
Service Oriented Computing from a

Process Algebraic Perspective ?

Mario Bravetti Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,
Mura Anteo Zamboni 7, I-40127 Bologna, Italy.

e-mail:{bravetti,zavattar}@cs.unibo.it

Abstract

Service Oriented Computing is emerging as a reference model for a new class of
distributed computing technologies such as Web Services and the Grid. We discuss
three main aspects of Service Oriented Computing (loose coupling, communication
latency, and open endedness), and we relate them with traditional process alge-
bra operators. We also indicate some new issues, raising from the combination of
these three aspects, that require the investigation of suitable new process algebra
operators.

1 Introduction

Service Oriented Computing is an emerging paradigm for distributed com-
puting based on services as the basic computational entities. Services are
autonomous, platform-independent, heterogeneous elements that interact via
basic patterns of service invocation. The main novelty of service oriented com-
puting, with respect to traditional distributed computing models, is that ser-
vices are stateless and all information they need is usually passed within the
exchanged messages. This technique is called contextualization because the
messages contain additional context information, such as cookies or session
identifiers, used to describe the state of the overall computation. Due to the
statelessness assumption, the service oriented paradigm is particularly suited
to program systems based on a minimal shared knowledge and understanding
among the interacting parts. These systems are usually referred to as loosely
coupled systems.

? Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

Preprint submitted to Elsevier Preprint 13 April 2006

The most prominent service oriented technologies are Web Services and the
Grid. These technologies are based on standardized mechanisms used to de-
scribe the interface of the services, to advertise and locate new services, and
to invoke the available services via one of the basic interaction pattern. Com-
plex service interactions, which cannot be trivially encoded in the basic pat-
terns, require a so-called service orchestration. Service orchestration is usu-
ally achieved adding new components (called the orchestrators) that do not
actually perform computation, but simply manage the flow of invocation of
the services involved in the collaboration. A plethora of languages (comprising
e.g. XLANG, BizTalk, WSFL, WS-BPEL) has been recently defined to specify
and program orchestrators. All these languages combine workflow constructs
and communication primitives. The workflow constructs are used to decribe
the flow of execution of the orchestration activities, while the communication
primitives correspond to the basic service interaction patterns. Most of these
languages have explicitly taken inspiration from process algebras such as CSP
or the π-calculus. Nevertheless, due to peculiarities of service oriented com-
puting, some constructs and primitives differ from the traditional operators
of process algebras. Three of these peculiarities are:

Loose coupling. Orchestrators have a minimal control on the orchestrated
services, for instance, a service can autonomously exit the orchestration
without any previous notice.

Communication latency. The transport layer responsible for the exchange
of messages, among the orchestrator and the services, does not give guar-
antees about the reliability and timing of remote message delivery.

Open-endedness. An orchestrator can dynamically, i.e. at run time, retrieve
new services to be involved in the orchestration; for instance, this could be
useful to replace services that autonomously leave the orchestration.

The remainder of the paper is organized as follows: in Sections 2, 3, and 4 we
focus separately on the three above aspects, while in Section 5 we conclude
discussing interesting issues raised by their combination.

2 Loose coupling

In order to cope with loose coupling, orchestration languages usually provide
linguistic constructs to program the so-called loosely coupled transactions.
Traditional database transactions guarantees the ACID properties: Atomic-
ity, Consistency, Isolation, and Durability. When the activities involved in a
transaction are loosely coupled the ACID properties adapt badly. In particular,
Isolation usually requires to lock resources. In Web Services applications, for
instance, resources may belong to different companies and there is no chance
for an orchestrator to lock resources of other companies. Additionally, trans-

2

actions may last long periods of time, and it is not feasible to block resources
so long.

The loosely coupled transactions weaken the notion of rollback: a service might
decide that rollback will not cancel all the activities carried out. The cancel-
lation of an airplane booking, for instance, may lead to the payment of a fee.
Services that do not support an “absolute” mechanism of rollback, make fail-
ures extremely complicated, to be dealt with ad-hoc rollbacks. These ad-hoc
rollback processes are called compensations.

The notion of compensation is the key aspect of several recent processs alge-
bras defined on purpose to formalize the semantics of compensation execution,
and to reason about properties of compensation policies. The first proposal
in this direction is StAC, a calculus with an explicit compensation operator
whose operational semantics has been formalized in [8]. StAC has recently
inspired also a new CSP dialect, called cCSP [9], whose semantics is defined
denotationally in terms of traces. An alternative proposal is represented by
the SAGAS calculi [7] that defines a concurrent big-step semantics for sequen-
tial, parallel, and nested compensatable transactions. Recently, in [6] cCSP
and the SAGAS calculi have been thoroughly compared discussing how to en-
code (fragments of) the former in (some of) the latter calculi, and vice versa.
Compensations have been formalized and investigated also in the context of
π-calculus in [4], where a calculus inspired by the compensation policy of
BizTalk is presented.

