
Submitted to:
Linearity-TLLA 2020

c© M. Hasegawa
This work is licensed under the
Creative Commons Attribution License.

A Braided Lambda Calculus

Masahito Hasegawa
Research Institute for Mathematical Sciences

Kyoto University
Kyoto, Japan

hassei@kurims.kyoto-u.ac.jp

We present an untyped linear lambda calculus with braids, the corresponding combinatory logic, and
the semantic models given by crossed G-sets.

1 Introduction

A braid with n-strands [3, 4, 9] is n copies of the interval [0,1] smoothly embedded in the cube [−1
2 ,

1
2]×

[0,1]× [0,1] (Figure 1) such that

• each t ∈ [0,1] is mapped to a point in the plane {(x,y,z) | z = t}
• the end points 0 ∈ [0,1] are sent to the n points {(0, k

n−1 ,0) | k = 0, . . . ,n−1}

• the end points 1 ∈ [0,1] are sent to the n points {(0, k
n−1 ,1) | k = 0, . . . ,n−1}

Two braids are identified if there is a continuous deformation between them preserving the boundaries
(the ambient isotopy). It is well-known that braids (modulo ambient isotopy) can be identified with their
projections to a plane modulo Reidemeister moves, and also with the elements of the braid group:

{braids of n-strands}/ambient isotopy
∼= {braid diagrams of n-strands}/Reidemeister moves
∼= Braid group Bn

In this paper, we introduce an untyped linear lambda calculus with braids, in which every permuta-
tion/exchange of variables is realized by a braid. Thus, for a term M with n (ordered) free variables and
a braid s with n strands, we introduce a term [s]M in which the free variables are permutated by s:

x1,x2, . . . ,xn `M s : braid with n strands
xs(1),xs(2), . . . ,xs(n) ` [s]M

braid

-

6

�
�

�
�	

�
�

�
�

�
�

• • • •

• • • •

x

y

z

1

1

2
3

1
3

01
2

−1
2

• • • •

• • • •

σ1σ2
3σ1σ2

braid with 4 strands braid diagram element of the braid group B4

Figure 1: Braids

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Braided Lambda Calculus

For instance, we have braided C-combinators

C+ ≡ λ f xy.

[
y
x
f

x
y
f

]
(f yx) C− ≡ λ f xy.

[
y
x
f

x
y
f

]
(f yx)

which are “implementations” of the standard C-combinator λ f xy. f yx using braids. The idea of realizing
a braided calculus as a planar calculus enriched with explicit braids is not new, see for instance [5].

Braids do not play a serious role in most of the conventional computational models, and for the time
being this work is largely a mathematical exercise with no real application. Nevertheless, let us say a
little bit more on the motivation of this work and its potential applications. Extensionally, permutations
(symmetry/exchange) are used for swapping two data. On the other hand, braids provide non-extensional
information on how to implement permutations in three dimensions. If braids have some computational
meaning, it should be something about low-level (intermediate) codes to be compiled in some 3D com-
putational architectures. One such computational model allowing “braids for implementation” reading is
Topological Quantum Computation [10], where the topological information of anyons in 3D space-time
does matter; we hope that this work will find some usage in this context.

Our calculus is untyped. Compared to the typed case (including braided MLL [5] and tensorial logic
[11]), we have a simpler syntax and subtler, more challenging semantics - while the simply typed braided
lambda calculus can be modelled by any braided monoidal closed category, the untyped calculus requires
a reflexive object, which is hard to find in the well-known braided categories in TQFT [13]. We overcome
this difficulty by using a braided relational model constructed in our previous work [7].

Our contributions are summarized as follows.

• We formulate a braided lambda calculus whose syntax is a mild modification of the untyped linear
lambda calculus with explicit braids (Section 2).

• We introduce the corresponding combinatory logic and show the combinatory completeness (Sec-
tion 3).

• We give categorical semantics given by reflexive objects in braided monoidal closed categories,
and present some concrete models using crossed G-sets (Section 4).

