
Complex Systems and Network Science: 

Models

Ozalp Babaoglu 
Dipartimento di Informatica — Scienza e Ingegneria 

Università di Bologna 
www.cs.unibo.it/babaoglu/

© Babaoglu

Why model?

■ Models are abstractions of reality that serve two purposes: 
■ Explain observed (past) behaviors 
■ Predict unobserved (future) or unobservable behaviors 
■ Models help us 
■ understand the world we live in 
■ understand and use data by turning it into knowledge 
■ make better decisions and designs 
■ become better citizens (models are everywhere) 
■ What can be modeled? 
■ Just about anything
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Why model?

■ In our daily lives, we rely on sophisticated mental models to perform many 
tasks: walk, ride a bicycle, drive a car, avoid collisions, hit a tennis ball, etc. 

■ These models are able to incorporate not only the physical world (Newtonian 
mechanics) but also economic, social, cultural clues
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Why model?
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Why model?
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Why model?

■ To be useful, a model has to be compact and simple while maintaining fidelity to 
what is being modeled 

■ Abstract away the unnecessary details yet maintain the essence 
■ “Everything should be made as simple as possible, but no simpler” — Albert 

Einstein (1933) 
■ “Essentially, all models are wrong, but some are useful” — George Box (1987)
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Tension between compactness and 
fidelity

“That’s another thing we’ve learned from your Nation,” said Mein Herr, “map-making. But we’ve carried it much 
further than you. What do you consider the largest map that would be really useful?” 
“About six inches to the mile.” 
“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards to the mile. Then we tried a hundred yards 
to the mile. And then came the grandest idea of all! We actually made a map of the country, on the scale of a mile 
to the mile!” 
“Have you used it much?” I enquired. 
“It has never been spread out, yet,” said Mein Herr: “the farmers objected: they said it would cover the whole 
country, and shut out the sunlight! So we now use the country itself, as its own map, and I assure you it does 
nearly as well.
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Sylvie and Bruno Concluded: The Man in the Moon, by Lewis Carroll, 1889
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Well-known models: 
Geographic maps
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Well-known models: 
Plate Tectonics
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Well-known models: 
Solar system

© Babaoglu

Well-known models: 
Bohr’s atom
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Well-known models: 
Pandemics
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■ Modeling by the Institute for Health Metrics and Evaluation (IHME) at the University of Washington (as of 13 
April 2020)
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Well-known models: 
Pandemics
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Well-known models: 
Pandemics

■ Covid-19 peaks in ICU beds for different social distancing measures
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Models for Complex Systems 
Cellular automata

■ Abstract model for simple individual behaviors and simple interactions leading to 
complex aggregate behaviors 

■ Developed by John von Neumann as a formal tool to study “mechanical self 
replication” 

■ Studied extensively by Stephen Wolfram
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1-Dimensional CA

■ An (infinite) array of “cells” 
■ Each cell has a value from a k-ary state 
■ Each cell has has a position i in the array and has r left and r right neighbors
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■ State of a cell at time t+1 is a function of cell’s state and its neighbors state at time t 
■ Assume k = 2 (binary state) 
■ Assume r = 1 (neighborhood of size 2)
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1-Dimensional CA
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State transitions (Look-up table for r=1)
Xt Xt+1
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Wolfram canonical enumeration

■ With a binary state and radius r = 1, there are 223=256 possible CAs 
■ Read off the final state column of the look-up table as a binary number 
■ Each possible CA identified through an integer 0—255
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Wolfram canonical enumeration

Rule = 30
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Wolfram canonical enumeration

Rule = 110
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Wolfram’s classification

■ Class I: Nearly all initial patterns evolve quickly into a stable, homogeneous state 
(fixed point) 

■ Class II: Nearly all initial patterns evolve quickly into stable or oscillating 
structures (periodic) 

■ Class III: Nearly all initial patterns evolve in a pseudo-random or chaotic manner 
(chaotic) 

■ Class IV: Nearly all initial patterns evolve into structures that interact in complex 
and interesting ways (complex — capable of universal computation)