In this Section we focus on the basic mechanisms required to run compensa-
tions. Compensations are usually activated in case an unexpected event occurs
such as the reception of a negative response or the unavailability of a service.
Usually, when one of these events occurs, some activity must be interrupted
(because it has failed) and some other should be activated instead (responsi-
ble for executing the ad-hoc rollback procedure). In order to investigate these
aspects formally, we define a process calculus comprising a new operator that
combines the possibility to interrupt a process with the possibility to activate
an alternative compensating process. A similar operator has been already in-
vestigated in [13] in the context of the asynchronous π-calculus. However, there
are significant differences with that paper. First of all, in this paper interrupt
signals can be produced only internally from the activity to be interrupted.
Moreover, in case an interruptable activity contains other nested interruptable
activities, the inner ones are blocked in case of interruption of the outer one;
this was not the case in [13] where inner transactions and messages are not
involved in transaction abort operations.

In this paper we include the process interruption operator in a process calculus
based on asynchronous shared dataspace communication: processes interact by
producing tuples (i.e. ordered sequences of data) that are stored in a shared

3

repository called the tuple space where they can be subsequently retrieved
(either read or consumed) by means of read or input coordination primitives.
Shared dataspace communication has revealed a natural choice for model-
ing asynchronously interacting services. In particular, as will be made more
clear in the next Section, we will be able to model in a rather simple manner
networks of remotely interacting services exploiting the notion of distributed
tuple spaces.

2.1 A Basic Calculus with Interruptable Processes

The coordination primitives that we consider to access the shared tuple space
are: out(e), in(t) and rd(t). The output operation out(e) inserts a tuple e in
the tuple space (TS for short). Primitive in(t) is the blocking input operation:
when an occurrence of a tuple e matching with t (denoting a template) is
found in the TS, it is removed from the TS and the primitive returns the
tuple. The read primitive rd(t) is the blocking read operation that, differently
from in(t), returns the matching tuple e without removing it from the TS.

In languages based on shared tuple space communication, tuples are ordered
and finite sequences of typed fields, while template are ordered and finite
sequences of fields that can be either actual or formal (see [11]): a field is
actual if it specifies a type and a value, whilst it is formal if the type only is
given. For the sake of simplicity, in the formalization we are going to present,
fields are not typed.

Formally, let Mess, ranged over by m, m′, . . ., be a denumerable set of mes-
sages and V ar, ranged over by x, y, . . ., be the set of data variables. In the
following, we use ~x, ~y, . . ., to denote finite sequences x1; x2; . . . ; xn of variables.
We consider also expressions taken from a generic set Exp (ranged over by
exp, exp′, . . .); expressions may contain variables and are equipped with an
evaluation function Eval : Exp→Mess.

Tuples, denoted by e, e′, . . ., are finite and ordered sequences of data fields (we
use arity(e) to denote the number of fields of e), whilst templates, denoted by
t, t′, . . ., are finite and ordered sequences of fields that can be either data or
wildcards (used to match with any message).

Formally, tuples are defined as follows:

e = 〈~d〉

where ~d is a term of the following grammar:

~d ::= d | d; ~d
d ::= m | x | exp.

4

We overload the evaluation function and apply it also to tuples with the ex-
pected meaning; Eval(e) returns the tuple obtained by evaluation of the fields
of e that contain an expression.

The definition of template follows:

t = 〈~dt〉

where ~dt is a term of the following grammar:

~dt ::= dt | dt; ~dt
dt ::= d | null.

A data field d can be a message or a variable or an expression. The addi-
tional value null denotes the wildcard, whose meaning is the same of formal
fields, i.e. it matches with any field value. With abuse of notation we apply
the Eval function also to templates. In the following, the set Tuple (resp.
Template) denotes the set of tuples (resp. templates) containing no variable
and no expressions.

The matching rule between tuples and templates we consider is as follows.

Definition 2.1 Matching rule - Let e = 〈d1; d2; . . . ; dn〉 ∈ Tuple be a
tuple, t = 〈dt1; dt2; . . . ; dtm〉 ∈ Template be a template; we say that e matches
t (denoted by e . t) if the following conditions hold:

(1) m = n.
(2) dti = di or dti = null, 1 ≤ i ≤ n.

Condition 1. checks if e and t have the same arity, whilst 2. tests if each
non-wildcard field of t is equal to the corresponding field of e.

