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Abstract. Mobile Ambients has been proposed by Cardelli and Gordon
as a foundational calculus for mobile computing. Since its introduction,
the computational strength as well as the decidability of properties have
been investigated for several fragments and variants of the standard cal-
culus. We tackle the problem of reachability and we characterize a public
(i.e., restriction free) fragment for which it is decidable. This fragment
is obtained by removing the open capability and restricting the use of
replication to guarded processes. Quite surprisingly, this fragment has
been shown to be Turing complete by Maffeis and Phillips.

1 Introduction

Mobile Ambients (MA) [5] is a well known formalism exploited to describe dis-
tributed and mobile systems in terms of ambients. An ambient is a named col-
lection of active processes and nested sub-ambients. In the pure (i.e., without
communication) version of MA only three mobility primitives are used to permit
ambient and process interaction: in and out for ambient movement, and open
to dissolve ambient boundaries.

Following the tradition of process calculi, Mobile Ambients and its dialects
have been equipped with a rich variety of formal tools useful for reasoning about
and verifying properties of systems specified with these calculi (see, e.g., [9, 4, 6]).
Another line of research regards the analysis of the expressiveness of these calculi
in order to investigate the boundary between redundant and necessary features
as well as the decidability of properties. For example, the Turing completeness
of several variants and fragments of Mobile Ambients is investigated in [8], while
the decidability of process termination (i.e. the existence of a finite computation)
is investigated for fragments of the pure version of Mobile Ambients in [2].

Besides termination, an even more interesting property is process reachability:
the reachability problem consists of verifying whether a target process can be
reached from a source process. As an example of the relevance of reachability
analysis, consider the system

intruder[P ] | firewall[Q]

where an intruder running the program P attacks a firewall executing the
program Q. It is relevant to check whether the system

firewall[ intruder[P ′] | Q′]



can be reached, where the intruder has succeeded.
The unique work, to the best of our knowledge, devoted to the investigation

of reachability in Mobile Ambients is by Boneva and Talbot [1]. They prove that
reachability is undecidable even in a minimal fragment of pure Mobile Ambients
in which both the restriction operator (used to limit the scope of ambient names)
and the open capability are removed.

Let us consider the above example of the intruder and the firewall. Tradi-
tional reachability consists of checking whether the target process is reachable
for some instantiated processes P ′ and Q′. In general, one may be interested
in concentrating only on the structure of the target process (i.e. the intruder
is inside the firewall) abstracting away from the specific programs that run in-
side the ambients (i.e. abstracting away from P ′ and Q′). Exploiting classical
reachability one should universally quantify on every possible processes P ′ and
Q′.

To solve this problem we introduce spatial reachability permitting to specify
a class of target processes. This class is characterized by a common structure
of ambient nesting and a minimal number of processes that should be hosted
inside those ambients. As an example of the use of spatial reachability consider
the system

trojan[virus|P ]|notebook[Q]

in which a trojan containing a virus program, and running program P , attacks
a notebook running the program Q. One may be interested in checking whether
the process

notebook[ trojan[virus|P ′] | Q′]

can be reached for any possible P ′ and Q′ not containing ambients. Observe
that virus is a program for which it is necessary to check the actual presence
inside the ambient trojan in the target process (a trojan that does not contain
a virus is not dangerous).

We investigate the decidability of (spatial) reachability for fragments of the
public, i.e. restriction free, version of the ambient calculus. We focus our analysis
on calculi without restriction in order to concentrate on ambient nesting as the
unique way for structuring processes. The relevance of restriction, as a mecha-
nism for organizing processes inside name scopes, has been deeply investigated
in the context of other process calculi such as the π–calculus [10].

The fragment that we characterize does not contain the open capability and
limits the use of replication to guarded processes only (e.g., !n[] is not a valid pro-
cess for this fragment). This decidability result is proved by reducing reachability
of processes to reachability in Petri nets (and spatial reachability to coverability).
We prove the minimality of this fragment by showing that reachability becomes
undecidable when relaxing at least one of the two restrictions imposed on the
fragment. The undecidability for the open -free fragment has been proved by
Boneva and Talbot [1]. For the fragment with guarded replication, we show how
to reduce the halting problem for Random Access Machines [15] (a well known
Turing powerful formalism) to the (spatial) reachability problem.



2 Pure Public Mobile Ambients

Pure public mobile ambients, that we denote with pMA, corresponds to the
restriction-free fragment of the version of Mobile Ambients without communica-
tion defined by Cardelli and Gordon in [5].

