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Abstract

Coordination languages were introduced in the early 80’s as programming notations
to manage the interaction among concurrent collaborating software entities. Process
algebras have been successfully exploited for the formal definition of the semantics
of these languages and as a framework for the comparison of their expressive power.
We provide an incremental and uniform presentation of a collection of process cal-
culi featuring coordination primitives for the shared dataspace coordination model
(inspired by Linda, JavaSpaces, TSpaces, and the like). On the one hand, the incre-
mental presentation of the various calculi permits to reason about specific linguistic
constructs of coordination languages. On the other hand, the uniform presentation
of a family of related calculi allows us to obtain an overview of the main results
achieved in the literature on different (and unrelated) calculi.

Key words: process calculi, coordination models and languages, tuple spaces,
event notification, transactions

1 Introduction

In parallel and distributed computing systems, as also in the human com-
munity, the level of connectivity is dramatically increasing. In this new sce-
nario, the components of structured systems surely need to define new ways to
work, cooperate, and collaborate in their activities. The study of coordination
investigates strategies in order to obtain benefits from the new connecting
technologies.

The interdisciplinary study of coordination has been advocated for the first
time by Malone and Crowston in [32]. Their thesis is that the study of coordi-
nation structures analogous to those used in bee hives or ant colonies may be
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useful for certain aspects of human organizations, or that lessons learned about
coordination in biological and human systems could illuminate in the analysis
of the right tradeoffs between computing and communicating in distributed
computer systems.

In the area of computer science the terms coordination models and coordination
languages have been introduced by Gelernter and Carriero [26]. According
to their approach, a complete (concurrent) programming model should be
obtained as a combination of two separate pieces: the computation model
and the coordination model. At the beginning of the 80’s they introduced
the coordination language Linda [25], and its shared dataspace coordination
model, as a first proposal in this direction. Since then, dozens of coordination
languages and models have been defined (see, e.g., [42] for references). More
recently, Linda has received a renewed interest due to the introduction of
coordination middlewares, such as JavaSpaces [38] and TSpaces [46] produced
by Sun Microsystems and IBM, respectively, which are both based on the
shared dataspace coordination model.

The original Linda model exploits a common communication medium which
is a repository that can be accessed via a set of coordination primitives:

• Input/Output operations: asynchronous communication is realized by means
of a (conceptually shared) communication medium (called dataspace) that
is the actual place where all data exchanged by the coordinating processes
are delivered to and extracted from. A sender may proceed just after per-
forming an output operation which inserts the datum in the dataspace,
while the receiver can remove the datum at any time after that datum is in
the dataspace by performing an input operation. Hence, the asynchronous
communication between the sender and the receiver is realized by means of
two synchronous operations with the dataspace.

• Read operation: besides the input operation, also a non-consuming operation
which does not remove the read datum is provided.

• Conditional input/read predicates: these are non-blocking variants of the
remove and read operations; if the required datum is absent, the process is
not blocked and continues with a different alternative.

Several proposals for extending the original single shared dataspace coordi-
nation model of Linda have been presented. In this paper, we analyse some
of them which are particularly of interest when the shared dataspace model
is considered for the development of applications in open, large, distributed
systems.

• Event notification. Besides the data-driven coordination typical of Linda,
it may be very useful to include in a language an event-driven mechanism
of process activation. A process can register its interest in future arrivals
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of some objects and then receive communication of each occurrence of this
event.

• Blocking operations with timeouts. The operations of removal or reading of
an object can be weakened by expressing the deadline beyond which the
operation fails.

• Guaranteed duration of service. A datum inserted in the dataspace, as well
as the interest in an event notification, need not hold forever; in many cases
it is useful that the language has the capability to declare time bounds on
these operations and, even better, to re-negotiate such bounds if needed.

• Transactions. A set of coordination operations can be grouped in a trans-
action, and executed in such a way that either all of them succeed or none
of them is performed.

Most of these extensions have been first introduced and investigated in isola-
tion in separated proposals and, more recently, they have been all combined
in the JavaSpaces coordination service. For example, event notification has
been introduced in the context of shared dataspace coordination by the so
called reactive tuple spaces model supported by MARS [19] and TuCSoN [40]
as well as the WCL coordination language [45], which comprises the coordina-
tion primitive monitor , used to allow a process to receive a copy of all the data
(satisfying a certain pattern) which are already available in the dataspace, as
also of those which will be subsequently produced. Another shared dataspace
coordination language permitting to associate reactions to event is LIME [43]
which comprises two kinds of reactive mechanisms: the local one that permits
to execute and complete the program activated by the occurrence of an event
(thus blocking the access to the dataspace to other concurrent processes) and
the remote one according to which a reaction is activated after the occurrence
of the event and executed concurrently with the other processes accessing the
dataspace.

As far as timeouts are concerned, they have been investigated already in the
context of Objective Linda [31], a proposal for an object based coordination
infrastructure particularly suitable for open systems: they are the basic mech-
anism used to ensure that clients do not block forever waiting for servers which
are no more available. Finally, transactions were already present in Persistent
Linda [1], a proposal for making a Linda repository more similar to a database
in such a way that, e.g., extended matching mechanisms can be exploited in
order to perform more advanced queries on the actual state of the dataspace.

1.1 Paper contribution

In this paper we survey the main results achieved in more than a decade of
research about the investigation, using a process algebraic approach, of the
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foundations of shared dataspace coordination. In fact, before the exploita-
tion of process calculi, very little was done to define formally the semantics
of the proposed coordination languages. One may think that formalizing the
intended semantics of the coordination primitives is superfluous, as their se-
mantics could appear obvious. Unfortunately, this is not the case. In places,
the informal definition of these primitives in the available documentation is
sometimes ambiguous (e.g., variants of the same primitives exist in differ-
ent languages and even in the same language); this may have the effect of
giving too much freedom in the implementation choices, hence producing se-
mantically different implementations for a given language. Moreover, in the
absence of a formal semantics, awareness of the expressiveness capabilities of
the various primitives is often lacking, as well as methods for reasoning about
programs written with these primitives.

Process calculi have been exploited to solve the problems above permitting
to give a formal semantics to the coordination languages of interest. Such a
semantics fixes the actual interpretation of the primitives and can be a precise
guide for the implementor as well as a tool for reasoning about language
expressiveness and program properties. The main contribution of this paper is
to provide an incremental and uniform presentation of a collection of process
calculi featuring coordination primitives for the shared dataspace coordination
model (inspired by Linda, JavaSpaces, TSpaces, and the like). On the one
hand, the incremental presentation of the various calculi permits to reason
about specific linguistic constructs of coordination languages. On the other
hand, the uniform presentation of a family of related calculi allows us to
obtain an overview of the main results achieved in the literature on different
(and unrelated) calculi.

In order to concentrate on the coordination primitives, in the process calculi
that we present we abstract away from the concrete programming language in
which the coordination primitives are actually embedded (e.g., C or Fortran
for Linda, and Java for JavaSpaces and TSpaces). Another difference which
distinguishes the considered coordination languages is in the kind of data that
can be introduced in the dataspace: for example, Linda uses tuples (ordered
sequences of data) whilst JavaSpaces and TSpaces consider Java objects. In
order to be general, the process calculi that we present abstract also from the
structure of the data.

Figure 1 reports the collection of process calculi that we define and discuss in
this paper. The lines in Figure 1 simply denote language inclusion. We start
with a kernel calculus L comprising only read , take, and write operations used
to test the presence, consume, and produce data, respectively; then we enrich
the kernel calculus introducing in isolation test for absence operations L[∃],
event notification L[ntf], timeouts L[∆], leasing for timed services L[lsn],
and transactions L[txn]. We also define some calculi comprising more than
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L

L[lsn,ntf] L[txn,ntf]L[txn,∃]

L[ntf] L[∆] L[lsn]L[∃] L[txn]

Fig. 1. The process calculi defined in this paper.

one of these features: L[lsn,ntf] that combines leased resources and event
notification, L[txn,∃] that comprises transactions and test for absence opera-
tions, and L[txn,ntf] that includes both transactions and event notification.

Many other calculi can be easily obtained putting together the rules defining
the syntax and the semantics of the corresponding subcalculi. For example, a
calculus L[∃,ntf] (not formally defined in this paper) with test for absence
operations and event notification can be defined simply by combining the
syntax rules of L[∃] and those of L[ntf]. We anticipate that the unique
calculi which cannot be obtained as simple combination of subcalculi are those
comprising both transactions and timed primitives (timeout or leasing). The
reason is that we model transactions as executed atomically in a single move.
In presence of timed primitives, a less abstract approach should be taken,
in which the time required for the execution of the single actions inside a
transaction is counted. For this reason, the interplay between transactions
and timing issues is left for a separate analysis.

The collection of process calculi that we present permits us to perform a com-
parison of the basic features of the several calculi thus obtaining insights on
the differences and similarities among different sets of coordination primitives.
Throughout the paper many results of this kind are reported; for example, in
Section 4.3 you can find the description of an interesting hierarchy of expres-
siveness (see Section 1.2 for a description of the notion of expressiveness
that we consider) according to which event notification strictly increases the
expressive power of the basic read , write, and take coordination primitives,
whilst it remains strictly less expressive than the test for absence coordination
operations.

Another interesting outcome of our analysis is the clarification of some un-
addressed choices in the design of these languages which may influence the
overall behaviour. Throughout the paper many alternative design choices for
the same coordination primitives are discussed. Among them, the most inter-
esting is perhaps the comparison between two alternative semantics for the
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write operation, called ordered and unordered respectively. In Section 2.1 we
show that the two semantics are equivalent in the context of the kernel cal-
culus L. On the other hand, in Section 3.2 we show that there exists a strong
discrimination between these two semantics in the calculus L[∃] (which com-
prises also test for absence operators): namely, the calculus is Turing powerful
under the ordered semantics while this is not the case under the unordered
one.

1.2 Expressiveness in concurrency

As stated above, the various calculi that we present will be compared also
on the basis of their expressive power. Several notions of expressiveness for
concurrent languages are present in the literature, thus a clarification about
which we are going to consider is needed.

In the context of concurrent process calculi, there exists no absolute notion of
expressiveness equivalent to Turing completeness for sequential languages. The
main tool for the comparison of the relative expressive power of two calculi, for
instance L and L′, is given by the investigation of relative encodings of L into
L′ (and vice versa). Different notions of expressiveness differ in the constraints
imposed on properties of the encodings. Two kinds of constraints are usually
considered, syntactic and semantic constraints.

For instance, the modular embeddings considered in [7] imposes the following
syntactic constraint: the encoding should be a homomorphism with respect
to the composition operators of the source calculus (this constraint can be
considered only if the composition operators of L are present also in L′). As far
as semantic constraints are concerned, an interesting example is given by the
preservation of any reasonable semantics imposed in the encodings analysed
in [41]: a semantics is reasonable if it discriminates two systems S and S ′

whenever there exists a computation of S in which the intended observable
actions are different from the observables of any possible computation of S ′.

In this paper we consider different notions of expressiveness that can be used
to discriminate the considered calculi. The most relevant notion is based on the
decidability of properties such as the existence of a terminating computation
for the process P , denoted with P ↓, and the existence of an infinite compu-
tation for the process P , denoted with P ↑. We show that these properties are
decidable in some of the calculi, while they are not in other ones. Consider, for
instance, that P ↓ (resp. P ↑) is decidable in L while this is not the case for L′.
We can conclude that there exists no encoding from L into L′ that preserves
the existence of an finite (resp. infinite) computation. In this case, we do not
consider syntactic constraints but only semantic constraints: we distinguish
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two systems S and S ′ if one has a finite (resp. infinite) computation, while the
other one has not.

In some other minor cases, we consider different notions of expressiveness
inspired by the modular embeddings of [6]; we will describe the actually con-
sidered notion in the corresponding sections.

1.3 Structure of the paper

Most of the results that are discussed in this paper have been proved in related
work of the authors [10–15,17,18,48,47]: the main contribution of this paper is
in the homogeneous presentation and overview of these results. In this paper,
we usually report the results in an informal way giving more emphasis to
their impact on the design of coordination languages than to their technical
relevance. The reader interested in the details of the proofs of the results,
may refer to the related literature of the authors. In the conclusive section,
we report a detailed discussion about our previous work and its relation with
the present paper.

The paper is structured as follows: in Section 2 we introduce the kernel calcu-
lus, while in the Sections 3–7 we consider conditional predicates, event notifica-
tion, timeouts on blocking operations, leasing for timing service requests, and
transactions, respectively. Finally, Section 8 reports some concluding remarks
and a discussion about the related literature.

2 The Kernel Calculus: L

In this section we introduce the syntax and the operational semantics of a
calculus called L comprising the basic Linda-like coordination primitives for
producing, reading, and consuming data. This first calculus represents the
common root of Linda-like languages. For instance, it corresponds to the frag-
ment of JavaSpaces in which only the read, take, and write operations are
considered, and no features related to time are taken into account. The cal-
culus is a small variant of a previous calculus formerly presented in [10]. This
calculus is essentially an asynchronous version of CCS [35] without the choice,
the relabeling, and the restriction operators.

Let Data be a denumerable set of data ranged over by a, b, . . .; the names
in the set Data are used to denote the possible data that can be introduced
in and retrieved from the dataspace. Let Const be a set of program constants
ranged over by K , K ′, . . .; as we will show in the following, program constants
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(1) 〈a〉 a−→ 0 (2) write(a).P
τ−→ 〈a〉|P

(3) take(a).P
a−→ P (4) read(a).P

a−→ P

(5)
P

a−→ P ′ Q
a−→ Q ′

P |Q τ−→ P ′|Q ′
(6)

P
a−→ P ′ Q

a−→ Q ′

P |Q τ−→ P |Q ′

(7)
P

α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ,

√
(8)

P
α−→ P ′ K = P

K
α−→ P ′

Table 1
Operational semantics of L (symmetric rules of (5)–(7) omitted).