Processes, denoted by P , Q, . . ., are defined as follows:

P , Q, . . . ::=
commit commit command

| abort abort command
| out (e).P output
| rd t(~x).P read
| in t(~x).P input
| P | P parallel composition
| !P replication
| P ←↩ P interruption

5

A process can complete its computation entering either in a commit or abort
state; these two states are denoted by the commit and abort states, respec-
tively. The other processes are prefix forms µ.P , the parallel composition of two
programs, the replication of a program, or an interruptable process P ←↩ Q.
The prefix µ can be one of the following coordination primitives: i) out (e),
that writes the tuple e in the TS; ii) rd t(~x), that given a template t reads
a matching tuple e in the TS and stores the return value in ~x; iii) in t(~x),
that given a template t consumes a matching tuple e in the TS and stores the
return value in ~x. In both the rd t(~x) and in t(~x) operations (~x) is a binder
for the variables in ~x. The parallel composition P | Q of two processes P and
Q behaves as two processes running in parallel. Infinite behaviours can be
expressed using the replication operator !P . Replication is a typical operator
used in process calculi to denote the parallel composition of an unbounded
amount of instances of the same process. The last operator is used to program
interruptable activities. In the term P ←↩ Q the process P executes its opera-
tion until a abort command is executed. After execution of the abort command
the process Q is activated as interrupt handler.

To shorten the notation we usually omit trailing commit, e.g., we write the
process out(e).commit simply as out(e).

In the following, P [d/x] denotes the process that behaves as P in which all
free occurrences of x (also inside expressions) are replaced with d. We also use

P [~d/~x] to denote the process obtained by replacing in P all occurrences of vari-

ables in ~x with the corresponding value in ~d, i.e. P [d1; d2; . . . ; dn/x1; x2; . . . ; xn] =
P [d1/x1][d2/x2] . . . [dn/xn].

We say that a process is well formed if each prefix of kind rd/in 〈~dt〉(~x) is

such that the variables ~x and the data ~dt have the same arity. Notice that in
the rd t(~x) and in t(~x) operations we explicitly indicate in (~x) the variables
that will be bound to the actual fields of the matching tuple. Moreover, a
well formed process is also closed: given an occurrence of an output primitive
out (e).P , we assume that all the variables in e (also those occurring inside
expressions) are included in the scope of a binder. In the following, we consider
only processes that are well formed; Process denotes the set of such processes.

Let DSpace, ranged over by DS, DS ′, . . ., be the set of possible configurations
of the TS, that is DSpace =Mfin(Tuple), whereMfin(S) denotes the set of
all the possible finite multisets on S. In the following, we use DS(e) to denote
the number of occurrences of e within DS ∈ DSpace.The set System =
{〈P, DS〉 | P ∈ Process, DS ∈ DSpace}, ranged over by s, s′, . . ., denotes
the possible configurations of systems.

The semantics we use to describe processes interacting via coordination prim-
itives is defined by means of a structural congruence relation ≡ that equates

6

processes that we do not want to distiguish. ≡ is defined to be the minimal
congruence relation over processes such that

P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R !P ≡!P |P

P |commit ≡ P commit←↩ P ≡ commit

The equivalence relation ≡ is extended to system configurations by means of
the rule

if P ≡ Q then 〈P, DS〉 ≡ 〈Q, DS〉

Semantics of processes is defined in terms of a transition system over equiv-
alence classes of system configurations, i.e. [s]≡ for some s ∈ System. In
the rest of this section we will use [s] as a shorthand for [s]≡ and [P, DS]
as a shorthand for [〈P, DS〉]≡. More precisely the operational semantics is
defined to be (System/≡,−→), where: System/≡ is the set of states and
−→⊆ System/≡ ×System/≡ is the minimal relation satisfying the axioms
and rules of Table 1. ([s], [s′]) ∈−→ (also denoted by [s] −→ [s′]) means that a
system (configuration) s can evolve (performing a single action) in the system
(configuration) s′. When evaluating the semantics of a process P , we consider
[P, ∅] ∈ System/≡ to be the initial state.

(1)
Eval(e) = e′

[out (e).P,DS] −→ [P,DS ⊕ e′]
(2)

Eval(t) = t′ ∃e ∈ DS : e . t′

[in t(~x).P,DS] −→ [P [e/~x], DS − e]

(3)
Eval(t) = t′ ∃e ∈ DS : e . t′

[rd t(~x).P,DS] −→ [P [e/~x], DS]
(4)

[P,DS] −→ [P ′, DS′]

[P | Q,DS] −→ [P ′ | Q,DS′]

(5) [abort|P ←↩ Q, DS] −→ [Q,DS] (6)
[P,DS] −→ [P ′, DS′]

[P ←↩ Q, DS] −→ [P ′ ←↩ Q, DS′]

Table 1
Semantics of the basic calculus with interruptable processes.