Definition 1. – pMA – Let Name, ranged over by n, m, . . ., be a denumerable
set of ambient names. The terms of pMA are defined by the following grammar:

P ::= 0 | M.P | n[P ] | P |P | !P
M ::= inn | outn | openn

We use
∏
k P to denote the parallel composition of k instances of the process P ,

while
∏
i∈1...k Pk denotes the parallel composition of the indexed processes Pi.

The term 0 represents the inactive process (and it is usually omitted). M.P
is a process guarded by one of the three mobility primitives (already discussed in
the Introduction): after the execution of the primitive the process behaves like
P . The processes M.P are referred to as guarded processes in the following. The
term n[P ] denotes an ambient named n containing process P . A process may be
also the parallel composition P |P of two subprocesses. Finally, the replication
operator !P is used to put in parallel an unbounded number of instances of the
process P .

The operational semantics is defined in terms of a structural congruence plus
a reduction relation.

Definition 2. – Structural congruence – The structural congruence ≡ is the
smallest congruence relation satisfying:

P | 0 ≡ P P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P

Definition 3. – Reduction relation – The reduction relation is the smallest
relation → satisfying the following axioms and rules:

(1) n[inm.P | Q] | m[R] → m[n[P | Q] | R]

(2) m[n[outm.P | Q] | R] → n[P | Q] | m[R]

(3) openn.P | n[Q] → P | Q

(4)
P → Q

P | R → Q | R

(5)
P → Q

n[P ] → n[Q]

(6)
P ′ ≡ P P → Q Q′ ≡ Q

P ′ → Q′



As usual, we use →∗ to denote the reflexive and transitive closure of →. If
P →∗ Q we say that Q is a derivative of P . The reachability problem consists
in checking, given two processes P and Q, whether Q is a derivative of P , i.e.
checking if P →∗ Q.

Axioms (1), (2) and (3) describe the semantics of the three primitives in ,
out and open , respectively. A process inside an ambient n can perform an inm
operation in presence of a sibling ambient m; if the operation is executed then
the ambient n moves inside m. If inside an ambient m there is an ambient n
with a process performing an outm action, this results in moving the ambient
n outside the ambient m. Finally, a process performing an openn operation has
the ability to remove the boundary of an ambient n[Q] composed in parallel with
it.

Rules (4) and (5) are the contextual rules that respectively indicate that a
process can move also when it is in parallel with another process and when it
is inside an ambient. Finally, rule (6) is used to ensure that two structurally
congruent terms have the same reductions.

In the paper we consider three fragments of pMA; pMAg! and pMA−open for
which we show that reachability is undecidable and pMA−openg! for which it turns
out to be decidable.

Definition 4.
pMAg! permits only guarded replication, i.e. it restricts the application of the
replication operator to guarded processes:1

P ::= 0 | M.P | n[P ] | P |P | !M.P
M ::= inn | outn | openn

pMA−open removes the open capability:

P ::= 0 | M.P | n[P ] | P |P | !P
M ::= inn | outn

pMA−openg! combines the restrictions imposed by the previous fragments:

P ::= 0 | M.P | n[P ] | P |P | !M.P
M ::= inn | outn

3 Deciding Reachability in pMA
−open
g!

In this Section we show that reachability is decidable in pMA−openg! . We re-
duce reachability on pMA−openg! to reachability on Place/Transition Petri nets.
1 The structural congruence for pMAg! is obtained by replacing the axiom for repli-

cation with !M.P ≡ M.P | !M.P , and the the congruence rule for the replication
operator with the congruence rule for the operator of restricted replication.



As reachability is decidable on such class of Petri nets [13], we get the decidabil-
ity result for reachability on pMA−openg! .

Another interesting property is spatial reachability. Given two processes, P
and R, the spatial reachability problem roughly consists in checking if, starting
from P , it is possible to reach a process R′ “greater” than R, in the following
sense: the ambients in R and R′ have the same structure of ambient nesting,
and the (sequential and replicated) active subprocesses inside an R ambient are
a subset of the subprocesses inside the corresponding ambient in R′. The Petri
net constructed for the solution of the reachability problem can be exploited to
reduce the spatial reachability problem for pMA−openg! processes to the coverabil-
ity problem for Petri nets, which is a decidable problem [14].

We start recalling Place/Transition nets with unweigthed flow arcs (see, e.g.,
[14]).