τ−→ internal/silent action

ā−→ offer an instance of datum a to the environment

a−→ consume an instance of datum a from the environment
a−→ test the presence in the environment of datum a

Table 2
Labels used in the operational semantics of L.

are used for program definitions.

Let Conf ranged over by P , Q , . . . be the set of the possible configurations
defined by the following grammar:

P ::= 〈a〉 | C | P |P
C ::= 0 | µ.C | C |C | K

where:

µ ::= write(a) | read(a) | take(a)

Programs are represented by terms C containing the coordination primitives;
the dataspace is modeled by representing each of its data a with a term 〈a〉.

The symbol C is used in the following to range over programs; it is worth
stating here that sometimes we will also use P to denote programs; however,
this is not an incorrect use of the notation because each program C is also a
valid configuration, and P is used to range over configurations.

A configuration is composed of some programs and some available data com-
posed in parallel using the composition operator |. A program can be a termi-
nated program 0 (which is usually omitted for the sake of simplicity), a prefix
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form µ.P , the parallel composition of subprograms, or a program constant K .

A prefix µ can be one of the primitives write(a), which introduces a new
datum 〈a〉 inside the data repository, read(a), which tests for the presence
of an instance of datum 〈a〉, and take(a), which consumes an instance of
datum 〈a〉. The last two primitives are blocking, in the sense that a program
performing one of them cannot proceed until the operation is successfully
completed. For example, a process read(a).P can perform no move, because
no instances of datum a are present. On the other hand, the process write(a).P
can always perform a τ move and produce a new datum 〈a〉, regardless of the
contents of the dataspace.

Constants are used to permit the definition of programs with infinite be-
haviours. We assume that each constant K is equipped with exactly one
definition K = C ; as usual we assume also that only guarded recursion is
used [35].

The semantics of the language is described via a labelled transition system
(Conf , Label , −→) where Label = {τ} ∪ {a, a, a | a ∈ Data} (ranged over
by α, β, . . .) is the set of the possible labels. The meaning of the labels is
explained in Table 2. As usual, the labelled transition relation −→ is the least
one satisfying the axioms and rules in Table 1. For the sake of simplicity we
have omitted the symmetric rules of (5) − (7).

Axiom (1) indicates that 〈a〉 is able to give its contents to the environment by
performing an action labelled with a. Axiom (2) describes the output opera-
tion: in one step a new datum is produced. Axiom (3) associates to the action
performed by the prefix in(a) a label a, the complementary of a, while axiom
(4) associates to a read(a) prefix a label a.

Rule (5) is the usual synchronization rule; while rule (6) deals with the new
label a representing a non-consuming operation: in this case the term per-
forming the output operation (labelled with a) is left unchanged as the read
operation does not consume the datum tested for presence. Rule (7) is the
usual local rule. 1 The last rule (8) allows a program constant K defined by
K = C to perform the same actions of its definition C .

We define a reduction step, denoted with P −→ P ′, as a computation step
corresponding to a transition that can be performed by a stand-alone program
(i.e. a program without an actual context); for the kernel calculus a reduction
step corresponds to a transition labelled with τ , i.e., P −→ P ′ if P

τ−→ P ′;
by −→∗ we mean the reflexive and transitive closure of −→ . A configuration

1 Note that, for reuse of the rule, we have added to rule (7) a side condition which
requires that label α is different from some kinds of label that will be introduced in
the following sections.
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P is terminated, denoted with P −→/ , if it has no outgoing reductions; a
configuration has a terminating computation, denoted with P ↓, if P −→∗

P ′ −→/ . A configuration P has an infinite computation, denoted with P ↑
when it has an infinite sequence of reduction steps, formally, if for each natural
number i there exists Pi such that P0 = P and Pi −→ Pi+1 for any index i ≥ 0.

It is worth noting that, due to nondeterminism, a program P may have several
computations, possibly both finite and infinite ones. Formally, it could be the
case that both P ↓ and P ↑ hold.

2.1 Unordered Semantics

The semantics we have defined assumes that the programs are synchronous
with the dataspace, in the sense that the emitted datum is available inside
the data repository when the write operation terminates (see rule (2)). Other
possible implementations have been considered in the literature (see, e.g., [11]
for a discussion). Among them, one of the most interesting alternative inter-
pretations assume that the processes are asynchronous with the dataspace,
hence an emitted datum becomes available only after an unpredictable delay.

In [11] we have called ordered the former semantics (because the order of
emission is respected in the introduction of the data in the repository) and
unordered the latter (because the order is not respected).

The unordered semantics can be modeled simply by extending the language
with a new prefix representing the asynchronous output operation writeu hav-
ing the following semantics:

(2′u) writeu(a).P
τ−→ 〈〈a〉〉|P (2′′u) 〈〈a〉〉 τ−→ 〈a〉

where 〈〈a〉〉 is an auxiliary term to be added to Conf in order to model data
which have been already sent but which have not yet reached the shared
repository.

The ordered and the unordered alternative semantics for the write operations
have been analyzed in [12] in the presence of operations able to test the absence
of data in the shared repository; in that paper we prove the existence of an
expressiveness gap between the two semantics which will be discussed in the
following section. On the other hand, it is interesting to observe that the
expressiveness gap does not hold for the kernel calculus.

Namely, in Appendix A.1 the proof that for the kernel calculus L the ordered
and unordered approaches are equivalent under the weak bisimulation equiv-
alence [35] is reported, a typical equivalence relation which does not take into
account unobservable steps labelled with τ .
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2.2 Expressive Power

The kernel calculus is not Turing powerful. This result is a consequence of a
result we have proved in [12], where we have shown that under the unordered
semantics for the write operation the existence of a terminating computation
is decidable for a calculus which is essentially an extension of the kernel calcu-
lus. Hence, termination is decidable for the kernel calculus provided that the
semantics of the write operation is the unordered one.

If we want to extend this result to the ordered semantics, the weak bisimilarity
between the ordered and unordered semantics proved in Appendix A.1 is not
enough because weak bisimulation does not preserve the termination of pro-
cesses. 2 For this reason, in order to state that the ordered and the unordered
semantics are equivalent in L also from the point of view of the termination of
processes, we need a further result which is proved in Appendix A.2. Given this
further result, we can conclude that the existence of a terminating computa-
tion is decidable for processes of the kernel calculus L also when the semantics
for the write operation is that given by the ordered interpretation.

Note that this result – namely, the decidability of the existence of a terminating
computation for the kernel calculus – is not in contrast with the result proved
in [10]. In that paper we provided an encoding of Random Access Machines
(RAMs) – a Turing powerful formalism – in a variant of the kernel calculus
extended with the restriction operator. Indeed, in the RAMs encoding in [10]
the presence of restriction (that is absent in the kernel calculus of this paper)
turns out to be a key ingredient to obtain Turing equivalence.

3 The Calculus with Test for Absence: L[∃]

In this section we extend the kernel calculus with two further coordination
primitives read∃ and take∃ which are non-blocking variants of the read and
take operations, respectively. These operations behave like the corresponding
read and take only if the required datum is present; otherwise, they terminate
by indicating the impossibility to find the required data.

These two coordination primitives are inspired by the predicative versions of
the input and read operations available in Linda: differently from the stan-
dard input and output operations, the predicative version are nonblocking

2 As a counter-example, consider the two weakly bisimilar CCS processes,
rec X .τ.X , which performs an infinite sequence of unobservable τ actions, and the
terminated process 0.

11



(1) 〈a〉 a−→ 0 (2) write(a).P
τ−→ 〈a〉|P

(3) take(a).P
a−→ P (4) read(a).P

a−→ P

(5)
P

a−→ P ′ Q
a−→ Q ′

P |Q τ−→ P ′|Q ′
(6)

P
a−→ P ′ Q

a−→ Q ′

P |Q τ−→ P |Q ′

(7)
P

α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ,

√
(8)

P
α−→ P ′ K = P

K
α−→ P ′

(9) take∃(a)?P Q
a−→ P (10) take∃(a)?P Q

¬a−→ Q

(11) read∃(a)?P Q
a−→ P (12) read∃(a)?P Q

¬a−→ Q

(13)
P

¬a−→ P ′ Q
a−→/

P |Q ¬a−→ P ′|Q

Table 3
Operational semantics of L[∃] (symmetric rules of (5)-(7) and (13) omitted).

and, in case there is no matching tuple available, returns the boolean value
false. Moreover, the two primitives we add here are simplified versions of the
readIfExists and takeIfExists operations of JavaSpaces where timeout is not
considered. Timeouts can be associated to the readIfExists and takeIfExists
operations of JavaSpaces in order to define a maximum amount of time for
which the operation will wait for concurrent transactions to settle. Transac-
tions are discussed in Section 7.

Formally, the two new operations are introduced as guards for a new type
of programs with two possible continuations. The new syntax is defined as
follows:

P ::= 〈a〉 | C | P |P
C ::= 0 | µ.C | η?C C | C |C | K

where:

µ ::= write(a) | read(a) | take(a)

η ::= read∃(a) | take∃(a)

The new set of terms is denoted by Conf [∃]. The behaviour of the new kind
of program η?P Q is defined as follows: the first continuation P is chosen if
the requested datum is available in the data repository; in this case the non-
blocking operation behaves exactly as the corresponding blocking one. On the
other hand, if no instance of the requested datum is currently available, the
second continuation Q is chosen and the dataspace is left unchanged.
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¬a−→ suppose that the environment contains no instances of datum a

Table 4
New labels used in the operational semantics of L[∃].

The operational semantics is defined by extending the set of labels as follows
Label [∃] = Label∪{¬a | a ∈ Data}. The meaning of the new label is explained
in Table 4. The operational semantics of L[∃] is defined by the labelled tran-
sition system (Conf [∃], Label [∃], −→) where the labelled transition relation
−→ is the least one satisfying the axioms and rules in Table 3. For the sake of
simplicity we have omitted the symmetric rule of (13). Observe that the side
condition of the locality rule (7) now comes into play due to the presence of
the label ¬a.

Axioms and rules (1)–(8) are exactly the same as those reported in the Table 1.
The new axioms (9) and (10) describe the semantics of take∃(a)?P Q : if the
required 〈a〉 is present, it can be consumed (axiom (9)); otherwise, in the case
〈a〉 is not available, its absence is asserted by performing an action labelled
with ¬a (axiom (10)). Axioms (11) and (12) are the corresponding ones for
the read∃(a) operator; the only difference is that a is used instead of a.

As observed above, the locality rule (7) is not valid for the label ¬a; indeed,
an action of this kind can be performed only if no datum 〈a〉 is available in
the dataspace, i.e., no actions labelled with a can be performed by the terms
in the environment. This is exactly what is stated by the rule (13). 3

The definition of the reduction relation should be revisited for the calculus
L[∃] in order to take into account also the new label ¬a. This new label
has been introduced in order to provide the test for absence operators with a
structured operational semantics. However, a stand-alone process may perform
transitions labelled with ¬a as well as transitions labelled with τ . Indeed, if
P

¬a−→ P ′ this means that no 〈a〉 is available in P , thus the test for absence
operation represented by the transition may be executed. Formally, P −→ P ′

if P
τ−→ P ′ or P

¬a−→ P ′.

3 Note that rule (13) uses a negative premise. However, the operational semantics is
well defined, because the transition system specification is strictly stratifiable [27],
a condition that ensures (as proved in [27]) the existence of a unique transition
system agreeing with it. Also the calculi that will be presented in the following
sections contain rules with negative premises: they are well defined because the
transition system specifications are stratifiable as well.

13



3.1 Unordered Semantics

In Section 2.1 we have presented the alternative unordered semantics for the
write operation, and we have proved that the ordered and unordered seman-
tics are weakly bisimilar in the kernel calculus. It is interesting to observe that
the weak bisimulation (which is a congruence for the kernel calculus, see the
discussion in Appendix A.1) is no longer a congruence for the new calculus
with test for absence L[∃]. As a counter-example consider the two following
weakly bisimilar programs:

write(a).write(b) writeu(a).writeu(b)

If the two above programs are put in parallel with the program:

read(b).read∃(a)?0 write(c)

we obtain the two configurations:

write(a).write(b) | read(b).read∃(a)?0 write(c)

writeu(a).writeu(b) | read(b).read∃(a)?0 write(c)

These two configurations cannot be considered equivalent because the first
cannot produce 〈c〉, while the second can: it is enough that 〈b〉 becomes avail-
able before 〈a〉.

This example shows that in the new calculus L[∃] no reasonable observational
congruence could equate the ordered and the unordered semantics. More
precisely, no observational congruence that permits to observe the fact that
a datum will be produced in the dataspace – after performing some internal
move – could equate the two semantics.

3.2 Expressive Power

From the point of view of the expressive power, it is interesting to observe
that the new calculus L[∃] is Turing powerful. This result is proved in [12]
by showing how to simulate Random Access Machines (a Turing powerful
formalism) in a calculus corresponding to L[∃]. This result has the following
consequence: there exists no computable encoding of L[∃] into L (i.e., of the
test for absence operation in terms of the read , take, and write operations)
that preserves at least the terminating behaviour of programs.

Another interesting result proved in [12] is the existence of a further dis-
crimination between the ordered and unordered interpretations for the write
operation besides that discussed in Section 3.1. While L[∃] is Turing powerful
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according to the ordered semantics, it is not so according to the unordered
interpretation. Namely, in [12] we prove that the existence of a terminating
computation is not decidable under the ordered semantics, while this is the
case under the unordered one.