22

© Babaoglu

Wolfram’s classification: Class I

Rule 40 Rule 172 Rule 234

Source: https://plato.stanford.edu/entries/cellular-automata/supplement.html
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Wolfram’s classification: Class II
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Wolfram’s classification: Class III

Rule 30 Rule 101 Rule 146
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Wolfram’s classification: Class IV

Rule 110
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NetLogo

■ Library/Computer Science/CA 1D Elementary 
■ ElementaryCAs
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CAs as dynamical systems

■ CAs are discrete-time, deterministic dynamical systems that exhibit fixed-point, 
periodic and chaotic behavior 

■ Similar to the Logistic Map except that the state variable for CAs is discrete 
(while continuous for the Logistic Map) 

■ For the Logistic Map, there is a control parameter R 
■ What is the equivalent for CAs?
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Langdon’s λ metric

■ Seek a compact characterization of the CA behavior class 
■ Count the number of “ones” in the look-up table final state column
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Langdon’s λ metric

λ All Rules Class III Class IV Normalized λ
0 1 0 0 0
1 8 0 0 0,125
2 28 2 0 0,25
3 56 4 1 0,375
4 70 20 4 0,5
5 56 4 1 0,625
6 28 2 0 0,75
7 8 0 0 0,875
8 1 0 0 1
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Wolfram’s classification and 
normalized Langdon’s λ metric
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Conway’s “Game of Life”

■ 2-Dimensional Cellular Automata 
■ Developed by British mathematician John Conway 
■ Made famous by Martin Gardner in his “Mathematical Games” column in 

Scientific American of October 1970
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Conway’s “Game of Life”
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Conway’s “Game of Life”

■ Each cell (on an infinite plane) has eight neighbors 
■ Each cell can be “alive” or “dead” 
■ Cells come alive, die or survive according to simple rules

1 2 3

4 X 5

6 7 8

“Dead” (off)

“Alive” (on)
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Conway’s “Game of Life”

■ Rules: 
■ a live cell with 2 or 3 live neighbors survives (survival) 
■ a live cell with fewer than 2 live neighbors dies (death from loneliness) 
■ a live cell with more than 3 live neighbors dies (death from over crowding) 
■ a dead cell with exactly 3 live neighbors come alive (birth)
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“Game of Life” behaviors
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“Game of Life” behaviors

Fixed point
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“Game of Life” behaviors

Fixed point
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“Game of Life” behaviors

Fixed point
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“Game of Life” behaviors
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“Game of Life” behaviors
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“Game of Life” behaviors
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“Game of Life” behaviors
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“Game of Life” behaviors
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“Game of Life” behaviors
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Glider

t=0 t=1 t=2

t=3 t=4
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Fish

■ NetLogo GameofLife, Mini-Life
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CAs as computers

■ CAs are capable of performing “computation” 
■ Computation is the “processing of information” and consists of 
■ representing and inputing, 
■ storing, 
■ transferring, 
■ transforming (processing), 
■ outputting information 
■ “Universal computation” — ability to compute anything that is computable 
■ “Programmable computers” (with infinite resources) are capable of universal 

computation
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CA and universal computation

■ Both Conway’s game of life and CA rule 110 are capable of universal 
computation 

■ Prove by showing that 
■ Game of Life or CA 110 are equivalent to a Turing Machine 
■ basic logical operators needed for universal computation can be constructed using 

Game of Life or CA 110
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CA and universal computation

■ Game of life is equivalent to a Turing Machine (by construction)
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Logical operators from “Game of Life”

■ Construct basic logical operators using Game of Life 
■ Building blocks:
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Glider gun

■ NetLogo GameOfLife
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Logical operators from “Game of Life”

NOT AND OR
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CA and universal computation

■ CAs as “universal computers” are not practical 
■ Yet, CAs have been used to perform special-purpose, practical parallel 

computations such as image processing
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CA and complex systems

■ Idealized models that are capable of producing complex behavior from very 
simple rules 

■ Natural complex systems can be modeled using CAs 
■ CAs allow us to understand how complex dynamics can produce collective 

“information processing” in a decentralized system
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