Rule (1) describes the output operation that produces a new occurrence of the
tuple e in the shared space DS (DS⊕ e denotes the multiset obtained by DS
increasing by 1 the number of occurrences of e). Rules (2) and (3) describe
the in and the rd operations, respectively: if a matching e tuple is currently
available in the space, it is returned at the process invoking the operation
and, in the case of in, it is also removed from the space (DS − e denotes
the removal of an occurrence of e from the multiset DS). Rule (4) represents

7

a local computation of processes. Rule (5) defines how the abort command
can be used to interrupt a process and activate the interrupt handler instead.
Finally, rule (6) is used to close the transition system w.r.t. the interrutable
process composition operator.

3 Communication Latency

Orchestration languages support a time aware programming style. For in-
stance, in the visual orchestration language BizTalk [14], timed activities can
be programmed which are interrupted in case they do not complete within a
predefined period of time. Similarly, in WS-BPEL [15], it is possible to pro-
gram signals that are raised at specific time instant, and to install handlers
that are triggered by these signals.

Timed process algebras are an extremely powerful tool for modeling and
analysing timed systems. There exists numerous models of time inspired by
different intuitions and abstractions, see e.g. [1] for a comprehensive overview.
According to the traditional taxonomy of timed process algebras, the model of
time that we adopt can be classified as discret and asynchronous. Basic time
intervals are considered, and the unique time aware operator is P ←↩n Q, a
timed version of the interrupt operator that permits to interrupt the process
P in the case it does not complete within a predefined number of time inter-
vals. This number of intervals is quantified by the timeout n which is a strictly
positive natural number (or infinity). Standard operations (output, read and
input) take no time. An additional timed relation is defined in order to model
the effect of the elapse of one time interval that require to decrease by one unit
the timeouts. If one timeout cannot be decreased because it is already equal
to 1, the corresponding activity P is interrupted and the interrupt handler Q
is activated instead.

Besides timed interruptions, we consider also process and dataspace distribu-
tion. Time and distribution are strongly related concepts due to communica-
tion latency. In fact, messages exchanged among remote services are delivered
after an unpredictaly time delay, and services usually do not wait indefinitely
for such these messages. For instance, an orchestrator that sends requests to
two services, e.g. an hotel and an airplane reservation service, cannot indefi-
nitely wait for the two answers; in case one of the two reservations does not
complete in due time, the whole orchestration is aborted.

Distrubution is achieved simply adding the notion of location 〈P, DS〉l which
is a triple composed of a process P , a dataspace DS and a location identifier
l. A tuple e can be sent towards a remote location l simply by performing the
out (e@l) operation.

8

3.1 A Calculus with Distribution and Time

We consider the new set of location Loc, ranged over by l, l′, . . ., to denote
location names. Location names can be communicated, thus a tuple e can
contain also locations besides variables and messages.

Processes are the same except that the parameter of the output operation may
be also of the kind e@l; such a message is inserted in the local data space but
will be subsequently sent towards its destination injecting it in the network.
Moreover, the transaction operator has an additional timeout P ←↩n Q where
n is a strictly positive natural number or ∞ (for which ∞+ 1 =∞).

M , N , . . . ::= machines
〈P, DS〉l location
| e@l message
| M ||M network

We define a predicate P ↓ that verifies whether a process has committed

commit ↓

if P ↓ then P ←↩n Q ↓

if P ↓ and Q ↓ then P |Q ↓

We need to extend the notion of structural congruence to machines also. ≡ is
now defined as the minimal congruence relation over machines that includes
equivalence over locations defined in the previous section and that is such that

M |N ≡ N |M M |(N |L) ≡ (M |N)|L

We are now ready to define the function on processes φ(·) that models the
effect of the passing of one time unit

if P 6 ↓ then φ(P ←↩n+1 Q〉) = φ(P)←↩n Q

if P 6 ↓ then φ(P ←↩1 Q) = Q

φ(P |Q) = φ(P)|φ(Q)

φ(P) = P in all other cases

Operational semantics is now defined in terms of two transition systems, one
describing the execution of operations, another one describing the effect of

9

the passing of one time unit. More precisely semantics of machines is de-

fined in terms of a timed transition system (Machine/≡,−→,
√
−→), where:

Machine/≡ is the set of states; −→⊆Machine/≡ ×Machine/≡ is the mini-
mal relation satisfying the set of axioms and rules in Table 1 (where l is added
as pedix of systems, i.e., [P, DS] becomes [〈P, DS〉l], and timeout n is added
as index of the interruptable processes, i.e., P ←↩ Q becomes P ←↩n Q) and

in Table 2; and
√
−→⊆Machine/≡ ×Machine/≡ is the minimal relation sat-

isfying the set of axioms and rules in Table 3. ([M], [M ′]) ∈
√
−→ (also denoted

by [M]
√
−→ [M ′]) means that a machine M after one time tick evolves into a

machine M ′ ∈Machine. When evaluating the semantics of a machine M , we
consider [M] ∈Machine/≡ to be the initial state of the transition system.