2 A braided lambda calculus

2.1 Syntax of the calculus

The untyped braided lambda calculus is an extension of the planar lambda calculus (the linear lambda
calculus with no exchange)1 with a rule for introducing braided terms.

x ` x variable
Γ,x `M

Γ ` λx.M abstraction Γ `M Γ′ ` N
Γ,Γ′ `M N

application

x1,x2, . . . ,xn `M s : braid with n strands
xs(1),xs(2), . . . ,xs(n) ` [σ]M braid

1In the literature, there are (at least) two different notions of “planar lambda terms”. Some authors emply the “left” abstrac-

tion rule (e.g. [15]) x,Γ `M
Γ ` λx.M

whereas others (e.g. [2]) use the same “right” abstraction rule as ours; see [15] for some

comparison. Our choice has the advantage of preservation of planarity under the βη-conversions, and allows simpler semantics
by reflexive objects in monoidal (right) closed categories.

M. Hasegawa 3

where s(i) denotes the outcome of applying the permutation on {1,2, . . . ,n} induced by s to i. Formally,
a braid with n strands will be an element of the braid group Bn, and the braided term [s]M is the result of
the group action of Bn on terms with n free variables. However, for readability, we might present braids
graphically, often with labels indicating the correspondence to variables.

Example 1 (braided C-combinator) The derivation of the combinator C+ in the introduction is

f ` f y ` y
f ,y ` f y x ` x

f ,y,x ` f yx s =
y
x
f

x
y
f

f ,x,y ` [s] (f yx)
f ,x ` λy.[s](f yx)
f ` λxy.[s](f yx)
` λ f xy. [s] (f yx)

Remark 1 (Contexts are redundant) In the braided lambda calculus, the context is always uniquely
determined by the term, thus redundant. Given a braided lambda term M, we define the list cxt(M) of free
variables in M as follows: cxt(x) = x, cxt(M N) = cxt(M),cxt(N), cxt(λx.M) = Γ where cxt(M) = Γ,x,
and cxt([s]M) = s(cxt(M)) where s(x1, . . . ,xn) = xs(1), . . . ,xs(n). It follows that Γ ` M iff cxt(M) = Γ.
Hence the context of a braided term is unique: if both Γ `M and Γ′ `M are derivable, then Γ is identical
to Γ′.

2.2 Equational theory

The βη-theory has the usual βη axioms plus structural axioms for braids.

β (λx.M)N = M[x := N]
η λx.M x = M
strid [idn]M = M (M has n free variables)
strcomp [s]([s′]M) = [ss′]M
strapp ([s]M)([s′]N) = [s⊗ s′](M N)
strabs [s](λx.M) = λx.[s⊗ id1]M

where idn stands for the trivial braid with n strands (the unit element e of the braid group Bn), ss′ is
the composition of s and s′ while s⊗ s′ the parallel composition (Figure 2). It might be worth pointing
out that our calculus has some resemblance to the calculi with explicit substitutions [1]: braids can be
thought as special substitutions (enriched with some extra information).

In the β rule, the substitution M[x := N] means replacing the (unique) free variable x in M by N
and also x-labelled strings occuring in braids in M by Γ-strings where Γ ` N. (When N contains no free
variable, all x-strings are removed.) For instance:

(
λy.
[y
x

x
y
]
(yx)

)
[x := (x1 x2)] ≡ λy.

[
y
x2
x1

x2
x1
y

]
(y(x1 x2))

(
λy.
[y
x

x
y
]
(yx)

)
[x := λ z.z] ≡ λy. [y y] (y(λ z.z)) =βη λy.(y(λ z.z))

Thus substitution is much subtler than one might first guess. Below we discuss the formal definition of
substitution, in which braids are algebraically handled as elements of the braid group.

4 A Braided Lambda Calculus

strid

idn

M = M

strcomp s s′ M = s s′ M
ss′

strapp
s

s′

M

N i@ =
s

s′

M

N i@
s⊗ s′

strabs Ms iλ = Ms iλs⊗ id1

Figure 2: Structural axioms

2.3 Formal treatment of braids and substitution

The braid group Let Bn be the Artin braid group [3, 4, 9] generated by n−1 generators σ1,σ2, . . . ,σn−1
with relations

• σ iσ j = σ jσ i for 1≤ i, j ≤ n−1 with |i− j| ≥ 2, and

• σ iσ i+1σ i = σ i+1σ iσ i+1 for 1≤ i≤ n−1.

The following geometric reading in terms of braid diagrams may be useful for understanding the be-
haviour of the generators σ i and σ

−1
i :

1

j−1
j

j+1
j+2

n

1

j−1
j

j+1
j+2

n

��
��XX
XX

...