4 The Calculus with Event Notification: L[ntf]

In this section we extend the kernel calculus with an event notification mech-
anism inspired by the notify primitive of JavaSpaces [38]. Event notification
is achieved in JavaSpaces declaring a pair composed by a template and one
listener. Once declared one of these pairs, each introduction in the space of
new instances of tuples matching with the template are notified to the listener
that reacts by activating a new process. We extend our calculus with the new
term on(a,C ) that models a pair composed by a template represented by a
and a listener represented by C .

The syntax of the kernel language is simply extended by permitting the new
prefix notify(a,C ) plus the new term on(a,C ) which will be discussed in the
following:

P ::= 〈a〉 | on(a,C ) | C | P |P
C ::= 0 | µ.C | C |C | K

where:

µ ::= write(a) | read(a) | take(a) | notify(a,C )

The new set of configurations is denoted with Conf [ntf ]. The new prefix op-
eration notify(a,C ) is used by programs interested in the future incoming
arrivals of the data of kind a; every time a new instance is produced, the
reaction C should be activated. To model this behaviour we introduce the
new term on(a,C ). This term represents a listener who spawns an instance
of program C every time a new datum 〈a〉 is introduced into the dataspace.
The listeners on(a,C ) cannot occur in initial configurations, as it is reason-
able to assume that they can be produced only as effect of the execution of a
notify(a,C ) operation. Note the difference between a listener on(a,C ) and
a process notify(a,C ).P : while the notify(a,C ) action of the latter process
produces a new instance of a listener on(a,C ) – and does not react to any
event – the listener on(a,C ) does not perform any action, but only reacts to
event of production of a new instance of datum a.

The labels for the new calculus are given from the set Label [ntf ] = Label ∪
{ȧ, ~a | a ∈ Data}. The meaning of the new label is explained in Table 6.
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(1) 〈a〉 a−→ 0 (2′) write(a).P
~a−→ 〈a〉|P

(3) take(a).P
a−→ P (4) read(a).P

a−→ P

(5)
P

a−→ P ′ Q
a−→ Q ′

P |Q τ−→ P ′|Q ′
(6)

P
a−→ P ′ Q

a−→ Q ′

P |Q τ−→ P |Q ′

(7)
P

α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ,

√
(8)

P
α−→ P ′ K = P

K
α−→ P ′

(14) notify(a,Q).P
τ−→ on(a,Q)|P (15) on(a,P)

ȧ−→ P |on(a,P)

(16)
P

ȧ−→ P ′ Q
ȧ−→ Q ′

P |Q ȧ−→ P ′|Q ′
(17)

P
ȧ−→ P ′ Q

ȧ−→/

P |Q ȧ−→ P ′|Q

(18)
P

~a−→ P ′ Q
ȧ−→ Q ′

P |Q ~a−→ P ′|Q ′
(19)

P
~a−→ P ′ Q

ȧ−→/

P |Q ~a−→ P ′|Q

Table 5
Operational semantics of L[ntf] (symmetric rules of (5)–(7) and (17)–(19) omitted).

~a−→ occurrence of the event “creation of a new datum a”

ȧ−→ a listener on the event “creation of a new datum a” is woken

Table 6
New labels used in the operational semantics of L[ntf].

The operational semantics is provided, similarly to the previous calculi, by the
labelled transition system (Conf [ntf ],Label [ntf ],−→) where −→ is defined by
the axioms and rules in Table 5 (we omit the symmetric rules of (5)–(7) and
(17)–(19)). Observe that a new rule (2′) is substituted for the rule (2). Observe
also that the side condition of the locality rule (7) comes into play for the new
calculus L[ntf] due to the presence of the labels ~a and ȧ.

The new labels ~a and ȧ represent the occurrence and the observation respec-
tively of the event “creation of a new datum a”. This event occurs when a new
datum is introduced into the shared dataspace. For this reason we change the
label associated to the execution of the write(a) operation from τ to ~a (see
the new rule (2′)). The other axioms and rules from (1) to (8) are exactly the
same as those for the kernel calculus L.

The new axiom (14) indicates that the notify(a,P) prefix produces a new
instance of the term on(a,P). This term has the ability to spawn a new
instance of P every time a new 〈a〉 is produced; this behaviour is described
in axiom (15) where the label ȧ is used to describe this kind of computation
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step.

Rules (16) and (17) consider actions labelled with ȧ indicating the interest
in the incoming instances of 〈a〉. If one program able to perform this kind
of action is composed in parallel with another program registered for the
same event, then their local actions are combined in a global one (rule (16));
otherwise, the program performs its own action locally (rule (17)). Rules (18)
and (19) deal with two different cases regarding the label ~a indicating the
arrival of a new instance of 〈a〉. If terms waiting for the notification of this
event are present in the environment, then they are woken-up (rule (18)),
otherwise, the environment is left unchanged (rule (19)).

The introduction of the new labels ~a and ȧ requires the redefinition of the
reduction relation. A step labelled with ~a corresponds to a write operation
which can be performed by stand-alone programs independently of the envi-
ronment. On the other hand, a step labelled with ȧ requires that a particular
event occurs in the environment. Thus, it is reasonable to use the following

definition: P −→ P ′ if P
τ−→ P ′ or P

~a−→ P ′.

4.1 Example of a Client/Server System

As an example of use of the notify primitive, we consider a simple client/server
system where clients ask for services producing data 〈request〉, and a server
reacts to service requests by consuming these data and by producing a reply
〈service〉. The complete system is defined as follows:

Clients&Server = notify(request , Server).(Client1 | . . . | Clientn)

Clienti = write(request).take(service)

Server = take(request).write(service)

As its first operation, the server is created by executing a notify(request , Server)
operation. More precisely, this operation generates the term on(request , Server).
At the same time, several clients, Client1 . . .Clientn , are spawned. Each one of
these clients simply produces a request and then waits for a service. Each time
a 〈request〉 is produced, the listener on(request , Server) spawns an instance of
program Server . This program consumes the datum 〈request〉 and produces a
corresponding datum 〈service〉.

Observe that the notification mechanism allows the concurrent execution of
more than one server; this happens if a request is produced before the previous
one is served. According to this observation, we can say that we model a multi-
threaded server.
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4.2 Best-effort Semantics

The synchronisation between the action ~a and ȧ is modeled as a synchronous
multicast. When an action ~a occurs, it synchronizes with all the possible ac-
tions ȧ that the environment may perform. The fact that all the interested lis-
teners are involved in the synchronization is ensured by the negative premises
of the rules (17) and (19) and by the side condition α 6= ȧ of the locality rule
(7). In this way, we model a reliable notification service. On the other hand,
an event notification mechanism may be a best-effort service, that is, it is not
ensured that all the registered listeners are notified of the occurrence of an
event. This happens, e.g., in JavaSpaces [38] where no guarantee is provided
by the event notification mechanism.

We can model a best-effort event notification service simply by removing the
negative premise of the rules (17) and (19). This modification permits, e.g.,
to the term write(a)|on(a,P)|on(a,Q) to perform a synchronization between
simply the first and the second program (without involving the third one), thus
reaching the configuration 〈a〉|on(a,P)|P |on(a,Q) where only one reaction
(the program P) is activated.

4.3 Expressive Power

Regarding the expressiveness of the event notification mechanism introduced
by the notify operation, we first observe that it embeds an implicit form of
recursion; then, we address the problem of implementing the event notifica-
tion mechanism in the process calculi introduced in the previous sections.
Moreover, we report observations concerning the alternative unordered and
best-effort semantics.

4.3.1 Recursion

The notify primitive permits us to describe processes with an infinite be-
haviour without being forced to use recursive definitions. This because the
listener on(a,P), which is the result of a notify(a,P) operation, is able to re-
peatedly produce a new instance of program P every time the corresponding
event occurs. For example, this mechanism can be exploited to simulate the
behaviour of a term which recursively renames all data 〈a〉 in 〈b〉 using the
following non-recursive definition:

Trans = notify(rec,Rename).write(rec)

Rename = take(rec).take(a).write(b).write(rec)
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where the datum rec is used to repeatedly activate an instance of the renaming
program Rename. More precisely, a renaming program produces a new datum
rec before terminating in order to activate a new instance of Rename. Observe
that the Trans program must produce the first rec datum in order to activate
the first instance of the program Rename.

4.3.2 Comparing L[ntf] with L[∃] and L

Another interesting question on the expressiveness of the notify primitive con-
cerns the possibility to encode it in the process calculi introduced in the pre-
vious sections. The answer to this question has been given in [18], where we
showed an interesting hierarchy of expressiveness: the notify primitive strictly
increases the expressiveness of a calculus which corresponds to the kernel cal-
culus L, but it is strictly less expressive than the test for absence operations
of the calculus L[∃].

More precisely, we can summarize the results in [18] as follows (we recall that
P ↓ means that P has a finite computation while P ↑ means that P has an
infinite computation):

(i) Event notification cannot be encoded with only take, write, and read op-
erations; this is proved by showing that the property P ↓ is decidable in a
calculus corresponding to the kernel calculus L, while such a property is not
decidable in L[ntf].

(ii) Event notification can be encoded by using also the test for absence mech-
anism. This means that it is possible to map each system in L[ntf]

to a system in L[∃] that has an equivalent behaviour (see [18] for more
details). This is proved by presenting a rather complex encoding which
implements the write operation with a protocol based on three separated
phases: first it is necessary to count the number of registered listeners, then
it is required to communicate to each of them the occurrence of an inter-
esting event, and finally it is necessary to wait for an acknowledgement
from each of the notified listeners. According to the terminology of [16],
this encoding is open: an encoding [[P ]] is open if [[P ]] = [[[P ]]]|∏a∈n(P) Ra

where n(·) is the set of names occurring in P and [[[·]]] is a homomorphism
with respect to parallel composition. Even if an open encoding is not a ho-
momorphism with respect to parallel composition, it satisfies the following
property: [[P |Q ]] = [[P ]]|[[[Q ]]]|∏a∈n(Q)\n(P) Ra .

(iii) Test for absence cannot be encoded with take, write, and event notifica-
tion: this is proved by showing that the property P ↑ is not decidable in
a language corresponding to L[∃], while such a property is decidable in
L[ntf].

For the above reasons, we can conclude that the notify primitive strictly in-

19



write(a).R

on(a,P) on(a,Q)

dec(P) dec(Q)

dec(R)

writing(a,R)

<a>
waking(a,P) waking(a,Q)

Fig. 2. The net corresponding to on(a,P) | on(a,P) | on(a,Q) | write(a).R.

creases the expressive power of a shared dataspace coordination language with
only write, read , and take operations but it does not increase the expressive
power of a language comprising also test for absence operations.

4.3.3 Unordered Semantics

In a related paper [17] we have investigated the interplay between the ordered
and unordered interpretations of write in the presence of the notify primitive.
The most interesting results proved there are the following: (i) under the
ordered semantics, the calculus L[∃] is strictly more expressive than L[ntf],
whilst under the unordered semantics the vice versa holds (i.e., L[ntf] is
strictly more expressive than L[∃]); (ii) in the presence of the notify primitive
the ordered semantics can be encoded in terms of the unordered semantics.

4.3.4 Best-effort Semantics

Another interesting observation regarding the expressive power of the cal-
culus L[ntf] concerns the alternative best-effort semantics discussed in the
Section 4.2; here we discuss that under the best-effort semantics the termi-
nation property (i.e., P ↓) becomes a decidable property, thus the expressive
power strictly decreases.
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For the sake of space we simply sketch the idea we have followed in order
to prove that under the best-effort semantics the termination property (i.e.,
P ↓) is decidable. Following an approach similar to the one used in [18], it
is possible to define a function mapping terms of L[ntf] to Place/Transition
Petri nets [44] in such a way that the termination problem for L[ntf] under the
best-effort semantics is reduced to the deadlock problem for Place/Transition
Petri nets [44]. As the existence of a deadlock is decidable for such a class
of nets [9,20], we obtain the decidability of termination for L[ntf] with best-
effort semantics. More precisely, given a process P , it is possible to construct a
Petri net Net(P), and to map each process Q reachable from P (i.e., such that
P −→ ∗Q) to a marking dec(Q) of Net(P), satisfying the following properties:

• each transition performed by Q can be mimicked by a nonempty sequence
of transitions starting from the marking dec(Q) in Net(P);

• if a transition fires at marking dec(Q) in Net(P), leading to marking m ′,
then there exist a process Q ′′ such that Q −→ +Q ′′ (i.e., Q ′′ is reached from
Q by performing a nonempty sequence of steps) and dec(Q ′′) is reachable
from m ′ by performing a (possibly empty) sequence of transitions.

From the above properties it is easy to deduce that P terminates if and only
if Net(P) has a deadlock.

In Figure 2 we present a portion of net corresponding to the following process:

on(a,P) | on(a,P) | on(a,Q) | write(a).R

The picture shows the main difference between the Place/Transition Petri
nets semantics in [18] – where all listeners are notified of the occurrence of
the events of interest – and the nets used here for L[ntf] – where there is no
guarantee of notification. The basic idea is to decompose a process in its basic
components: data, listeners and prefixed terms. Each component of a process
is represented as a token in the marking of the net. When the subprocess
write(a).R performs the write operation, a token in place writing(a,R) –
corresponding to an intermediate phase of the write operation – is produced.
During this intermediate phase, a number of listeners (but not necessarily
all of them) can be woken, by moving a token, e.g., from place on(a,P) to
the corresponding place waking(a,P). After some (possibly no or all) listener
has been woken up, the write operation is concluded: the token from place
writing(a,P) is removed, the new datum a is produced (by putting a token
in place 〈a〉) and the tokens corresponding to process R (denoted by dec(R))
are produced. The presence of a token in place, e.g., waiting(a,P) enables a
transition that produces the tokens corresponding to process P , as well as a
token in place on(a,P), thus reactivating the corresponding listener.
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5 The Calculus with Timeout: L[∆]

In this section we model and analyse timeouts as a mechanism to obtain non-
blocking versions of the read and take operations which do not require the
ability to perform a test for absence of the required data in the dataspace.
The idea is to associate with each execution of a read or take operation the
indication of a time interval (which is used as a timeout). When the timeout
expires, the operation fails and terminates. In the modeling of the timed
out versions of the primitives, we have been inspired by the read and take
operations of JavaSpaces. Indeed, they permit to include as an additional
parameter a timeout that indicates the maximum amount of time to wait for
matching entries to be read or consumed.