Definition 5. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) 6= 0} is finite. The set of all finite
multisets over S, denoted byMfin(S), is ranged over by m. We write m ⊆ m′ if
m(s) ≤ m′(s) for all s ∈ S. With ⊕ and \ we denote multiset union and multiset
difference, respectively.

Definition 6. A P/T net is a pair (S, T ) where S is the set of places and
T ⊆Mfin(S)×Mfin(S) is the set of transitions.

Finite multisets over the set S of places are called markings. Given a marking
m and a place s, we say that the place s contains m(s) tokens.

A P/T net is finite if both S and T are finite.
A P/T system is a triple N = (S, T,m0) where (S, T ) is a P/T net and m0

is the initial marking.
A transition t = (c, p) is usually written in the form c → p. A transition

t = (c, p) is enabled at m if c ⊆ m. The execution of a transition t enabled at
m produces the marking m′ = (m \ c)⊕ p. This is written as m t→ m′ or simply
m→ m′ when the transition t is not relevant.

We say that m′ is reachable from m if there exists σ such that m σ→ m′.
We say that m′ covers m if m ⊆ m′.

Definition 7. Let N = (S, T,m0) be a P/T system.
The reachability problem for marking m consists of checking if m0 →∗ m.
The coverability problem for marking m consists of checking if there exists

m′ such that m0 →∗ m′ and m′ covers m.

3.1 Reducing reachability on processes to reachability on Petri nets

Now we show that reachability on processes can be reduced to reachability on
Petri nets; by decidability of reachability on Petri nets, we get the following:

Theorem 1. Let P,R be pMA−openg! processes. The reachability problem P →∗ R
is decidable.



Given two processes P and R, we outline construction of a (finite) Petri sys-
tem SysP,R satisfying the following property: the check of P →∗ R is equivalent
to check reachability of a finite set of markings on SysP,R. Because of the lack
of space, the technical details concerning the construction of the net, as well as
the auxiliary results needed to prove Theorem 1 are omitted; they can be found
in [3].

The intuition behind this result relies on a monotonicity property of pMA−openg! :
because of the absence of the open capability, the number of “active” ambients
in a process (i.e., ambients that are not guarded by any capability) cannot de-
crease during the computation. Moreover, as the applicability of replication is
restricted to guarded processes, the number of “active” ambients in a set of
structurally equivalent processes is finite (while this is not the case in , e.g.,
the pMA process !n[0]). Thanks to the property explained above, in order to
check if R is reachable from P it is sufficient to take into account a subset of the
derivatives of P : namely, the P -derivatives whose number of active ambients is
not greater than the number of active ambients in R.

Unfortunately, this subset of P -derivatives is, in general, not finite, as the
processes inside an ambient can grow unlimitedly. Consider, e.g., the process P =
m[!inn.outn.Q] | n[]: it is easy to see that, for any k,m[

∏
kQ | !inn.outn.Q] | n[]

is a derivative of P .
On the other hand, we note that the set of sequential and replicated terms

that can occur as subprocesses of (the derivatives of) a process P (namely, the
subterms of kind M.P or !M.P ) is finite. The idea is to borrow a technique used
to map (the public fragment of) a process algebra on Petri nets. A process P
is decomposed in the (finite) multiset of its sequential subprocesses that appear
at top-level (i.e., occur unguarded in P ); this multiset is then considered as the
marking of a Place/Transition Petri net. The execution of a computational step
in a process will correspond to the firing (execution) of a transition in the corre-
sponding net. Thus, we reduce the reachability problem for pMA−openg! processes
to reachability of a finite set of markings in a Place/Transition Petri net, which
is a decidable problem. However, differently from what happens in process alge-
bras, where processes can be faithfully represented by a multiset of subprocesses,
pMA−openg! processes have a tree-like structure that hardly fits in a flat model such
as a multiset.

The solution is to consider pMA−openg! processes as composed of two kinds
of components; the tree-like structure of ambients and the family of multisets
of sequential subterms contained in each ambient. As an example, consider the
process

inn.P | m[inn.P | outn.Q | n[0] | k[0] | inn.P ] | n[inn.P ]

having the tree-like structure m[n[] | k[]] | n[]. Moreover, there is a multiset
corresponding to each “node” of the tree: the multiset {inn.P} is associated
to the root, the same multiset is associated to the n-labelled son of the root,
the multiset {inn.P, inn.P, outn.Q} is associated to the n-labelled son of the
m-labelled son of the root, and so on.
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Fig. 1. A portion of the net corresponding to process n[outm] | m[inn.k[!out k]].