...

1

j−1
j

j+1
j+2

n

1

j−1
j

j+1
j+2

n

XXXX��
��

...

...

1

j−1
j

j+1
j+2
j+3

n

1

j−1
j

j+1
j+2
j+3

n

...

...

��
��

��
PP
PP ��

�
PP
PPPP

PP
=

1

j−1
j

j+1
j+2
j+3

n

1

j−1
j

j+1
j+2
j+3

n

...

...

��
��

����
� PP

PP
PP
PPPP

PP

σ j σ
−1
j σ jσ j+1σ j = σ j+1σ jσ j+1

In the sequel we will denote the unit element (idn) of the braid group by e.

Defining substitutions Define the substitution map (−)[i := m] : Bn→ Bn+m−1 for 1≤ i≤ n and m≥ 0
as follows.

• e[i := m]≡ e.

• (σ js)[i := m]≡ σ j+m−1(σ [i := m]) when i≤ j−1.

• (σ js)[i := m]≡ σ j(σ [i := m]) when i≥ j+2.

• (σ js)[j := m]≡
{

s[j+1 := 0] m = 0
σ j+m−1 · · ·σ j+1σ j(s[j+1 := m]) m≥ 1

M. Hasegawa 5

1

j−1
j

j+1
j+2

n

1

j−1
j

j+1
j+2

n

���
�XX
XX

...

...

1

j−1
j

j+1
j+2
j+3
j+4

n+2

1

j−1
j

j+1
j+2
j+3
j+4

n+2

��
�����
����
�

...

...

1

j−1

j

j+1

n−1

1

j−1

j

j+1

n−1

...

...

σ j σ j[j := 3] = σ j+2σ j+1σ j σ j[j := 0] = e(= idn−1)

Figure 3: Substitution map

• (σ js)[j+1 := m]≡
{

s[j := 0] m = 0
σ jσ j+1 · · ·σ j+m−1(s[j := m]) m≥ 1

• Similarly for σ
−1
j s.

The substitution map is well-defined: s[i :=m] does not depend on the choice of g1, . . . ,gk ∈{σ±1 , . . . ,σ±n }
such that s = g1 · · ·gk. Note that s[i := 1]≡ s holds for any s ∈ Bn and i. We give some examples of the
substitution map in Figure 3.

In the sequel we identify an element of Bn with a braid with n strands. For a braided term [s]M with

x1,x2, . . . ,xn `M s ∈ Bn

xs(1),xs(2), . . . ,xs(n) ` [s]M

and a term y1, . . . ,ym ` N, we define the substitution ([s]M)[xi := N] as

([s]M)[xi := N] ≡
[
s[s−1(i) := m]

]
(M[xi := N])

2.4 Rewriting and decidability

Let ≡str be the smallest congruence on braided lambda terms containing the equational theory of braid
groups and structural axioms. We say that a term M (1-step) βη-reduces to N modulo ≡str when there
exists M1 such that M ≡str M1 and M1 reduces to N via a single βη-reduction.
Theorem 1 The βη-reduction modulo ≡str is strong normalizing, and Church-Rosser modulo ≡str.

Note that a normal form of β -reduction modulo ≡str is just a β -normal linear lambda term decorated by
braids (while it is not the case for the η-reduction), and a normal form of a braided term can be easily
obtained by tracing the normalization of the corresponding linear lambda term (with all braids dropped).
Since the word problem for braid groups is decidable [3, 9] and so is the equational theory of structural
axioms, we conclude:
Theorem 2 The βη-theory is decidable.

3 Combinatory logic

3.1 Representing braids by C±

For a braid s with n strands, let dse be the combinator

λ f xs(1) . . .xs(n).[id1⊗ s](f x1 . . . xn)

6 A Braided Lambda Calculus

In particular, when n = 2 dσ1e=
⌈ ⌉

= C+ and dσ−1
1 e=

⌈ ⌉
= C−.

As usual, we have the combinators I≡ λx.x and B≡ λxyz.x(yz).

Lemma 1 1. didne =βη I.

2. dss′e =βη Bdseds′e.
3. did1⊗ se =βη Bdse.
4. ds⊗ id1e =βη dse.