Syntactically, the new operations read(a, t) and take(a, t) are introduced where
t denotes the time interval indicating the timeout. We will use these operations
as guards of if-then-else terms (e.g., read(a, t)?P Q) where the first continua-
tion is chosen when the operation succeeds, otherwise the second continuation
is activated.

It is worth noting that a read or a take operation with timeout may fail due
to two possible reasons: (i) no instance of the required datum is present in
the data repository when the timeout expires, (ii) no instance of the required
datum is found, even if present, in the data repository before the timeout
expires. The condition (ii) may occur, e.g., in distributed implementation of
the data repository where the test for presence of a datum may be delayed by
the temporary disconnection of some servers.

As an example, consider the configuration

〈a〉 | read(a, 2)?0 write(b)

in which a datum 〈a〉 is available and a program requires to read it under a
timeout interval equal to 2. It could happen that the datum cannot be accessed
by the program before the timeout expiration; in this case the operation fails
and the datum 〈b〉 is produced.

It is also interesting to note that when an operation with timeout fails, the
program which performed the operation does not know for which of the two
possible reasons, thus it cannot conclude anything about the presence or ab-
sence of the required datum.

The use of timeouts seems particularly useful when the dataspace service is not
reliable. Consider, as an example, a dataspace server which crashes during the
execution of a blocking read or take operation performed by a client. Usually,
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this client is blocked until the server recovers. On the other hand, if timeouts
are associated to the read or take operation the client may be resumed at the
end of the timeout, independently of the state of the crashed dataspace server.

The way we represent time is inspired by the modeling of time adopted in
standard implementations of shared dataspaces (e.g., in JavaSpaces): the cur-
rent time is represented by an integer which is incremented periodically (e.g.,
each millisecond). A timeout is expressed in terms of a number of time periods
(e.g., a number of milliseconds). If an operation with an associated timeout t
starts its execution when the current time is c, then its timeout will expire at
the end of the time period with current time c + t .

In our process calculus we obtain an equivalent representation of the passing
of time without exploiting an explicit value for the current time: we simply
use, for each of the currently active timeouts, a value representing the number
of basic time periods which remain before the elapsing of the timeout. At the
end of each basic time period, all these numbers are decremented. When the
number corresponding to a timeout becomes 0, this means that the timeout
will elapse at the end of the current basic time period.

Speaking formally, we use transitions labeled with
√

in order to model the
modification induced on a configuration by the elapsing of a basic time interval:

P
√

−→ P ′ states that the configuration P becomes P ′ due to the fact that the
a basic time period has elapsed.

As an example, consider the following possible computation of the configura-
tion discussed above.

〈a〉 | read(a, 2)?0 write(b)
τ−→ 〈a〉 | read(a)2?0 write(b)

√
−→

〈a〉 | read(a)1?0 write(b)
√

−→ 〈a〉 | read(a)0?0 write(b)
√

−→
〈a〉 | write(b)

τ−→ 〈a〉 | 〈b〉

The first transition corresponds to the beginning of the execution of the read
operation. We use the notation read(a)2 to indicate that a read(a) operation
is currently under execution with a remaining timeout period 2. After three
transitions labelled with

√
the read operation fails; thus the second continu-

ation is activated, and finally the datum 〈b〉 is produced.

It is worth noting that we have to deal with two kinds of terms inside con-
figurations: those sensitive to the passing of time and those which are not.
For example, the datum 〈a〉 in the example above is not influenced by the
transitions labeled with

√
.

A term sensitive to the passing of time can be discriminated by one term
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which is not, simply by observing if it has outgoing transitions labelled with√
.

As discussed above, we use the terms read(a)t?P Q (resp. take(a)t?P Q)
to represent an operation read(a) (resp. take(a)) under execution with an
associated remaining timeout t . These kind of terms cannot appear as an
initial program of a configuration: they can be introduced only as the result
of the beginning of the execution of a read (resp. take) operation. The term
read(a, t)?P Q is not sensitive to the passing of time until the execution
of the take operation starts its execution: this is represented by the tran-
sition take(a, t)?P Q

τ−→ take(a)t?P Q . The index t will be subsequently
decreased each time a transition labelled with

√
is performed.

We introduce the notation ηt?P Q to denote either the term take(a)t?P Q or
the term read(a)t?P Q . The duration t is taken from the set of time intervals
Time, ranged over by t , t ′, . . ., which contains all the natural numbers plus a
special symbol ∞ used to represent an infinite time interval. An infinite time
interval never expires; we model this simply by assuming ∞− 1 = ∞.

To be as general as possible, we do not make any assumption on the number
of operations that may be performed during a basic time period, i.e., we do
not fix a maximum number of transitions with a label different from

√
which

may be executed between two subsequent
√

transitions. Nevertheless, it is not
difficult to adapt our approach to a context in which a maximum number n of
operations per period is fixed: it is enough to consider all the computations we
model, and then remove all those in which there are more than n transitions
with a label different from

√
between two subsequent

√
transitions.

We are now ready to introduce the syntax and the operational semantics of
the new calculus. The read(a) and take(a) prefixes are removed and the new
operations with timeout are introduced as guards for if-then-else forms:

P ::= 〈a〉 | C | P |P
C ::= 0 | µ.C | η?C C | C |C | K

where:

µ ::= write(a)

η ::= read(a, t) | take(a, t) | read(a)t | take(a)t

The new set of configurations is denoted by Conf [∆]. The labels are extended
by introducing also

√
, i.e., Label [∆] = Label ∪ {√}. The meaning of the new

label is explained in Table 8.

The semantics is defined by the transition system (Conf [∆],Label [∆],−→)
where −→ is defined as the least labelled transition relation satisfying the
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(1) 〈a〉 a−→ 0 (2) write(a).P
τ−→ 〈a〉|P

(3′) take(a, t)?P Q
τ−→ take(a)t?P Q (4′) read(a, t)?P Q

τ−→ read(a)t?P Q

(5)
P

a−→ P ′ Q
a−→ Q ′

P |Q τ−→ P ′|Q ′
(6)

P
a−→ P ′ Q

a−→ Q ′

P |Q τ−→ P |Q ′

(7)
P

α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ,

√
(8)

P
α−→ P ′ K = P

K
α−→ P ′

(20) take(a)t?P Q
a−→ P (21) read(a)t?P Q

a−→ P

(22) ηt?P Q

√
−→ ηt−1?P Q if t 6= 0 (23) η0?P Q

√
−→ Q

(24)
P

√
−→ P ′ Q

√
−→ Q ′

P |Q
√
−→ P ′|Q ′

(25)
P

√
−→ P ′ Q

√
−→/

P |Q
√
−→ P ′|Q

Table 7
Operational semantics for timeouts (symmetric rules of (5)–(7) and (25) omitted).

√
−→ elapsing of a basic time interval

Table 8
New labels used in the operational semantics of L[∆].

axioms and rules in Table 7 (we omit the symmetric rules of (5)–(7) and (25))
where the axioms (3′) and (4′) are substituted for (3) and (4), respectively.
The other axioms from (1) to (8) are exactly the same as those for the kernel
calculus L.

Axioms (3′) and (4′) model the beginning of the timeout periods. Axioms (20)
and (21) represent a successful execution of these operations, while axioms (22)
and (23) represent the passing of time. The label in the rule (23) is

√
because

with η0?P Q we denote an input during its last time period of executability.
At the end of this period (i.e. on the execution of the global synchronization
on the

√
action), the input actually fails and the alternative process Q is

activated. The subscript t in ηt?P Q is decremented if it is not 0 (axiom
(22)), otherwise the timeout period finishes and the second continuation is
chosen (axiom (23)). The rules (24) and (25) describe how the structured
term P |Q behaves according to the passing of time. If both processes have
an outgoing transition labelled with

√
, they synchronize on the execution of

this operation. On the other hand, one of the two processes can perform its
own transition

√
without affecting the other term which is not sensitive to

the passing of time (as discussed above, this is reflected by the fact that it has
no outgoing transitions labelled with

√
).
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The introduction of the new label
√

requires the redefinition of the reduction
relation indicating the computation step that may be performed by stand-

alone configurations: P −→ P ′ if P
τ−→ P ′ or P

√
−→ P ′. Indeed, terms per-

forming transitions labelled with
√

, simply change according to the passing
of time independently of their context.

5.1 Asynchronous Semantics

We have modeled configurations in which the passing of time is global, i.e.,
it is the same for all the components. According to this approach, the time
passes synchronously. This is ensured by the negative premise of rule (25)
and the side condition α 6= √

of the locality rule (7), according to which a
process cannot perform locally its transitions labelled with

√
. If we remove the

side condition α 6= √
from rule (7), it may happen that given two programs

P and Q sensitive to the passing of time (i.e., there exist P ′ and Q ′ such

that P
√

−→ P ′ and Q
√

−→ Q ′), both P |Q
√

−→ P ′|Q and P |Q
√

−→ P |Q ′ becomes
valid transitions. In these transitions, the time passes only in one of the two
programs, thus it passes asynchronously.

To distinguish between the two interpretations of time passing, we use P −→∗
s

P ′ to denote that a configuration P ′ can be reached from P by performing
a sequence of reduction steps in the transition system under the synchronous
interpretation, while we use P −→∗

a P ′′ to denote that P ′′ can be reached
under the asynchronous interpretation.

The synchronous approach models systems with a global clock (e.g., central-
ized systems), while the asynchronous approach reflects the behaviour of sys-
tems where a global clock does not exist (e.g., distributed systems). In many
applications, the absence of the global clock becomes critical; consider, e.g.,
typical problems such as distributed consensus. It is interesting to observe
that, on the other hand, in our context the synchronous and the asynchronous
approaches can be considered equivalent, at least from the point of view of
the configurations that can be reached during a computation. More precisely,
the equivalence result is a consequence of a theorem reported in Appendix B,
where we show that, given an initial configuration P (i.e., a configuration in
which no timeout is counted yet), the configurations that can be reached from
P under the synchronous time are exactly the same as those reachable under
the asynchronous time. Formally, for each P −→∗

s P ′ then also P −→∗
a P ′ and

vice versa.

It is worth to anticipate here that this equivalence result does not hold any
longer in the calculi with leasing that will be introduced in the next section.
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6 The Calculi with Leasing: L[lsn] and L[lsn,ntf]

Leasing represents an emerging style of programming for distributed systems
and applications. According to this style, a service offered by one object to
another one is based on a notion of “granting the service for a certain period of
time”. In this way, objects which ask for services declare also the corresponding
period of interest in that service. These are usually called leased services.

Following the JavaSpaces approach, we consider the leasing mechanism applied
to two kinds of services: the storing of data in the shared repository and the
managing of the listeners interested in the notification of the occurrence of
events inside the dataspace. These two leased services are activated by means
of the coordination primitives write and notify , respectively. For this reason,
we add to these two operations a parameter which represents the duration
of the interval for which the emitted datum should be maintained inside the
data repository (for write) or the amount of time after which the listener for
the event should be removed (for notify).

The two forms of leased resources are modeled separately: we first define the
calculus L[lsn] as extension of the kernel calculus with leased data, then
we extend L[lsn] in order to deal also with leased listeners, and we call the
obtained calculus L[lsn,ntf].

We also permit cancelling and renewing of previously leased services. In order
to obtain this, each leased service is provided with a unique identifier which is
used by two new operations called cancel and renew in order to indicate the
service to be cancelled and renewed, respectively. These unique identifiers are
taken from the set Lease, ranged over by l , l ′, . . ..

Leasing and timeouts are both features related to time; however, they are
exploited for different purposes. Timeouts are particularly useful on the client-
side: they can be used to avoid the blocking of clients waiting for services
which are not provided by the servers in due time. On the other hand, leasing
is useful on the server-side: it allows the servers to free resources allocated to
clients which do not renew the corresponding leasing before the leasing period
expires.

Given this observation, it is clear that a direct implementation of the leasing
mechanism in terms of timeouts (and the vice versa) is not a trivial task. For
example, one may think to model a leased datum by using a persistent datum
plus a specialized client program which explicitly removes that datum when a
timeout corresponding to the expected leasing period expires. This modeling
does not represent correctly the leasing model for two main reasons: (i) it is
not ensured that the specialized client program has the ability to immediately
remove the datum at timeout expiration (e.g., in the case of a temporary
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disconnection between the program and the repository); (ii) it could be the
case that the persistent datum is removed by another program before the
end of the corresponding leasing period, and the specialized program removes
another instance of the datum which is not the expected one.

Conversely, one may think to model a timeout by exploiting a datum in the
dataspace, thus on the server-side, with a leasing period corresponding to the
timeout. When the datum expires, this indicates that the timeout has elapsed.
This approach cannot be followed because it requires the ability to write client
programs which observe immediately the instant in which an available datum
becomes unavailable. None of the usual coordination primitives (not even the
test for absence operations) has this ability.