(7)
[M] −→ [M ′]

[M ||N] −→ [M ′||N]
(8) [〈P,DS ⊕ e@l〉l′] −→ [〈P,DS〉l′ | e@l]

(9) [〈P,DS〉l | e@l] −→ [〈P,DS ⊕ e〉l]

Table 2
Semantics of the calculus with distribution and time: reduction relation.

(10) [〈P,DS〉l]
√
−→ [〈φ(P), DS〉l] (11) [e@l]

√
−→ [e@l]

(12)
[M]

√
−→ [M ′] [N]

√
−→ [N ′]

[M |N]
√
−→ [M ′|N ′]

Table 3
Semantics of the calculus with distribution and time: timed relation.

The most interesting new rules of the reduction relation are (8) and (9). The
former models the injection on the network of a message to be sent to a remote
location, while the latter models the delivery of the message. Rule (7) simply
lifts the reductions for machines to an entire network of machines. As far as
the rules of Table 3 are concerned, rule (10) indicates that the elapsing of one
time unit requires the application on processes of the function φ(·) defined
above, rule (11) shows that messages injected in the network are not affected
by time passing, and rule (12) states that the effect of the elapsing of one time
unit on an entire network is given by the effect of time passing on each of its
nodes.

10

4 Open-endedness

Open-endedness is an inherent characteristics in orchestration of services re-
trieved from the internet: new services may appear and disappear at run-time,
available services (or their efficiency) may depend on their current location or
on the current location of the orchestrator (if we deal with mobile entities), re-
quests towards services offering the same service (where “same” is established
in terms of some semantical definition of its behavior) may be distributed so
to have a balanced workload. Assuming that we know available services and
we bind them when the orchestrator is created (i.e. at “compile-time”) is not
realistic in this context.

Expressing open-endedness in process algebra requires evolved mechanism for
channel retrieval to access services. In particular the retrieval should be based
on requirements on the desired service, e.g. on some abstraction of its behavior.
This can be done in several ways: by using matching rules on tuples of data
(formed e.g. by one element representing the channel and others describing
the service and its behavior) as in Linda [11] or by using direct subtyping on
channels themselves [10]. Note that in this context process algebra may be
involved even in the description of the desired behavior of services itself. For
example [12] uses abstract process algebraic descriptions as types of systems
(services in our case) which are expressed in a more complex process algebra.

In this Section we extend the process calculus previously defined in order to
model dynamic retrieval of services. The basic idea is to exploit tuples to de-
scribe available services, that can be retrieved using the read and/or input
operations. Inspired by the standard UDDI protocol [17], we model a service
registry as a node in the network that can be used to publish and discovery
new services. One of the main limitation of tuple space used as service descrip-
tion repository is that it has no structure: all tuples in the tuple space have
the same relevance, thus it is rather complex to cope with contexts in which
there are services that are more important than other because, for instance,
provides more powerful resources or connection with a larger bandwidth. To
address this limitation, we follow the approach initiated in [5] that consists of
associating weights to tuples in order to quantify the relevance of the tuple.
The higher is the weight of a tuple, the higher is the probability for that tuple
to be retrieved. We first extend the calculus with weights and probabilities,
then we formally define how to model a service registry in the new calculus.

11

4.1 A Calculus with Weighted Tuples

Let Weight, ranged over by w, w′, . . ., be the set of the possible weights.
We assume to use positive (non-zero) real numbers as weights, thus Weight
coincides with <+ \ {0}. Tuples are now defined as follows:

e = 〈~d〉 [w]

where w ∈ Weight and ~d is a sequence of data fields d that are defined by the
following grammar:

d ::= m | w | x | exp.

A data field d now can be a message, a weight, a variable or an expression
(possibly containing also weights). We also define ·̃ as the function that, given

a tuple e, returns its sequence of data fields (e.g. if e = 〈~d〉 [w] then ẽ = ~d). In
the following, we denote with W the function that, given a tuple, returns its
weight (e.g., if e = 〈~d〉 [w] then W (e) = w). Weights are not considered in the
matching rule whose definition is unchanged.

4.1.1 The Semantics

The semantics replaces the standard non-deterministic choice of a tuple among
the matching ones in the TS, with a probabilistic choice exploiting weights.

We consider probability distributions taken from the set Prob = {ρ | ρ :
Machine/≡−→ [0, 1] ∧ supp(ρ) is finite ∧∑

[M]∈Machine/≡ ρ([M]) = 1}, where
supp(ρ) = {[M] | ρ([M]) > 0}.