Proposition 1 dσie=βη Bi−1C+ and dσ−1
i e=βη Bi−1C−.

Since any braid is given by composing e, σi and σ
−1
i , we conclude:

Theorem 3 For any braid s, dse is βη-equal to a combinator generated by B, I, C+ and C−.

3.2 Combinatory completeness of BC±I

For the braided term xs(1),xs(2), . . . ,xs(n) ` [s]M, we have

[s]M =βη dse(λx1 . . .xn.M)xs(1) . . .xs(n)

Thus any braided lambda term is equal to a planar lambda term (a term which does not involve the braid
rule) enriched with C+ and C−. In particular, for combinators we have

Theorem 4 Any closed term of the braided lambda calculus is βη-equal to a combinator generated by
B, I, C+ and C−.

This, in the context of combinatory logic, can be thought as a combinatory completeness. Indeed, we
have the following translation (−)[from the braided lambda calculus to BC±I-terms.

x[≡ x (M N)[≡ M[N[(λx.M)[≡ λ ∗x.M[

([s]M)[≡ dse(λ ∗x1 . . .xn.M[)xs(1) . . .xs(n) (cxt(M) = x1, . . . ,xn)

λ ∗x.x ≡ I λ ∗x.PQ ≡
{

C+ (λ ∗x.P)Q (x ∈ fv(P))
BP(λ ∗x.Q) (x ∈ fv(Q))

(To be precise, this determines a translation on terms modulo βη-equality, because Lemma 1 and Propo-
sition 1 define dse only up to βη-equality. For instance, e = σ1σ

−1
1 in B2 and dee = λ f xy. f xy while

dσ1σ
−1
1 e= BC+C−, and they are βη-equal.)

Therefore it is possible to formulate a braided combinatory logic with constants B, C±, I and an
appropriate set of axioms (say A) ensuring (i) M =A M′ implies λ ∗x.M =A λ ∗x.M′ and (ii) s = s′

in Bn implies dse =A ds′e. Below we present axioms which are sound for the βη-equality; among
them, the last two axioms correspond to the Reidemeister moves. Finding a complete (hopefully finite)
axiomatization (which should contain or imply these axioms and satisfy (i) and (ii) above) is left as future
work.

IM = M BLM N = L(M N)
B(BM N) = B(BM)(BN) BB(BM) = B(B(BM))B

BI = I BM I = M

C±LM N = LN M (M or N closed)
C± (BBM)I = M

Cα (BCβ (B(BB)M))I = M (α,β ∈ {+,−})
BC±C∓ = I

BC± (B(BC±)C±) = B(BC±)(BC± (BC±))

M. Hasegawa 7

4 Semantics

4.1 Categorical models

A model of the braided lambda calculus (without η) can be given by an object X in a braided monoidal
closed category [8] such that the internal hom [X ,X] is a retract of X . An extensional model (i.e.,
validating η) is given by an X such that [X ,X] is isomorphic to X .

There are plenty of braided monoidal closed categories in the literature — many of them found
in the context of representation theory of quantum groups [13]. However, finding a braided monoidal
closed category with a non-trivial reflexive object is not easy — impossible if we stick to finite dimen-
sional linear representations, as the dimension of [X ,X] is strictly higher than that of X unless X is
one-dimensional. Below we present models using braided relational semantics [7] where the problem of
dimensions disappear.

4.2 A crossed G-set model

Fix a group G = (G,e, ·,(−)−1). Recall that a crossed G-set [14] is a set X equipped with a G-action
• : G×X → X and a valuation map | | : X →G satisfying |g•x|= g|x|g−1 for g ∈G and x ∈ X . There is
a ribbon category [12, 13] XRel(G) whose objects are crossed G-sets and a morphism from (X ,•, | |) to
(Y,•, | |) is a binary relation r ⊆ X ×Y between X and Y such that (x,y) ∈ r implies |x| = |y| as well as
(g• x,g• y) ∈ r for any g ∈ G [7]. The dual of a crossed G-set X = (X ,•, | |) is X∗ = (X ,•, | |−1). The
tensor of X = (X ,•, | |) and Y = (Y,•, | |) is X ⊗Y = (X ×Y,(g,(x,y)) 7→ (g • x,g • y),(x,y) 7→ |x||y|).
Below we will give a crossed G-set T such that the internal hom [T ,T] = T ⊗T ∗ is a retract of T ,
which forms a model of the braided lambda calculus.