Due to these differences between leasing and timeout, we have decided to
model both the mechanisms independently (i.e., in two separated calculi) be-
cause it seems the best way to investigate in isolation the properties of these
two time dependent paradigms. One interesting property that we are able to
prove following this approach is that synchronous and asynchronous time are
equivalent for timeouts (as stated in Section 5.1 and proved in Appendix B),
but this is not the case for leasing (see Section 6.3).

As in the previous section, Time denotes the set of time intervals. In order to
associate with the leased resources the indication of the corresponding leasing
identifier l and the remaining time t , we use a subscript notation l : t . Namely,
we represent data and listeners no longer with the terms 〈a〉 and on(a,P),
respectively, rather with the new notations 〈a〉l :t and on(a,P)l :t .

We are now ready to present the first calculus L[lsn]. The syntax is obtained
by removing the term 〈a〉 and by adding the new 〈a〉l :t ; we also remove the
prefix write(a) and we introduce the new (νl)write(a, t). Moreover, we intro-
duce cancel(l) and renew(l , t) as guards for if-then-else terms. Formally:

P ::= 〈a〉l :t | C | P |P
C ::= 0 | µ.C | η?C C | C |C | K

where:

µ ::= (νl)write(a, t) | read(a) | take(a)

η ::= cancel(l) | renew(l , t)

The obtained configurations are denoted by Conf [lsn].

In order to define new leasing identifiers, we use (νl)write(a, t).P to bind the
lease identifier l in P ; we ensure that the name is bound in P by replacing
each free occurrence of l in P with a fresh name l ′ (see rule (2′′)), i.e., a name
which has not been previously used. This avoids name clashes of two different
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(1′) 〈a〉l :t a−→ 0

(2′′) (νl)write(a, t).P
τ−→ 〈a〉l ′:t |P{l ′/l} with l ′ fresh

(3) take(a).P
a−→ P (4) read(a).P

a−→ P

(5)
P

α−→ P ′ Q
α−→ Q ′

P |Q τ−→ P ′|Q ′
α = a or α = †l
or α = l : t

(6)
P

a−→ P ′ Q
a−→ Q ′

P |Q τ−→ P |Q ′

(7)
P

α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ,

√
(8)

P
α−→ P ′ K = P

K
α−→ P ′

(26) cancel(l)?P Q
†l−→ P (27) cancel(l)?P Q

¬†l−→ Q

(28) renew(l , t)?P Q
l :t−→ P (29) renew(l , t)?P Q

¬l :t−→ Q

(30) 〈a〉l :t
†l−→ 0 (31) 〈a〉l :t ′ l :t−→ 〈a〉l :t

(32) 〈a〉l :t
√
−→ 〈a〉l :t−1 if t 6= 0 (33) 〈a〉l :0

√
−→ 0

(34)
P

¬λ−→ P ′ Q
λ−→/

P |Q ¬λ−→ P ′|Q
λ = †l or λ = l : t

Table 9
Operational semantics for L[lsn] (symmetric rule of (5)–(7) and (34) omitted).

†l−→ cancel the leased object l in the environment

†l−→ the leased object l is cancelled

¬†l−→ no leased object l is cancelled

l :t−→ renew the leasing period of object l in the environment to time t

l :t−→ the time of the leased object l is renewed to t

¬l :t−→ no leased object l is renewed

Table 10
New labels used in the operational semantics of L[lsn].

leased objects. To keep the operational semantics clean and simple, in rule
(2′′) we simply require that the name l ′ does not appear yet in other parts
of the system. To be more rigorous, we should add a new label denoting the
creation of a new leased datum by rule (2′′), then we put a side condition on
rule (7) to ensure that the name l ′ does not occur in Q . This reflects the fact
that a leased datum can be accessed (via the renew and cancel operations)
only in the continuation of the write operation which produced it.

In the following, in the term (νl)write(a, t).P we sometimes omit (νl) when
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the leasing identifier l is not subsequently used and we omit t when it is ∞.

The operational semantics of the new calculus is defined by the labelled tran-
sition system (Conf [lsn],Label [lsn],−→) where

Label [lsn] = Label ∪{†l , l : t , †l , l : t , ¬† l , ¬l : t | l ∈ Lease, t ∈ Time}

(the meaning of the new labels is summarized in Table 10, will be also de-
scribed below) and −→ is the least labelled transition relation satisfying the
axioms and rules in the Table 9 (we omit the symmetric rule of (5)–(7) and
(34)). Observe that the new axioms (1′) and (2′′) are substituted for (1) and
(2), respectively.

Axiom (1′) simply adapts the axiom (1) to the new notation for leased data
〈a〉l :t . Axiom (2′′) describes the creation of a new leased datum as the result of
the execution of a write operation. As discussed above, a fresh leasing identifier
l ′ is substituted for the name l in the continuation (i.e., in the process P).

The cancel and renew operations are used as guards of if-then-else forms
because the operations could either succeed or fail, according to the presence
or absence of the required leased resource. The visible effect of the execution of
a cancel on the leased object l is denoted by the new label †l , and its failure by
¬ † l (see axioms (26) and (27)). The other new label l : t is used to denote an
action which renews the leasing period, granted to the leased object identified
by l , to the new time period t ; the failure of a renewing action is denoted
with another label ¬l : t (see the axioms (28) and (29)). Axioms (30) and (31)
model the complementary operations of †l and l : t , respectively, which may
be performed at any time by the leased object with leasing identifier l .

In order to execute a transition labelled with ¬ † l (resp. ¬l : t) it is required
that the environment does not contain any leased object with identifier l , that
is, that the environment cannot perform any transition labelled with †l (resp.
l : t). This is described by rule (34).

6.1 Adding Event Notification: L[lsn,ntf]

We now define the calculus L[lsn,ntf] with leasing and event notification.
The syntax can be obtained by extending the syntax of L[lsn] with the
(νl)notify(a,C , t) primitive and the representation of the leased listeners
on(a,C )l :t :

P ::= 〈a〉l :t | on(a,C )l :t | C | P |P
C ::= 0 | µ.C | η?C C | C |C | K
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(2′′′) (νl)write(a, t).P
~a−→ 〈a〉l ′:t |P{l ′/l} with l ′ fresh

(14′) (νl)notify(a,Q , t).P
τ−→ on(a,Q)l ′:t |P{l ′/l} with l ′ fresh

(15′) on(a,P)l :t
ȧ−→ P |on(a,P)l :t

(16)
P

ȧ−→ P ′ Q
ȧ−→ Q ′

P |Q ȧ−→ P ′|Q ′
(17)

P
ȧ−→ P ′ Q

ȧ−→/

P |Q ȧ−→ P ′|Q

(18)
P

~a−→ P ′ Q
ȧ−→ Q ′

P |Q ~a−→ P ′|Q ′
(19)

P
~a−→ P ′ Q

ȧ−→/

P |Q ~a−→ P ′|Q

(30′) Pl :t
†l−→ 0 (31′) Pl :t ′

l :t−→ Pl :t

(32′) Pl :t

√
−→ Pl :t−1 if t 6= 0 (33′) Pl :0

√
−→ 0

Table 11
Additional axioms and rules for L[lsn,ntf] (symmetric rules of (17)–(19) omitted).

where:

µ ::= (νl)write(a, t) | read(a) | take(a) | (νl)notify(a,C , t)

η ::= cancel(l) | renew(l , t)

The new set of configurations is denoted by Conf [lsn, ntf ]. Term on(a,C )l :t
represents a leased listener with leasing identifier l and remaining time t .
Leased listeners are created as a result of the execution of the new prefix
(νl)notify(a,C , t), where (νl) is a binder for the leasing identifier l . Also
for the notify primitive with leasing, we sometimes omit (νl) when l is not
subsequently used and t when equal to ∞.

In this new calculus we deal with both the two kinds of leased objects: data
(denoted with 〈a〉l :t) and listeners (denoted with on(a,C )l :t). We introduce
Pl :t as a uniform notation for both the two kinds of leased objects, where P
may be either of the form 〈a〉 or of the form on(a,C ).

The set of labels should contain those needed to model the leasing metaphor,
as also those for the notification mechanism: Label [lsn, ntf ] = Label [lsn] ∪
Label [ntf ].

The operational semantics of the calculus is defined by the labelled transi-
tion system (Conf [lsn, ntf ],Label [lsn, ntf ],−→) where −→ is the least labelled
transition system satisfying the axioms and rules in the Tables 9 and 11 (where
the axiom (2′′′) is substituted for (2′′), and axioms (30′)–(33′) are substituted
for (30)–(33), respectively). Observe that axioms (30′)–(33′) are simple adap-
tations of the corresponding (30)–(33), where the new general notation Pl :t is
used instead of 〈a〉l :t .
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Observe that it is not necessary to modify the axioms (26)− (29) and the rule
(34) as they are valid also for the new kind of leased resource on(a,C )l :t .

6.2 Example of a Seat Reservation Service

As an example of the use of leased resources, we consider a seat reservation
system for trains. The idea is to associate to each train a process responsi-
ble for seat booking. The process should expire at train departure. In order
to implement this idea, we may use a program ResTrain which produces a
listener with an associated lifetime time corresponding to the time which re-
mains before the train leaves. This listener is responsible to manage each single
reservation.

ResTrain = (νl)notify(req ,Reserve, time).CheckTrainl

Reserve = take(req).write(seat)

According to this modeling, a seat request is represented by a datum 〈req〉,
which, when produced, activates an instance of the Reserve program. This
program is responsible for taking the request, and producing the corresponding
seat reservation (modeled by a datum 〈seat〉).

The process CheckTrainl , which remains active after the production of the lis-
tener, is responsible to manage variations of the train scheduling. For example,
if the train departure is cancelled, the reserving process should be removed,
while if the departure is delayed, the remaining lifetime should be changed ac-
cordingly. Thus, CheckTrainl (parametric in the name of the leasing identifier)
can be defined as follows:

CheckTrainl = take(delay).renew(l , newtime)?CheckTrainl 0 |
take(cancel).cancel(l)?0 0

where we assume that the datum 〈delay〉 represents a departure delay, while
〈cancel〉 represents the departure cancel. Observe that after a departure delay,
the program CheckTrainl remains active, as it could be the case that the train
departure may receive a further delay (or it could be even cancelled).

6.3 Asynchronous Semantics

In the language extended with leasing we could think to adopt either the
synchronous or asynchronous interpretations of time passing described in the
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previous section. It is interesting to observe that the equivalence result be-
tween the two interpretations of time passing which holds in the calculus with
timeouts (see Section 5.1) no longer holds in the new calculi with leasing. As
a counter-example, consider the following program:

write(a, t).read(b, t + 1)?0 take(a)

After the execution of the write operation the following term is obtained:

〈a〉l :t |read(b, t + 1)?0 take(a)

The process on the right hand side requires the presence of datum 〈b〉 in
order to continue its execution. As this datum will never be produced, its
behaviour consists of waiting for a t+1 long period, and then becoming process
take(a). The datum on the left hand side has a lifetime shorter than t + 1.
According to the synchronous interpretation, 〈a〉l :t disappears before take(a)
can be performed, while this is not true under the asynchronous one. Thus,
the take(a) operation may succeed only under the asynchronous approach.

6.4 Alternative Granting Policies

In the calculi with leasing we have introduced above we assume that the
leased services have an associated leasing period which corresponds exactly
to the one required by the clients. This approach can be followed in an ideal
situation in which the leased services can be always granted according to the
requirements of the clients. This is not always possible, e.g., in situations
in which resources are limited. For example, in the Jini Distributed Leasing
Specifications [39], the service provider may decide to grant the resource for
a shorter period. As JavaSpaces is introduced as a specific Jini service, it also
adopts this alternative granting policy. We can easily adapt our semantics in
order to take into account this feature by replacing rules (2′′′) and (14′) with
the following:

(2′′′) (νl)write(a, t).P
τ−→ 〈a〉l ′:t ′ |P{l ′/l} l ′ fresh and t ′ ≤ t

(14′) (νl)notify(a,Q , t).P
τ−→ on(a,Q)l ′:t ′ |P{l ′/l} l ′ fresh and t ′ ≤ t

The following example shows the differences between our approach and this
alternative interpretation:

write(a, 10).write(b, 20).take∃(b)?0 (take(a).write(c))
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According to the ideal approach, we are sure that datum 〈b〉 cannot expire
before 〈a〉; thus datum 〈c〉 will never be produced. On the other hand, if
we move to the Jini-like interpretation, the datum 〈b〉 may be granted for a
shorter period. Thus, 〈c〉 could be produced.

Other granting policies may be considered according to which leased resources
are not freed exactly on leasing expiration, but subsequently when, e.g., an
expired resources collector is activated. According to this alternative approach
leased services may be provided even after their leasing period expire. This
approach looks particularly useful to implement a garbage collector mecha-
nism for shared dataspaces which removes data, among those with an expired
leasing, only when it is necessary to free space, e.g., in order to store incoming
data. If it is not necessary to free space, data may remain available in the
repository even after their leasing has expired.

It is interesting to observe that several policies could be chosen in order to
select the datum, among those expired, which should be removed when the
garbage collector is activated. For example, in [15] we discuss two possible
policies: the ordered collection policy, which selects the datum which expired
first, and the unordered collection policy, according to which one among all
the expired data could be chosen. In the following subsection we discuss an
interesting expressiveness gap between these two possible policies.

6.5 Expressive Power

Our first consideration on the expressive power of the calculi with leasing
concerns the observation that persistence is lost when we consider the Jini-
like granting policy (discussed in the previous subsection) according to which
leased resources could be granted with a shorter period w.r.t. the one requested
by the clients.