The operational semantics is defined in terms of a probabilistic and timed

transition system (Machine/≡,−→,
√
−→), where: Machine/≡ is the set of

states; −→⊆Machine/≡ × Prob is the minimal relation satisfying the set of
axioms and rules that are obtained from those included in Tables 1 and 2 by

updating some rules as described in Table 4; and
√
−→ is the minimal relation

satisfying the set of axioms and rules in Table 3. ([M], ρ) ∈−→ (also denoted
by [M] −→ ρ) means that a machine M can evolve (performing a single action)
into a probability distribution ρ over machines, such that the machine M ′ ∈
Machine is reached with a probability equal to ρ([M ′]). We use [M] −→ [M ′]
to denote [M] −→ ρ, with ρ the trivial distribution which gives probability 1
to [M ′] and probability 0 to all other states. When evaluating the semantics
of a machine M , we consider [M] ∈Machine/≡ to be the initial state.

Note that, a machine M can evolve into several probability distributions, i.e. it
may be that [M] −→ ρ for several different ρ. This means that (like in the sim-
ple model of [16]) whenever the system is in state [M], first a non-deterministic

12

(2’)
Eval(t) = t′ ∃e ∈ DS : e . t′

[〈in t(~x).P,DS〉l] −→ ρ〈in t′(~x).P,DS〉l

(3’)
Eval(t) = t′ ∃e ∈ DS : e . t′

[〈rd t(~x).P,DS〉l] −→ ρ〈rd t′(~x).P,DS〉l

(4’)
[〈P,DS〉l] −→ ρ

[〈P | Q,DS〉l] −→ ρ|Q

(6’)
[〈P,DS〉l] −→ ρ

[〈P ←↩ Q, DS〉l] −→ ρ←↩ Q

(7’)
[M] −→ ρ

[M ||N] −→ ρ||N

Table 4
Semantics of the calculus with weighted tuples.

choice is performed which decides which of the several probability distribu-
tions ρ must be considered, then the next state is probabilistically determined
by the chosen distribution ρ. Note that the non-deterministic choice may, e.g.,
arise from several concurrent rd operations which probabilistically retrieve
data from the tuple-space.

Table 5 defines: (i) the probability distributions ρ〈in t(~x).P,DS〉l and ρ〈rd t(~x).P,DS〉l
used for in and rd operations, respectively; (ii) the operators ρ|Q, ρ←↩Q and
ρ||N , that, given ρ, compute new probability distributions that accounts for
parallel composition with process “Q”, composition with interrupting process
“Q” and parallel composition with machine N , respectively. It is worth noting
that ρ〈in t(~x).P,DS〉l and ρ〈rd t(~x).P,DS〉l are defined only if t ∈ Template and
DS ∈ DSpace are such that there exists e ∈ DS : e . t (that is the condition
reported in axioms (2) and (3)). The meaning of such probability distributions,
that are used in axioms and rules of Table 4, is commented in the description
of the operational semantics that follows.

Axiom (2’) describes the behaviour of in operations; if a tuple e matching
with template t is available in the DS, the in execution produces the removal
from the space of e and then the process behaves as P [ẽ/~x]. The probability

13

ρ〈in t(~x).P,DS〉l ([M]) =
W (e) ·DS(e)∑

e′∈DS:e′.t W (e′) ·DS(e′)
if M ≡ 〈P [ẽ/~x], DS − e〉l

with e ∈ DS ∧ e . t

0 o.w.

ρ〈rd t(~x).P,DS〉l ([M]) =

∑
e′∈DS:e′.t∧P [ẽ′/~x]≡P [ẽ/~x] W (e′) ·DS(e′)∑

e′∈DS:e′.t W (e′) ·DS(e′)
if M ≡ 〈P [ẽ/~x], DS〉l

with e ∈ DS ∧ e . t

0 o.w.

(ρ)f ([M]) =
∑

[M ′]∈ dom(f): ([M ′])f = [M] ρ([M ′])

where f : Machine/≡−→o Machine/≡
can be “|Q”, “←↩Q” or “||N”, defined by:

([〈P,DS〉l])|Q = [〈P |Q,DS〉l]

([〈P,DS〉l])←↩Q = [〈P←↩Q, DS〉l]

([M])||N = [M ||N]

Table 5
Probability distributions.

of reaching a configuration where a matching tuple e contained in the DS is
removed is the ratio of the total weight of the several instances of e in the DS,
to the sum of the total weights of the several instances of the matching tuples
currently available in the DS. In this way, the probability to reach a system
configuration takes into account the multiple ways of removing e due to the
several occurrences of e in the DS. The axiom (3’) describes rd operations; if
a tuple e matching with template t is available in the DS, then the process
behaves as P [ẽ/~x]. Differently from the previous axiom, rd operations do not
modify the tuple space, i.e. reached states do not change the configuration of
DS, therefore they are simply differentiated by the continuation P [ẽ/~x] of the
reading process. For example, let us consider two different tuples e = 〈d; dc〉[w]
and e′ = 〈d′; dc〉[w′]. Let P = rd 〈null; null〉(x1; x2).out(〈x2〉[w]) be the process
performing the read; it is not possible to discriminate the selection of the two
different tuples. Therefore, the probability of reaching a configuration s that