Let T be the set of binary trees whose leafs are labelled by G’s elements (or the implicational
formulas generated from G):

t ::= g | t (t (g ∈ G)

T is a crossed G-set with the valuation | | : T → G given by |g| = g and |x (y| = |x||y|−1 and the
G-action • : G×T →T given by

g•h = ghg−1 (h ∈ G), g• (x (y) = (g• x) (

(g• y)

Moreover the map ϕ : T ×T →T sending (x,y) to x (y gives a morphism

ϕ = {((x,y),x (y) | x,y ∈T } : T ⊗T ∗→T

in XRel(G), with a right inverse {(x (y,(x,y)) | x,y ∈ T } : T → T ⊗T ∗. It follows that we can
model the untyped braided lambda calculus (without η) using T as follows. A term x1, . . . ,xn ` M is
interpreted as a relation r from T n to T such that ((u1, . . . ,un),a) ∈ r implies |u1| · · · |un| = |a| as well
as ((g • u1, . . . ,g • gn),g • a) ∈ r for any g ∈ G. In particular, a closed term is interpreted as a subset of
{x ∈T | |x|= e} closed under the G-action.

[[x ` x]] = {(a,a) | a ∈T }
[[Γ ` λx.M]] = {(~u,b (a) | ((~u,a),b) ∈ [[Γ,x `M]]}
[[Γ,∆ `M N]] = {((~u,~v),b) | ∃a (~u,b (a) ∈ [[Γ `M]] & (~v,a) ∈ [[∆ ` N]]}
[[Γ′ ` [s]M]] = [[s]]; [[Γ `M]]

8 A Braided Lambda Calculus

where the interpretation [[σ]] of a braid σ is built from

[[]] = {((a,b),(|a| •b,a)) | a,b ∈T }
[[]] = {((a,b),(b, |b|−1 •a)) | a,b ∈T }

For instance, the braided C combinators are interpreted as

[[C+]] = {((z (|x|−1 • y) (x) (

((z (x) (y) | x,y,z ∈T }
[[C−]] = {((z (y) (|y| • x) (

((z (x) (y) | x,y,z ∈T }

4.3 An extensional crossed G-set model

Now we expand T to a crossed G-set of infinite binary trees. Let

D = { f : {0,1}∗→ G | f (w) = f (w0) · f (w1)−1}

D is a crossed G-set with | f |= f (ε) and (g• f)(w) = g · f (w) ·g−1. Its dual D∗ is identical to D except
the valuation | f | = f (ε)−1. There is an isomorphism ϕ : D ⊗D∗

'→ D induced by the bijective map
ϕ : D2→D given by

ϕ(f0, f1)(ε) = f0(ε) f1(ε)
−1

ϕ(f0, f1)(0w) = f0(w)
ϕ(f0, f1)(1w) = f1(w)

Note that ϕ−1(f)= (λw. f (0w),λw. f (1w)) holds. Also D ∼=D∗ with f 7→ f ∗=ϕ(λw. f (1w),λw. f (0w))
(thus f ∗(ε) = f (ε)−1, f ∗(0w) = f (1w) and f ∗(1w) = f (0w)). D is a model of the braided lambda cal-
culus validating the η equality. The interpretation of terms is essentially the same as the case of T , with
x (y replaced by ϕ(x,y).

Remark 2 (a two-objects ribbon category, and the tangled lambda calculus) Since D ∼= D∗ ∼= D ⊗
D , the full subcategory of XRel(G) with just D and the tensor unit I is a ribbon category. This also
means that, with D , we can interpret not just braids but also framed tangles (ribbons). Thus D is a
model of “tangled lambda calculus” in which we should be able to express a term involving tangles like

λ f xy.

�� ��
@@
��
����

f
y
x

f
x
y

(f yx)

Such a tangled lambda calculus is yet to be studied; defining a substitution already seems to be much
harder than the braided case. Also it might be more appropriate to use traced monoidal closed categories
[6] as semantic models rather than ribbon categories.

5 Conclusion

We introduced the syntax and semantics of an untyped braided lambda calculus. This work is part of our
on-going research on relating low-level codes and low-dimensional topology via categorical machineries.
Future work will include the typed variants, extension to the tangled lambda calculus, and applications
to novel computational models making use of braids, most notably topological quantum computation.