Consider, for example the creation of a permanent datum (i.e., a datum with
an infinite lifetime): which is described by the transition

(νl)write(a,∞).P
τ−→ 〈a〉l ′:∞|P{l ′/l}

If we consider the Jini-like semantics (see rule (2′′)) the new datum may be
produced with a shorter leasing time, thus it is no longer permanent.

In order to better understand the impact on the expressiveness of the intro-
duction of non-permanent data, in [14] we have compared (a calculus very
similar to) L[∃] with another calculus which is a slight modification obtained
simply by considering data leased following the Jini-like approach. The inter-
esting result is that the calculus with leased data is strictly less expressive
than the initial calculus with permanent data. This is proved by showing that
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the property P ↑ is undecidable for the calculus with permanent data while it
becomes decidable when moving to leased data. Another interesting result is
that, even if the calculus becomes less expressive when moving to the leased
data, it remains strictly more expressive than the kernel calculus L (which
does not contain any test for absence operations). This second result is proved
by showing that the property P ↓, which is a decidable property in L, is no
longer decidable in the calculus with leased data.

As discussed in the previous subsection, the leasing mechanism is a useful pro-
gramming notation which could be used also in order to manage the overbur-
dening of useless and outdated information stored inside the shared repository,
simply by adding a garbage collector which removes expired data when it is
necessary to free space in the repository. We have already hinted two possible
policies which could be adopted in order to implement such a collector: the
ordered collection policy, according to which the collector selects for deletion
the datum which expired first, and the unordered collection policy, according
to which one among all the expired data could be chosen.

In [15] we have investigated the two collection policies, and we have proved
an interesting discrimination result using a calculus corresponding to L[∃]
modified with the introduction of this expired data collection mechanism.
We have proved on that calculus that P ↑ is a decidable property under
the unordered collection policy, while this is not the case under the ordered
collection policy.

7 The Calculi with Transactions: L[txn], L[txn,∃], and L[txn,ntf]

An important feature of languages for the coordination of distributed pro-
cesses is represented by the transactional mechanism. Transactions permit to
group a set of coordination operations into a bundle that acts as a single
atomic operation. A set of coordination operations, grouped in a transaction,
is executed according to the all-or-nothing principle, namely, in such a way
that either all of them succeed or none of them is performed. The correctness
of the state of the data repository is usually ensured by requiring transactions
to satisfy the so called ACID (atomicity, consistency, isolation and durability)
properties, traditionally supported by database management systems.

JavaSpaces includes transactional mechanisms in a very elegant way: trans-
actions are created and committed (or aborted) using a transactional service.
Once started, the transaction has an associated identifier. This identifier is
added as an additional parameter to all coordination primitives composing
the transaction. In order to have a simplified syntax, we assume that the
coordination primitives of a transaction x are all those primitives executed
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(1′′) 〈a〉 a−→ • (2) write(a).P
τ−→ 〈a〉|P

(3) take(a).P
a−→ P (4) read(a).P

a−→ P

(5)
P

a−→ P ′ Q
a−→ Q ′

P |Q τ−→ P ′|Q ′
(6)

P
a−→ P ′ Q

a−→ Q ′

P |Q τ−→ P |Q ′

(7)
P

α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ,

√
(8)

P
α−→ P ′ K = P

K
α−→ P ′

(35) 〈a〉 ⇓x−→ 〈a〉 (36) • ⇓x−→ • (37) commit(x ).P
↓x−→ P

(38)
P

α−→ P ′ Q
α−→ Q ′

P |Q α−→ P ′|Q ′
α ∈ {↓ x ,⇓ x} (39)

P
↓x−→ P ′ Q

⇓x−→ Q ′

P |Q ↓x−→ P ′|Q ′

(40)
P

σ1−→ P ′ P ′ σ2↓x−→ P ′′

P
σ1σ2↓x−→ P ′′

σ1 6= a (41)
P

σ↓x−→ P ′

create(x ).P
σ−→ P ′

(42) P
ǫ≻−→ P (43)

P
σ≻−→ P ′ P ′ a−→ P ′′

P
σa≻−→ P ′′

(44)
P

σ≻−→ P ′ P ′ a−→

P
σa

≻−→ P ′
(45)

P
σ1−→ P ′ Q

σ2≻−→ Q ′

P |Q σ−→ P ′|Q ′
σ ∈ σ1 ≫ σ2

Table 12
Operational semantics for L[txn] (symmetric rules of (5)–(7), (39) and (45) omit-
ted).

between the execution of a create(x) and a subsequent commit(x) operation.
In this way, it is not necessary to add the transaction identifier as an additional
parameter.

We incrementally model transactions starting from the kernel calculus; then
we extend the mechanism to cope with test for absence and event notification.

The approach we follow in our modeling, is to consider a transaction as a
sequence of actions which must be executed atomically, i.e., not interleaved
with actions performed by programs not involved in the transaction. Formally,
the execution of a transaction is represented by a transition labeled by a
sequence of labels, one for each action occurring inside the transaction.

A transaction is started with an operation of creation and possibly terminated
by a commitment operation, performed by all the processes involved in the
transaction. When performed within a transaction, a read operation may test
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↓x−→ active commitment of transaction x

⇓x−→ passive commitment of transaction x

Table 13
New labels used in the operational semantics of L[txn].

for the presence of either a datum produced under that transaction or a datum
in the external dataspace. A take operation behaves in a similar way, and the
selected datum will be withdrawn from the dataspace only if the transaction
succeeds. A datum written during a transaction will not be visible to processes
external to the transaction until the transaction commits; before commitment,
this datum can be consumed by a process inside the transaction; in that case,
the datum will never become externally visible.

In order to identify transactions, we will use transaction names taken from
the set Txn, ranged over by x , y , . . .. In order to define formally the syntax
of the new calculus L[txn] we have to add the syntax of the kernel calculus
the new term • plus two new prefixes create(x ) and commit(x ), the former
allowing the creation of new transactions and the latter for the transaction
commitment:

P ::= 〈a〉 | C | P |P
C ::= 0 | • | µ.C | C |C | K

where:

µ ::= write(a) | read(a) | take(a) | create(x ) | commit(x )

where x is a transaction name taken from Txn. The create(x ) operation is
used in order to start a new transaction called x ; commit(x ) indicates the
interest of a participant to the transaction to commit the transaction x , i.e., to
terminate the transaction with success. The new term • is used to distinguish
between terminated programs 0 and consumed data (now denoted with •).
This is necessary because, in order to successfully complete a transaction,
all the involved processes must execute a commit(x ) action. In case there
is a terminated process 0, the transaction cannot commit. The new set of
configurations is denoted by Conf [txn].

The set of possible labels is extended with two new elements: ↓ x representing
an active commitment operation performed by terms agreeing on the successful
termination of the transaction x , and ⇓ x representing a passive commitment
performed by placeholders • for consumed data. Formally, Label [txn] = Label∪
{↓ x ,⇓ x | x ∈ Txn}. The meaning of the new labels is explained in Table 13.

In order to model the operational semantics of transactions we proceed as
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follows:

• we combine the sequence of actions executed within the same transaction
in a unique transition whose label is such a sequence of actions;

• as a transaction can consume or test for presence data that are not created
within the transaction, it is necessary to model a form of synchronization
between the transaction and the external environment; the actions of the

external environment are modeled via an auxiliary transition system
σ≻−→

where σ is a sequence of actions a or a, denoting the availability of a datum
〈a〉 for consumption or for test of presence, respectively.

The operational semantics of the calculus is defined by the labelled transi-
tion system (Conf [txn],Label [txn]∗,−→). Observe that we move from simple
labels to sequences of labels. Indeed, as a transaction consists of a sequence
of operations performed in a single atomic step, its behaviour is operationally
represented as a single transition, labelled with a sequence of actions. In the
following we use σ, σ1, σ2, to range over Label [txn]∗, and ǫ to denote the empty
sequence. The transition relation −→ is defined as the least one satisfying the
axioms and rules in the Table 12, where (1′′) is substituted for (1) and we
omit the symmetric rule of (5)–(7), (39) and (45). Observe that rules (2)–(8)
correspond to those already used in the kernel calculus L.

To synchronize a transaction with its surrounding environment, we introduce
an auxiliary transition system, whose transitions are denoted by ≻−→ and
labelled with sequences of labels a and a, representing that a datum 〈a〉 is
offered for consumption or for testing its presence, respectively. The sequences
of labels of this auxiliary transition system will be matched with the sequences
of labels performed by transitions. To represent the fact that, at some point
of a sequence of labels, the environment contains a datum a that is tested for
presence by the transition, we need the additional label a.

A transaction can successfully terminate if and only if all the programs in-
volved in that transaction can perform a commitment. To this aim, it is nec-
essary to distinguish among terminated programs, which cannot perform any
kind of commitment and are denoted by 0, and placeholders for consumed
data, that can perform a passive commitment. As stated above we denote
these placeholders by •. The new axiom (1′′) must be substituted for (1) in
order to introduce the new term • as the result of the consumption of data.
Axioms (35) and (36) permit data and placeholders for consumed data to per-
form a passive commit operation. On the other hand, by axiom (37) a program
willing to commit a transaction can start an (active) commit operation. Rules
(38) and (39) model the synchronization of commitment operations: an active
commit can be performed if and only if at least one process performs an active
commit, and all the other components perform an (active or passive) commit.
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Rule (40) permits to group all the actions performed in a transaction in a single
move. To capture also sequences originating from nested transactions, we need
to label the left-hand transition in the premise with a sequence of actions. The
data produced during a transaction cannot be read from processes external
to the transaction, until the transaction commits. The side condition of the
rule prevents this unwanted behaviour. Finally, rule (41) exports the moves
performed inside a transaction to the external environment. Note that σ2 in
rule (40) and σ in rule (41) could be the empty string.

The second group of rules in Table 12 (rules (42)–(45)) define the auxiliary
transition system denoting the environment moves to synchronize with a trans-
action. The environment can offer nothing (rule (42)), or sequences containing
actions a (rule (43)) to denote that a datum has been consumed by a transac-
tion from the environment, and a (rule (44)), to denote that the environment
contains a datum 〈a〉, that is tested for presence by the transaction.

To represent the synchronization of a transaction with its surrounding envi-
ronment, we need an auxiliary function ≫: Label∗×Label∗ → ℘(Label∗), where
℘(Label∗) denotes the collection of the sets of sequences of labels, defined as
the least relation satisfying the following rules:

• ε ∈ (ε ≫ ε)
• if σ ∈ (σ1 ≫ σ2) then τσ ∈ (aσ1 ≫ aσ2) and τσ ∈ (aσ1 ≫ aσ2)
• if σ ∈ (σ1 ≫ σ2) then aσ ∈ (aσ1 ≫ σ2) and aσ ∈ (aσ1 ≫ σ2)

The second item models the cases where a datum consumed/tested for pres-
ence by the transaction is offered by the process that we are synchronizing
with the transaction, whereas in the third item the datum consumption/test
request is passed to the external environment.

Rule (45) models the synchronization of a transaction with the environment:
according to the definition of ≫, the consumption of a datum in the transac-
tion can synchronize with an offer for the consumption of the datum by the
environment, and a test for presence of a datum in the transaction can syn-
chronize with an offer for test for presence by the environment. Non-τ actions
of the transaction that are not synchronized with processes in parallel to the
one performing the transaction are propagated to the environment.

Due to the introduction of the new labels obtained as sequences of symbols,
we need to redefine our notion of reduction relation indicating the compu-
tation step that may be performed by stand-alone configurations. It is not
enough to consider simply steps labeled with τ , but we have to consider also
those transitions labeled with a sequence of symbols τ . Formally, P −→ P ′ if

P
τ∗

−→ P ′.

We illustrate the behaviour of processes containing transactions by means of
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some examples.

Consider the process 〈a〉|create(x ).take(a).write(c).read(b).commit(x ). The
term inside the transaction can perfom the following moves:
take(a).write(c).read(b).commit(x )

a−→
write(c).read(b).commit(x )

τ−→
〈c〉|read(b).commit(x )

b−→
〈c〉|commit(x )

↓x−→
〈c〉|0.
These moves can be grouped into the sequence

take(a).write(c).read(b).commit(x )
aτb↓x−→ 〈c〉|0.

The synchronization with the remaining part of the process can happen in two
different ways:

• the subprocess 〈a〉 offers datum a for consumption by performing the move

〈a〉 ā≻−→ •;
the synchronization between the move performed by the transaction and
this move gives rise to the move

〈a〉|create(x ).take(a).write(c).read(b).commit(x )
ττb−→ •|〈c〉;

this means that the transaction tests for presence of a datum b in the
external environment;

• the subprocess 〈a〉 does not offer datum a for consumption; in this case, the
synchronization gives rise to the move

〈a〉|create(x ).take(a).write(c).read(b).commit(x )
aτb−→ 〈a〉|〈c〉,

meaning that the transaction both removes datum a and tests for presence
of datum b from the external environment.

To illustrate what happens if a datum produced in a transaction is also con-
sumed within that transaction, consider the following process:
create(x ).take(a).write(c).take(c).commit(x ).
In this case, the term inside the transaction can perform the following moves:
take(a).write(c).take(c).commit(x )

a−→
write(c).take(c).commit(x )

τ−→
〈c〉|take(c).commit(x )

τ−→
•|commit(x )

↓x−→
•|0.
The process performs the move
create(x ).take(a).write(c).take(c).commit(x )

aττ−→ •|0;
hence, datum c will never be available to external processes.
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7.1 Example of Multiset Rewriting

The coordination language Linda provides only elementary operations on the
dataspace, because they permit to operate on a single datum at a time. Trans-
actions can be exploited to implement more sophisticated coordination prim-
itives, operating on many data at the same time.