14

is obtained by reading a tuple e matching with t in the DS (yielding value e) is
the ratio of the sum of the total weights associated to the several instances of
tuples e′ matching with t in the DS such that the continuation of the reading
process obtained by reading tuple e′ is the same as the one obtained by reading
e, to the sum of the total weights of the several instances of the matching tuples
currently available in the DS. Rule (4’) defines the behaviour of the parallel
composition of processes: if states reachable from [〈P, DS〉l] are described by
the probability distribution ρ, and P performs an action in the system [〈P |
Q,DS〉l] (the process that proceeds between P and Q is non-deterministically
selected), then the reachable states are of the form [〈P ′ | Q,DS ′〉l], for some
P ′ ∈ Process and DS ′ ∈ DSpace. The probability values of one such state
[〈P ′ | Q, DS ′〉l] does not depend on Q (that is “inactive”) and is equal to the
summation of the probability values ρ([〈P ′′, DS ′〉l]) for all P ′′ (among which
there is P ′) such that [〈P ′′ | Q,DS ′〉l] = [〈P ′ | Q,DS ′〉l]. The rules (6’) and
(7’) define the behaviour of process interruption and parallel composition of
machines in a similar way.

Example 4.1 Service registry - A service description is a pair composed of
two information: task and bind. The former described the kind of task provided
and executed by the service. The latter provides the information needed to
connect and exploit the service finctionality. A service registry can be seen
as a machine whose tuple space is a repository of service descriptions. Two
processes run on that machine that are responsible to provides to the client of
the registry the publish and discovery operations. The former is used to add a
service description in the repository, the latter is used to retrieve and available
service description.

Following this approach, new services can be published sending a request to
the registry. We assume that messages containing a publish request have the
format 〈pubreq; mitt; task; bind〉 where pubreq is a value that indicates that
the tuple is a publish request message, mitt is a location where an acknowledge-
ment of the registration will be sent, and task and bind describes the service
to be publishes. On the other hand, a message containing a discovery request
must have the format 〈disreq; mitt; task〉 where disreq is the value charac-
terizing the tuples representing discovery requests, mitt is the location where
the description of the retrieved service will be sent, and task described the
functionality expected from the retrieved service.

Namely, the initial state of the service registry is modeled by the machine

〈!Publish | !Discovery, ∅〉uddi

15

where the processes Publish and Discovery are defined as follows:

Publish = in 〈pubreq; null; null; null〉(x; mitt; task; bind).

out(〈task; bind〉[w(mitt, task, bind)]). out(〈puback; uddi〉@mitt)

Discovery = in 〈disreq; null; null〉(x; mitt; task).

rd 〈task; null〉(x; bind). out(〈disres; uddi; task; bind〉@mitt)

Note that the weight of the tuple that describes the service is computed accord-
ing to an application dependent expression w(mitt, task, bind). Moreover, two
extra special values puback and disres are used to qualify messages repre-
senting publish acknowledgements and discovery responses, respectively.

Example 4.2 Service publication and discovery - A process willing to
publish a service on a registry defined as in the Example 4.1 can be modeled
by the following machine

〈DoPubtask,bind,uddi, ∅〉user

where the process DoPubtask,bind,uddi is as follows:

DoPubtask,bind,uddi = out(〈pubreq; user; task; bind〉@uddi).

(in 〈puback; uddi〉(x1; x2).Normal←↩n Timeout)

Note that the process is not willing to wait indefinitely for the acknowledge-
ment. The timed interruption operator is used to activate an alternativa pro-
cess Timeout responsible to manage situations in which the acknowledgement
is not received in due time.

On the contrary, a process willing to discover a new service can be modeled by
the following machine

〈DoDistask,uddi, ∅〉user

where the process DoDistask,uddi is as follows:

DoDistask,uddi = out(〈disreq; user; task〉@uddi).

(in 〈disres; uddi; task; null〉(x1; x2; x3; bind).Normal←↩n Timeout)

Also in this case the process is not willing to wait indefinitely for the service
binding.

Example 4.3 Orchestrated discovery - As a final example we present a
process which needs to contact two different services in order to compose them.
Consider, e.g. the organization of a travel that requires to book a flight as well
as the hotel. Two different discoveries are needed to retrieve two specialized

16

services, one for flight reservation, and another one for hotel reservation. In
case one of the two discoveries fail, it is necessary to interrupt the whole
orchestration as it is no more possible to complete it successfully.

In order to program such an orchestrator, we first consider two processes,
similar to DoDistask,uddi defined in the prvious example, that retrieve the flight
reservation and hotel reservation services, respectively.

FlightDis = out(〈disreq; user;FLIGHT〉@uddi).