M. Hasegawa 9

Acknowledgements I thank Haruka Tomita for stimulating discussions related to this work. This
work was supported by JSPS KAKENHI Grant Numbers JP18K11165 and JST ERATO Grant Number
JPMJER1603, Japan.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien & J.-J. Lévy (1991): Explicit substitutions. J. Funct. Programming 1(4),

pp. 375–416, doi:10.1017/S0956796800000186.
[2] S. Abramsky (2007): Temperley-Lieb algebra: from knot theory to logic and computation via quantum me-

chanics. In L. Kauffman & S.J. Lomonaco, editors: Mathematics of Quantum Computing and Technology,
Taylor&Francis, pp. 415–458, doi:10.1201/9781584889007.

[3] E. Artin (1925): Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4, pp. 47–72, doi:10.1007/BF02950718.
[4] E. Artin (1947): Theory of braids. Ann. of Math. 48, pp. 101–126, doi:10.2307/1969218.
[5] A. Fleury (2003): Ribbon braided multiplicative linear logic. Mat. Contemp. 24, pp. 39–70.
[6] M. Hasegawa (2009): On traced monoidal closed categories. Mathematical Structures in Computer Science

19(2), pp. 217–244, doi:10.1017/S0960129508007184.
[7] M. Hasegawa (2012): A quantum double construction in Rel. Mathematical Structures in Computer Science

22(4), pp. 618–650, doi:10.1017/S0960129511000703.
[8] A. Joyal & R.H. Street (1993): Braided tensor categories. Adv. Math. 102(1), pp. 20–78,

doi:10.1006/aima.1993.1055.
[9] C. Kassel & V.G. Turaev (2008): Braid Groups. Graduate Texts in Mathemtics 247, Springer-Verlag,

doi:10.1007/978-0-387-68548-9.
[10] A. Kitaev (2003): Fault-tolerant quantum computation by anyons. Annals of Physics 303, pp. 3–20,

doi:10.1016/S0003-4916(02)00018-0.
[11] P.-A. Melliès (2018): Ribbon tensorial logic. In: Proceedings of the 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS2018), ACM, pp. 689–698, doi:10.1145/3209108.3209129.
[12] M.C. Shum (1994): Tortile tensor categories. J. Pure Appl. Algebra 93(1), pp. 57–110, doi:10.1016/0022-

4049(92)00039-T.
[13] V.G. Turaev (1994): Quantum Invariants of Knots and 3-Manifolds. Studies in Mathematics 18, De Gruyter,

doi:10.1515/9783110435221.
[14] J.H.C. Whitehead (1949): Combinatorial homotopy, II. Bulletin of the American Mathematical Society 55,

pp. 453–496, doi:10.1090/S0002-9904-1949-09213-3.
[15] N. Zeilberger & A. Giorgetti (2015): A correspondence between rooted planar maps and normal plain

lambda terms. Logical Methods in Computer Science 11(3), pp. 1–39, doi:10.2168/LMCS-11(3:22)2015.

http://dx.doi.org/10.1017/S0956796800000186
http://dx.doi.org/10.1201/9781584889007
http://dx.doi.org/10.1007/BF02950718
http://dx.doi.org/10.2307/1969218
http://dx.doi.org/10.1017/S0960129508007184
http://dx.doi.org/10.1017/S0960129511000703
http://dx.doi.org/10.1006/aima.1993.1055
http://dx.doi.org/10.1007/978-0-387-68548-9
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1145/3209108.3209129
http://dx.doi.org/10.1016/0022-4049(92)00039-T
http://dx.doi.org/10.1016/0022-4049(92)00039-T
http://dx.doi.org/10.1515/9783110435221
http://dx.doi.org/10.1090/S0002-9904-1949-09213-3
http://dx.doi.org/10.2168/LMCS-11(3:22)2015

	Introduction
	A braided lambda calculus
	Syntax of the calculus
	Equational theory
	Formal treatment of braids and substitution
	Rewriting and decidability

	Combinatory logic
	Representing braids by C
	Combinatory completeness of BCI

	Semantics
	Categorical models
	A crossed G-set model
	An extensional crossed G-set model

	Conclusion