As an example, the following transaction models a set consumption opera-
tion take(a, b), that succeeds only if both one datum a and one datum b are
withdrawn from the dataspace:

create(x ).(take(a).commit(x )|take(b).commit(x ))

In general, it is possible to implement multiset rewriting operations à la
Gamma [2], where in an atomic step a multiset of data (a set with possibly
multiple occurrences of data) is withdrawn from the dataspace and, subse-
quently, another multiset of new data is produced.

In the literature, the expressiveness of Linda and Gamma have been compared
adopting modular embeddings [6], a criterion based on the following idea: a
language is as expressive as another one is, if there exists an encoding of
programs of the former language into programs of the latter. The encoding
should preserve some composition operator for programs, usually, at least the
parallel composition operator. In other words, we want to define encoding
functions [[ ]] such that the encoding [[P |Q ]] of the parallel composition of two
programs corresponds to the parallel composition [[P ]]|[[Q ]] of the encodings of
the programs themselves.

In particular, in [47] modular embeddings which preserve only parallel com-
position are used to prove that two calculi, one similar to L[∃] and another
one comprising multiset rewriting operations, cannot be embedded one into
the other. Applying this result to our context, we can say that test for absence
operations cannot be embedded using transactions, and also that the transac-
tion mechanism cannot be embedded exploiting test for absence operations. In
other terms, test for absence and the transaction mechanism are incomparable
features using the modular embedding approach.

In a related paper [8], transactions in Linda-like languages have been modeled:
several results on the expressiveness of transactions (as well as the incompa-
rability result of [47]) are proved using a slightly different form of modular
embeddings, in which not only the parallel composition operator should be
preserved, but also other operators such as the sequential and the choice com-
position of programs.
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(9) take∃(a)?P Q
a−→ P (10) take∃(a)?P Q

¬a−→ Q

(11) read∃(a)?P Q
a−→ P (12) read∃(a)?P Q

¬a−→ Q

(13)
P

¬a−→ P ′ Q
a−→/

P |Q ¬a−→ P ′|Q

(46)
P

σ≻−→ P ′ P ′ a−→/

P
σ¬a≻−→ P ′

Table 14
Additional axioms and rules for L[txn,∃] (symmetric rule of (13) omitted).

7.2 Adding Test for Absence: L[txn,∃]

In order to extend the transaction mechanism to the calculus with test for ab-
sence, we have to handle synchronization of test for absence with the environ-
ment. If a test for absence for a is successfully performed inside a transaction,
this means that the environment does not contain occurrences of 〈a〉.

The syntax of the new calculus is obtained by adding the if-then-else terms
to syntax of the calculus L[txn]:

P ::= 〈a〉 | C | P |P
C ::= 0 | • | µ.C | η?C C | C |C | K

where:

µ ::= write(a) | read(a) | take(a) | create(x ) | commit(x )

η ::= read∃(a) | take∃(a)

The new set of terms is denoted by Conf [txn,∃]. The label ¬a is intro-
duced in order to indicate that an environment does not contain occurrences
of 〈a〉. Thus, we define Label [txn,∃] = Label [txn] ∪ {¬a | a ∈ Data}. As
usual, the operational semantics is given by the labeled transition system
(Conf [txn,∃],Label [txn,∃]∗,−→) where −→ is defined as the least labelled
transition relation which satisfies the axioms and rules in the Table 12 plus
the additional axioms and rules in the Table 14. Observe that axioms (9)–(12)
and rule (13) correspond to those already used for the calculus with test for
absence L[∃]. The unique new rule is (46) which ensures that an environment
offers ¬a if and only if it contains no occurrence of 〈a〉.

Now a transaction can synchronize with the environment only if each test for
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absence performed in the transaction is matched by a corresponding ¬a action
by the environment. We extend the function ≫ to cope with this case:

• if σ ∈ (σ1 ≫ σ2) then ¬aσ ∈ (¬aσ1 ≫ ¬aσ2)

7.2.1 Example of test-and-set Operator

We show that the combination of transactions and predicates permit to im-
plement a test-and-set primitive, which is the main ingredient in consensus
algorithms for networks of symmetric processes.

The test-and-set operator t&s(a) atomically verifies the presence of data 〈a〉
and, if no datum 〈a〉 is available, produces atomically a new occurrence of it;
this operator is implemented by the following process:

create(x ).read∃(a)?commit(x ) write(a).commit(x )

In [11] it is proved that the test-and-set operator cannot be satisfactorily
implemented in the calculus L[∃]. Moreover, in [48] another result concerning
the impact on the expressiveness of L[∃] of the introduction of the test-and-
set operation. Indeed, it is proved that in a calculus similar to L[∃] the leader
election problem in symmetric networks cannot be solved, while this problem
becomes solvable when also the test-and-set operation is added.

Given these results, we can conclude that the addition of transactions to the
calculus L[∃] strictly increases its expressive power.

7.3 Adding Event Notification: L[txn,ntf]

In this section we consider the event notification mechanism. We will follow an
approach close to the one adopted in JavaSpaces: a notify performed within
a transaction provides notification of write operations performed within that
transaction. When the transaction commits, any request for event notification
performed during the transaction is dropped. Moreover, a write operation per-
formed within a transaction generates event notification to listeners external
to the transaction only if the written datum has not been withdrawn during
the transaction.

The syntax of L[txn] is extended by introducing the notify(a,C ) primitive
and the representation on(a,C ) for the listeners:

P ::= 〈a〉 | on(a,C ) | C | P |P
C ::= 0 | • | µ.C | C |C | K
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(14) notify(a,Q).P
τ−→ on(a,Q)|P (15) on(a,P)

ȧ−→ P |on(a,P)

(16)
P

ȧ−→ P ′ Q
ȧ−→ Q ′

P |Q ȧ−→ P ′|Q ′
(17)

P
ȧ−→ P ′ Q

ȧ−→/

P |Q ȧ−→ P ′|Q

(18)
P

~a−→ P ′ Q
ȧ−→ Q ′

P |Q ~a−→ P ′|Q ′
(19)

P
~a−→ P ′ Q

ȧ−→/

P |Q ~a−→ P ′|Q
(35′) 〈a〉 ⇓x~a−→ 〈a〉 (47) on(a,P)

⇓x−→ •

(38′)
P

αρ1−→ P ′ Q
αρ2−→ Q ′

P |Q αρ1ρ2−→ P ′|Q ′
α ∈ {↓ x ,⇓ x} (39′)

P
↓xρ1−→ P ′ Q

⇓xρ2−→ Q ′

P |Q ↓xρ1ρ2−→ P ′|Q ′

(40′)
P

σ1ρ1−→ P ′ P ′ σ2↓xρ2−→ P ′′

P
σ1τσ2−→ P ′′

σ1 6= ȧ, ā ∧
∀a : ~a 6∈ σ1

(41′)
P

σ↓xρ−→ P ′

create(x ).P
σρ−→ P ′

(51)
P

σ≻−→ P ′ P ′ ȧ−→ P ′′

P
σȧ≻−→ P ′′

(52)
P

σ≻−→ P ′ P ′ ȧ−→/

P
σȧ≻−→ P ′

Table 15
Additional axioms and rules for L[txn,ntf] (symmetric rules of (17)–(19) and (39′)
omitted).

where:

µ ::= write(a) | read(a) | take(a) | create(x ) | commit(x ) | notify(a,C )

The new configurations are denoted with Conf [txn, ntf ]. The set of labels
should include also the labels ȧ and ~a used to model the event notification
mechanism (already discussed in Section 4): Label [txn, ntf ] = Label [txn] ∪
{ȧ, ~a | a ∈ Data}. In the following, we use ρ, ρ1, ρ2, . . . to range over se-
quences of notification labels, i.e., ρ, ρ1, ρ2, . . . ranges over {~a | a ∈ Data}∗.
The labelled transition system (Conf [txn, ntf ],Label [txn, ntf ]∗,−→) is defined
by considering the axioms and rules in the Tables 12, plus those in Table 15
where (35′), (38′)− (41′) are substituted for (35), (38)− (41). Observe that the
axioms and rules (14)–(19) correspond to those already used for the calculus
with event notification L[ntf].

When a transaction commits, all data written and not withdrawn under the
transaction must raise an event notification. To this aim, transitions performed
by transactions are labelled with action sequences with format σρ, σ ↓ xρ or
σ ⇓ xρ, where ρ contains only notification labels and σ does not contain
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notification labels; the sequence σ represents the set of actions performed
inside the transaction, whereas ρ permits to notify the data produced by the
transaction to the external listeners. Note that the actual order of notification
labels in the ρ part of a sequence has no relevance, i.e., ρ can be considered
as a multiset of notifications instead of a sequence. We chose to consider ρ as
a sequence instead of as a multiset for the sake of uniformity and to simplify
the notation.

On transaction commitment, each datum 〈a〉 within the transaction produces
an event notification label ~a (axiom (35’)). On the other hand, all listeners pro-
duced by notification requests performed during the transaction are dropped
(axiom (47)).

Rules (38’)-(41’) are a slight adaptation of rules (38)-(41) to cope with these
event notification labels. According to rule (40’), event notifications performed
during a transaction (either by a write operation or at the end of a nested
transaction) are hidden to the external environment. The notification of data
written but not consumed during the transactions will be performed on com-
mitment.

As we have added event notifications to the moves performed by a transaction,
we have to cope with this extension to handle synchronization with the envi-
ronment. If an event notification ~a is performed by a transaction, all listeners
in the environment waiting for that event must be woken up. To model this
fact, we introduce a new label ȧ: the environment offers ȧ (see rule (52)) if
and only if it contains no listener on production of datum 〈a〉. On the other
hand, by rule (51) the environment offers ȧ if there are listeners interested in
production of data 〈a〉.

Now a transaction can synchronize with the environment only if each event
notification performed in the transaction is matched by a corresponding ȧ or
ȧ action by the environment. We extend the function ≫ to cope with this
case:

• if σ ∈ σ1 ≫ σ2 then ~aσ ∈ ~aσ1 ≫ ȧσ2

• if σ ∈ σ1 ≫ σ2 then ~aσ ∈ ~aσ1 ≫ ȧσ2

7.3.1 Alternative Semantics

It is worth noting the existence of at least one possible alternative semantics
for event notification under transactions. We have followed the JavaSpaces
approach by removing listeners created inside a transaction when the transac-
tion terminates (see axiom (47)). On the other hand, we could maintain these
listeners active. This can be obtained simply by replacing axiom (47) with the
following:
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(47′) on(a,P)
⇓x−→ on(a,P)

This alternative semantics seems more appropriate in order to satisfy a typ-
ical assumption about transactions: if a transaction consists of a single op-
eration we can drop the transaction surrounding that operation, obtaining
a behaviourally equivalent program. Only under the alternative semantics
create(x ).notify(a,P).commit(x ).Q is equivalent to notify(a,P).Q .

8 Conclusion and Related Work

We have presented a collection of process calculi inspired by the shared datas-
pace coordination model and languages initiated by Linda [25]. More precisely,
we have defined calculi of increasing complexity in order to concentrate, step-
by-step, on several relevant extensions of the native Linda shared dataspace
coordination model. The extensions that we have considered are concerned
with primitives related to event notification, timeouts, timed data, timed event
listeners, and transactions. Another interesting line of extension of the Linda
coordination model deals with the distribution of the data belonging to the
shared dataspace on different nodes. We have not modeled these extensions
because we consider this issue orthogonal with respect to the analysis of the
coordination primitives we have presented in this paper.

Nevertheless, it is worth to mention some of the main proposals of shared
dataspace coordination languages that deal with the distribution of data on
several nodes. KLAIM [23] permits to locate shared dataspaces on different lo-
cations and allows programs to introduce and retrieve data on local as well as
remote locations. Moreover, the primitive eval permits to send code that will be
executed on a remote location, thus supporting mobility. A more recent fam-
ily of decentralized Linda-like coordination models[43,33,34] supports a finer
grained form of decentralization. Data are not associated to a specific space,
but each datum has its own location. Dataspaces are then obtained as over-
lay structures that group together data possibly located at different sites. For
example, in Lime[43] data are associated to agents, which are software com-
ponents running on hosts. A group of connected hosts form a confederation.
All the agents running in the same confederation share the same dataspace
(called Transiently Shared Dataspace); this dataspace is obtained at run-time
grouping together the data stored in the agents currently running on the con-
federated hosts. Logical mobility is supported in the sense that agents can
move from one host to another. Physical mobility, on the other hand, is sup-
ported in the sense that hosts can move by joining and leaving confederations.
When a host/agent leaves (resp. joins) a confederation, the data stored in that
host/agent leave (resp. join) the corresponding dataspace. In TOTA [33] and
swarm-Linda [34] also data can autonomously move according to propagation

46



rules that are associated to each datum at creation time.

The remainder of this section is devoted to a discussion of related literature
structured as follows: a discussion of the previous work of the authors, the
presentation of other approaches used to model shared dataspace coordination
in process calculi, and finally a conclusive subsection reporting the references
to papers of the process algebra community in which process calculi are used
to investigate features related to ours (namely, timeouts and non-persistent
data).

8.1 Previous Work of the Authors

As already discussed in the Introduction, the main contribution of this pa-
per is in the homogeneous presentation and overview of previous work of the
authors [10–12,48,47,13–15,17,18]. The many results hinted here are fully de-
tailed in the references above.

In [10] we have initiated our formal investigation of shared dataspace coor-
dination languages focusing on Linda. In particular, we studied observational
equivalences (based on the notion of bisimulation) for several subcalculi com-
prising different sets of Linda coordination primitives. In [11] this investigation
is extended taking into account also different interpretations for the write op-
eration among which the unordered interpretation (according to which the
processes communicate asynchronously with the repository) and the ordered
one (which assumes that the communication between the processes and the
repository is synchronous). The main difference between these two semantics
is shown in [12] where we prove that a Linda-based process calculus is Tur-
ing powerful under the ordered semantics while this is not the case under the
unordered one.