(in 〈disres; uddi;FLIGHT; null〉(x1; x2; x3; bind).out(〈FLIGHT; bind〉)

←↩n abort)

HotelDis = out(〈disreq; user;HOTEL〉@uddi).

(in 〈disres; uddi;HOTEL; null〉(x1; x2; x3; bind).out(〈HOTEL; bind〉)

←↩n abort)

We are now ready to model the machine performing the orchestrated discovery

〈 (FlightDis | HotelDis |

in(〈FLIGHT; null〉)(x; bind1).in(〈HOTEL;null〉)(y; bind2).Normal)

←↩∞ Failure, ∅ 〉user

where Normal denotes the behaviour in case of successful discovery, while
Failure manages the case of failed discovery. The overall discovery fails when
one of the two discoveries does not complete in due time. Indeed, in this case
the abort process is activated as timed failure handler. The effect of the abort
process is to interrupt the overall orchestrated discovery and to activate the
Failure process.

5 Conclusion

In this paper we have discussed some of the interesting issues raised by the
combination of three relevant characteristics of service oriented computing:
loose coupling, communication latency and open-endedness. In particular, we
have modeled basic mechanisms for programming timed loosely coupled trans-
actions and for managing dynamic service retrieval according to quantitative
information (the weights) that permits to model run time features of services
that are not known at design time.

Other interesting aspects raise, for instance, from the combination of loosely
coupled transactions and open endedness. In service oriented computing there

17

is a great interest in negotiation and contract protocols. These are used to
select the partners involved in a transaction according to some minimal ser-
vice requirements. Process algebras have been already used to model specific
negotiation protocols used in the context of distributed commitment. The two
phase commitment protocol guaranteeing atomicity is analysed in [2], while
the BTP protocol guaranteeing a relaxed notion of partial atomicity –called
cohesion– was investigated in [3]. These are only specific cases of negotia-
tion protocols; a formal investigation of other protocols such as those based
on quality of services, or supporting the dynamic redefinition of the involved
partners during the execution of the transaction, is still lacking.

References

[1] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS
Monograph, Springer Verlag 2002.

[2] M. Berger and K. Honda. The Two-Phase Commit Protocol in an Extended
π-Calculus. In EXPRESS’00, Proc. of the 7th International Workshop on
Expressiveness in Concurrency, volume 39 of ENTCS, 2000.

[3] L. Bocchi. Compositional Nested Long Running Transactions. In FASE’04, Proc.
of the Fundamental Approaches to Software Engineering, volume 2984 of LNCS,
pages 194–208. 2004.

[4] L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long running transactions.
In FMOODS’03, Proc. of the 6th IFIP International Conference on Formal
Methods for Open Object-based Distributed Systems, volume 2884 of LNCS, pages
124–138. Springer-Verlag, 2003.

[5] M. Bravetti, R. Gorrieri, R. Lucchi, G. Zavattaro. “Quantitative Information
in the Tuple Space Coordination Model”, Theoretical Computer Science, 346:1,
pages 28-57, Elsevier, 2005.

[6] R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti, and U. Montanari.
Reconciling two approaches to compensable flow composition. In CONCUR’05,
Proc. of the 16th International Conference on Concurrency Theory, volume to
appear of LNCS, 2005.

[7] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for
compensations in flow composition languages. In POPL’05, Proc. of the 32nd
Annual ACM SIGPLAN - SIGACT Symposium on Principles of Programming
Languages, 2005

[8] M. Butler and C. Ferreira. An operational semantics for StAC, a language for
modelling long-running business transactions. In COORDINATION’04, Proc. of
the 6th International Conference on Coordination Models and Languages, volume
2949 of LNCS, pages 87–104. Springer-Verlag, 2004.

18

[9] M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running
transactions. In Proceedings of 25 Years of CSP, London, 2004.

[10] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the pi-
calculus. In LICS’05, Proc. of Logic in Computer Science, june 2005.

[11] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[12] A. Igarashi, N. Kobayashi. A Generic Type System for the Pi-Calculus. In
Theoretical Computer Science, 311(1-3):121-163, 2004.

[13] C. Laneve, and G. Zavattaro. Foundations of Web Transactions. In
FOSSACS’05, Proc. of the 8th Foundations of Software Science and
Computational Structures, volume 3441 of LNCS, pages 282–298. Springer-
Verlag, 2005.

[14] Microsoft BizTalk Server. [http://www.microsoft.com/biztalk/default.asp],
Microsoft Corporation.

[15] OASIS. Web Services Business Process Execution Language Version 2.0,
Working
Draft. [http://www.oasis-open.org/committees/download.php/10347/wsbpel-
specification-draft-120204.htm].

[16] R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1995.

[17] Universal Description, Discovery and Integration for Web Services (UDDI) V3
Specification.

19

