has r left and r right neighbors
= Abstract model for simple individual behaviors and simple interactions leading to
complex aggregate behaviors
= Developed by John von Neumann as a formal tool to study “mechanical self | ‘ ‘ ‘ ‘ ‘ : ‘ ‘ ‘ ‘ ‘ |
replication” T L
= Studied extensively by Stephen Wolfram .

State of a cell at time #+1 is a function of cell's state and its neighbors state at time ¢
= Assume k =2 (binary state)
= Assume r =1 (neighborhood of size 2)
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1-Dimensional CA State transitions (Look-up table for r=1)
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Wolfram canonical enumeration Wolfram canonical enumeration
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= \With a binary state and radius » = 1, there are 22°=256 possible CAs B MW -
= Read off the final state column of the look-up table as a binary number H B
= Each possible CA identified through an integer 0—255 HE
HENE

Rule = 30




Wolfram canonical enumeration
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Rule = 110

Wolfram’s classification

Class I: Nearly all initial patterns evolve quickly into a stable, homogeneous state
(fixed point)

Class Il: Nearly all initial patterns evolve quickly into stable or oscillating
structures (periodic)

Class lll: Nearly all initial patterns evolve in a pseudo-random or chaotic manner
(chaotic)

Class IV: Nearly all initial patterns evolve into structures that interact in complex
and interesting ways (complex — capable of universal computation)

Wolfram'’s classification: Class |

Rule 40 Rule 172 Rule 234
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Source: https://plato.stanford.edu/entries/cellular-automata/supplement.html

Wolfram'’s classification: Class |
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Wolfram'’s classification: Class l|

Rule 30 Rule 107 Rule 146
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Wolfram’s classification: Class IV

Rule 110
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NetlLogo

= | jorary/Computer Science/CA 1D Elementary
= ElementaryCAs
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CAs as dynamical systems

CAs are discrete-time, deterministic dynamical systems that exhibit fixed-point,
periodic and chaotic behavior

Similar to the Logistic Map except that the state variable for CAs is discrete
(while continuous for the Logistic Map)

For the Logistic Map, there is a control parameter R
What is the equivalent for CAs?
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Langdon’s A metric

= Seek a compact characterization of the CA behavior class
= Count the number of “‘ones” in the look-up table final state column
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Langdon’s A metric

A All Rules |Class lll |Class IV |Normalized A
0 1 0 0 0

1 8 0 0 0,125

2 28 2 0 0,25

3 56 4 1 0,375

4 70 20 4 0)5

5 56 4 1 0,625

6 28 2 0 0,75

7 8 0 0 0,875

8 1 0 0 1

Wolfram’s classification and
normalized Langdon’s A metric

Periodic

0.0 A 1.0

Conway’s “Game of Life”

= 2-Dimensional Cellular Automata
= Developed by British mathematician John Conway

= Made famous by Martin Gardner in his “Mathematical Games” column in
Scientific American of October 1970
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Conway’s “Game of Life”
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Conway’s “Game of Life”

= Each cell (on an infinite plane) has eight neighbors
= Each cell can be “alive” or “dead”
= Cells come alive, die or survive according to simple rules

“Dead” (off)

. “Alive” (on)

Conway’s “Game of Life”

= Rules:
= alive cell with 2 or 3 live neighbors survives (survival)
= alive cell with fewer than 2 live neighbors dies (death from loneliness)
= alive cell with more than 3 live neighbors dies (death from over crowding)
= a dead cell with exactly 3 live neighbors come alive (birth)
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“Game of Life” behaviors




“Game of Life” behaviors “Game of Life” behaviors

Fixed point Fixed point
“Game of Life” behaviors “Game of Life” behaviors
Fixed point
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“Game of Life” behaviors
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“Game of Life” behaviors

Glider

RRRINNN HRRnEN HRRRRN
RRRINNN HRRnEN L1010
i | NN i | NN i | ] N
[l [Nl NN min | N N N
RN NN N NN N (NN
RRRINNN OO [HINRREE

=0 =1 =2
o010 HRRREN
N (NN i | N
mnn | IN i m N
mim Im N RN N
HIRRNEN L1010
o010 010

t=3 t=4

Looooooan
Looooooog
HEE | [
) | I | e
w1 1 | [mEnn
HN] | NN
ooooHooog

t=0
I
oUomRoomoon

gogodomsd
HiE| [minm .

t=3
= NetlLogo Gameoflife, Mini-Life

Fish

Looooooan
ooooogoog
OUmEmEECo0
Umooomoog
Loooomoan

I
HEE | |nEn
OUMEEEC00
OUNECEECO0]
mEEn | [Ee
Looooooan
LoooUooan
t=2

CAs as computers

= CAs are capable of performing “‘computation’
= Computation is the “processing of information” and consists of

= representing and inputing,

= storing,

= fransferring,

= transforming (processing),

= outputting information
= “Universal computation” — ability to compute anything that is computable
= “‘Programmable computers” (with infinite resources) are capable of universal
computation




CA and universal computation

= Both Conway's game of life and CA rule 110 are capable of universal
computation

= Prove by showing that
= Game of Life or CA 110 are equivalent to a Turing Machine

= basic logical operators needed for universal computation can be constructed using
Game of Life or CA 110

CA and universal computation

= Game of life is equivalent to a Turing Machine (by construction)
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Logical operators from “Game of Life”

= Construct basic logical operators using Game of Life
= Building blocks:

2\ - Glider or Fish Gun
3 - Glider or Fish Eater
® - Data Stream

X - Collision

= NetLogo GameOfLife

Glider gun




Logical operators from “Game of Life”
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CA and universal computation

= CAs as “universal computers” are not practical
= VYet, CAs have been used to perform special-purpose, practical parallel
computations such as image processing

CA and complex systems

= |dealized models that are capable of producing complex behavior from very
simple rules

= Natural complex systems can be modeled using CAs

= CAs allow us to understand how complex dynamics can produce collective
‘information processing” in a decentralized system