In [48] coordination primitives able to test the absence of data alternative
to the Linda predicates are modeled and a hierarchy of expressiveness among
them is investigated. The basic coordination primitives of Linda are able to act
on a single datum at a time (e.g., consume or withdrawn one single datum).
In [47] we investigate operations able to consume and produce multisets of
data in a single atomic action, and the expressiveness of this new coordination
mechanism is compared to the basic Linda coordination primitives.

In [13] we have initiated the investigation of more recent coordination middle-
wares (such as JavaSpaces and TSpaces), which extend the traditional Linda
coordination model with the features described above.

The introduction of event notification has been investigated in [18] and in [17]:
in [18] we show that event notification strictly increases the expressiveness of
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coordination languages with only write, read , and take operations (while this
is not the case if also test for absence is considered); in [17] we investigate
the difference between the ordered and the unordered semantics in presence of
event notification, showing that the gap of expressiveness proved in [12] does
not hold any more.

The notion of leased data, as introduced by the JavaSpaces specifications,
has been investigated in [14]; in that paper we consider two interpretations of
the passing of time, namely global (according to which a global clock exists)
and local (several independent local clocks exist), and we prove a gap of ex-
pressiveness between the two interpretations. In [15] we move to a different
notion of timed data, according to which a datum could remain available in
the repository even after its expiration; we show that a gap of expressiveness,
similar to the previous one, holds between two implementations of the expired
data collector, the first which removes one datum selected among all those
expired, and the second which selects the datum which expired first.

As far as the modeling of the new features is concerned, this is the first pa-
per in which we consider timeouts and transactions. Moreover, we report in
the Appendix the proof of two new equivalence results: Appendix A considers
weak bisimilarity and the preservation of process termination between the or-
dered and the unordered semantics (in the calculus with only write, read , and
take operations); on the other hand, in Appendix B we prove the equivalence
between the global and the local interpretation of the passing of time in the
calculus with timeouts.

8.2 Shared Dataspaces in Process Calculi

Traditional process calculi adopt channel-based communication (see, for in-
stance, CSP [29] and CCS [35]). Besides the previous work of the authors,
other process calculi which consider shared dataspace communication can be
found in the literature.

In [21] a process calculus is defined which comprise the basic input, output,
and read Linda primitives. Differently from our approach, the read operation
is treated as an input with a subsequent emission of the consumed datum.
This means that rd(a).P is just a macro for in(a).out(a).P . This approach
is not satisfactory in a context, such as our own, in which the notification of
data production is considered. Indeed, in the presence of notify , the program
rd(a).P is different from in(a).out(a).P because the former should not pro-
duce any reaction, while the latter should trigger all those reactions related
to notify operations previously executed on the datum a.

A similar modeling of the Linda coordination mechanism has been adopted
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in [24]: in addition, that paper reports the investigation of adequate observa-
tional equivalences based on testing [22]. Observational semantics for Linda-
like coordination languages are studied also in [7]: however, in that paper a
different approach is considered based on a denotational semantics which is
fully abstract with respect to an observational criterion based on sequences of
states of the shared dataspace that a computation may produce.

The same authors have investigated also features related to time in a more
recent paper [30]. Differently from our approach, they assume two phases func-
tioning: time passes only when no action can be taken, that is, only when all
the processes are blocked waiting for time passing and cannot execute any
other action. This approach looks adequate for the modeling of synchronous
systems. In this paper we try to be more general, taking into account also
systems in which time passes asynchronously.

An alternative modeling of time has been adopted in [5] where, besides the
typical read , write and take primitives, also a read operation with timeout is
considered. Differently from our modeling of time, all the actions take exactly
one unit of time. Moreover, in the case no other action can be fired in the
system, and a datum 〈a〉 is available, a read operation on that datum must
succeed even if executed under timeout. More precisely, following the approach
of [5] the read operation in the configuration

〈a〉 | read(a, 2)?0 write(b)

can only succeed (i.e., 〈b〉 cannot be produced) while in our approach it can
also fail (i.e., 〈b〉 can be produced as discussed in Section 5).

In all the above papers, only Linda-like coordination primitives are considered
in order to access the shared dataspace coordination medium. Alternative
proposals are based on multiset rewriting. In particular, it is worth to mention
the Calculus of Gamma Programs in [28] (a calculus in which rewriting rules
can be combined exploiting a sequential and a parallel composition operator)
and the Chemical Abstract Machine [4] (in which dataspaces can contain
also other dataspaces, thus obtaining a hierarchical structure of nested data
repositories).

8.3 Related Process Calculi

We conclude reporting a comparison with related papers of the process algebra
community in which similar aspects, such as timeouts or non-persistent data,
are investigated.
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We have modeled time following a typical approach, according to which actions
are atomic and time passes in between them via explicit global synchroniza-
tions. This approach has been modeled, in the form we have adopted, for
the first time in [37]: time is divided in discrete intervals, and transitions are
used to model the influence of the passing of time on the terms of the cal-
culus. More precisely, two new prefix operators are introduced in a CCS-like
language in order to model delayed and idle processes: delayed processes are
blocked for exactly a predefined number of basic time intervals; idle processes,
on the other hand, are not influenced by the passing of time. Two different
choice composition operators, a strong and a weak choice, are used to combine
these two basic time mechanisms in order to model more complex behaviours.
The main difference with our approach is that we have decided to avoid the
introduction of new prefixes to model time features; indeed, in our process
calculi, prefixes always correspond to coordination primitives. For example,
we do not use any syntax to represent processes not influenced by the passing
of time, but we consider a semantic property, that is, the absence of outgoing
transitions denoting time passing (i.e., transitions labelled with

√
).

Finally, it is worth to mention [3]: in that paper the π–calculus [36] is extended
in order to perform a formal analysis of the two-phase commit protocol. In
particular, two extensions are of interest with respect to our process calculi:
lossy messages and timers. Lossy messages are data which could be lost, e.g.,
during transmission. These messages are similar to the non-persistent data we
have in our process calculus with leasing. The main difference is that lossy
messages may disappear at any time, while leased data remain available at
least until leasing expiration. Timers are used to model programs with time-
out: more precisely timer t(P ,Q) denotes a program which may behave like
P , in the case it starts acting before t clock ticks, otherwise it becomes Q
(exactly after t clock ticks). This approach is very close to our timeout nota-
tion: indeed, our term take(a)t?P Q corresponds (in the notation of [3]) to
timer t(take(a).P ,Q).
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A Ordered vs. Unordered Semantics in L

A.1 Weak bisimulation

Here we prove that for the kernel calculus L the two approaches for the inter-
pretation of the write operation, namely the ordered and unordered semantics,
are equivalent under the weak bisimulation equivalence [35], a typical equiv-
alence relation which does not take into account unobservable steps labelled
with τ .

Definition A.1 A binary, symmetric relation R on Conf is a weak bisimula-
tion if (P ,Q) ∈ R implies:

• if P
α−→ P ′ with α 6= τ then there exists Q ′, Q ′′, Q ′′′ such that

Q
τ−→∗

Q ′′ α−→ Q ′′′ τ−→∗
Q ′ and (P ′,Q ′) ∈ R;

• if P
τ−→ P ′ then there exists Q ′ such that Q

τ−→∗
Q ′ and (P ′,Q ′) ∈ R.

Two agents P and Q are weak bisimilar, written P ≈ Q , if there exists a weak
bisimulation R such that (P ,Q) ∈ R.

In the presence of the choice composition operator the weak bisimulation re-
lation is not a congruence [35]; on the other hand, it is a congruence in the
presence of only the standard prefixes and the parallel composition operator
(as is the case for our kernel calculus L).

In order to prove the equivalence between the ordered and unordered semantics
for the write operation we define: Ord(P) the term obtained by replacing all
the unordered output writeu in P with their ordered version write; on the
other hand let Unord(P) be the term obtained by replacing all the ordered
output write in P with their unordered version writeu .

Theorem A.2 For any configuration P , we have that Ord(P) ≈ Unord(P).

Proof. The thesis is a direct consequence of the fact that the weak bisimulation
relation is a congruence and that write(a).P ≈ writeu(a).P for any program
P .

The equivalence between write(a).P and writeu(a).P can be proved as follows;
we first observe that both programs have only one outgoing transition labelled
with τ leading to the configurations 〈a〉|P and 〈〈a〉〉|P , respectively; then it
is enough to show that the two reached configurations are weak bisimilar, i.e.,
〈a〉|P ≈ 〈〈a〉〉|P . To prove this it is enough to consider the trivial equivalence
〈a〉 ≈ 〈〈a〉〉 and to use the fact that ≈ is a congruence.
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A.2 Process termination

Here we prove that for the kernel calculus L the ordered and the unordered
semantics are equivalent from the point of view of the termination of processes.

We recall some notation which is used in the following: a reduction step, de-
noted with P −→ P ′, corresponds to a transition labelled with τ (i.e. P

τ−→ P ′);
a configuration P is terminated, denoted with P −→/ , if it has no outgoing
transitions labelled with τ ; a configuration has a terminating computation,
denoted with P ↓, if P −→∗ P ′ −→/ (where P −→∗ P ′ is the reflexive and
transitive closure of P −→ P ′).

The following fact states that a configuration interpreted under the ordered
semantics is terminated if and only if it is terminated also under the unordered
one. This is a direct consequence of the following observation: a terminated
configuration is the parallel composition of data available in the shared datas-
pace and programs which are either terminated or willing to read or consume
unavailable data. Thus, in a terminated configuration there exists no program
able to perform any write operation; thus the kind of interpretation for the
write primitive has no influence.

Fact 1 For any configuration P, we have that Ord(P) −→/ if and only if
Unord(P) −→/ .

The following fact consists of two statements: the first is trivial to prove and
indicates that a computation under the ordered semantics can be always sim-
ulated under the unordered one. The second sentence, which can be proved
by induction on the length of the derivation Unord(P) −→∗ P ′, states that
each computation under the unordered semantics can be extended in order to
obtain an equivalent computation valid under the ordered one.

Fact 2 For any configuration P, we have that:

• if Ord(P) −→∗ P ′ then Unord(P) −→∗ Unord(P ′);
• if Unord(P) −→∗ P ′ then there exists P ′′ such that P ′ −→∗ P ′′ and

Ord(P) −→∗ Ord(P ′′).

We can now prove the new equivalence result between the ordered and un-
ordered semantics.

Theorem A.3 For any configuration P , we have that Ord(P) ↓ if and only
if Unord(P) ↓.

Proof. The thesis is a direct consequence of the Facts 1 and 2.
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B Synchronous vs. Asynchronous Time in L[∆]

Synchronous and asynchronous time can be considered equivalent for the cal-
culus with timeouts, as a consequence of the following theorem stating that,
given an initial configuration P (i.e., a configuration in which no timeout is
counted yet), the configurations that can be reached from P under the syn-
chronous time are exactly the same as those reachable under the asynchronous
time.

Theorem B.1 Let P be an initial configuration not including terms sensible
to the passing of time, i.e., without subterms of the kind ηt?P Q . We have
that P −→∗

s P ′ if and only if P −→∗
a P ′.

Proof. The two directions of the double implication are proved separately. The
only if part (a computation under the synchronous time is valid also under the
asynchronous one) follows directly from the fact that the components sensitive
to the passing of time may synchronize on their

√
transitions also under the

asynchronous time.

The if part (a computation under the asynchronous time can be simulated
also under the synchronous one) is proved by induction on the length of the
computation P −→∗

a P ′. The base case (length equal to 0) is trivial. In the
inductive case we can assume the existence of P ′′ such that P −→∗

a P ′′ −→a

P ′.

Consider now P ′′ −→a P ′: we have two cases to analyse.

As first case we consider that the reduction is due to the firing of a transition
labelled with τ (i.e., P ′′ τ−→ P ′ under the asynchronous time) then the thesis
is proved because the asynchronous and the synchronous reductions do not
differ in their τ labelled transitions.

As second case we consider that the reduction is due to the firing of a transition

labelled with
√

(i.e., P ′′
√

−→ P ′ under the asynchronous time). The transition
involves only the terms ηt?P Q which synchronize on the

√
transition: each

of these terms is replaced by the corresponding successor indicated by the
axiom (22) or (23).

The configuration P ′′ could contain other terms of the kind ηt?Q R not in-
volved in the

√
transition. This set of terms is partitioned into two subsets:

the old terms with a time index which has been decreased at least once, and
the new terms which are still during their first time interval (i.e., their index
is still the one defined at the moment of their creation).
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Each old term ηt?Q R has a predecessor of kind ηt+1?Q R; each new term
ηt?P Q has a predecessor of kind take(a, t)?Q R or read(a, t)?Q R.

Let P ′′′ be the term obtained from P ′′ by substituting all the old and new
terms with their corresponding predecessors. As P ′′′ differs from P ′′ only for
these predecessors, we have that P −→∗

a P ′′′ with a computation shorter than
P −→∗

a P ′′. By induction hypothesis also P −→∗
s P ′′′ holds.

We finally prove the thesis showing that also P ′′′ −→∗
s P ′ holds. Indeed, P ′ can

be obtained by substituting in P ′′′ each term ηt?Q R with its successor, and
by substituting each predecessor of a new term with the corresponding new
term. For these reasons the computation P ′′′ −→∗

s P ′ consists of a
√

transition
followed by one transition for each new term that should be produced from
its corresponding predecessor occurring in P ′′′.
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