The Petri net we construct is composed of the following two parts: the first
part is basically a finite state automaton, where the marked place represents the
current tree-like structure of the process; the second part is a set of identical
subnets: the marking of each subnet represents the multiset associated to a
particular node of the tree. To keep the correspondence between the nodes of
the tree and the multiset associated to that node, we make use of labels. A
distinct label is associated to each subnet; this label will be used in the tree-like
structure to label the node whose contents (i.e., the set of sequential subprocesses
contained in the ambient corresponding to the node) is represented by the subnet.

The set of possible tree-like structures we need to consider is finite, for the
following reasons. First of all, the set of ambient names in a process is finite.
Moreover, to verify reachability we need to take into account only those processes
whose number of active ambients is limited by the number of ambients in the
process we want to reach.

The upper bound on the number of nodes in the tree-like structures also
provides an upper bound to the number of identical subnets we need to decide
reachability (at most one for each active ambient). In general, the number of
active ambients grows during the computation; hence, we need a mechanism to
remember which subnets are currently in use and which ones are not used. When
a new ambient is created, a correspondence between the node representing such
a new ambient in the tree-like structure and a not yet used subnet is established,
and the places of the “fresh” subnet are filled with the marking corresponding
to the sequential subprocesses contained in the newly created ambient. To this
aim, each subnet is equipped with a place called unused, that contains a token
as long as the subnet does not correspond to any node in the tree-like structure.

For example, consider the process n[outm] | m[inn.k[!out k]]. The relevant
part of the net is depicted in Figure 1: a subset of the places, representing the
tree-like structure, is depicted in the left-hand part of the figure, while the sub-
nets are depicted in the right-hand part. We only report the subnets labelled



with l2 and l3, and omit the two subnets labelled with l0 (with empty marking)
and with l1 (whose marking consists of a token in place l1 : outm). The com-
putation step n[outm] | m[inn.k[!out k]]→ n[outm | m[k[!out k]]] corresponds
to the firing of transition t in the net.

A last remark is concerned with structural congruence: because of the struc-
tural congruence rule (6), the reachability of a process R actually correspond
to decide if it is possible to reach a process that is structurally congruent to
R. As we are reducing the reachability in pMA−openg! to marking reachability
in Petri nets, it is necessary that the set of markings, corresponding to the
set of processes structurally congruent to R, is finite. We concentrate on the
markings of the subnets. The top-level applications of the monoidal laws for
parallel composition are automatically dealt with, as processes that are struc-
turally congruent because of such laws are mapped on the same marking. Un-
fortunately, the application of the replication law permits to produce an infinite
set of markings corresponding to structurally congruent processes. Take, e.g.,
!inn.P ≡ inn.P | !inn.P ≡ inn.P | inn.P | !inn.P ≡ . . . and the correspond-
ing set of markings {!inn.P}, {inn.P, !inn.P}, {inn.P, inn.P, !inn.P} . . ..

To solve this problem, we make use of the following two techniques.
The top-level application of the law for replication can be easily dealt with by

adding the transitions !inn.P → !inn.P | inn.P and !inn.P | inn.P →!inn.P ,
respectively permitting to spawn a new copy of a replicated process and to
absorbe a process that also appears in a replicated form in the marking. An
instance of such transitions is depicted in the subnet l2 of Figure 1.

The last problem to be dealt with is the application of the laws in combination
with the congruence law for prefix and ambient. Consider, e.g., the reachability
of process R = m[!inn.!inm.0]; concerning the subnet corresponding to the m-
labelled son of the root, we must check reachability of an infinite set of markings,
namely,

{!inn.!inm.0}, {!inn.(inm.0 | !inm.0)}, {!inn.(inm.0 | inm.0 | !inm.0)}, . . . .

To this aim, we introduce canonical representations of the equivalence classes of
structural congruence, roughly consisting in nested multisets where the presence
of a replicated version of a sequential term forbids the presence of any occurrence
of the nonreplicated version of the same term. For example, the normal form
of process inn.(!outm.0) | !inn.(outm.0 | !outm.0) | n[inn.0] is the nested
multiset !inn.(!outm.0) | n[inn.0].

Now we are ready to describe the net that will be used to decide reachability
of a process R starting from a process P .

The set of places of the net is constructed as follows. The part of the net
representing the tree-like structure contains a place for each tree of size not
greater than the number of active ambients in R. Each of the subnets contains
a place for each sequential and replicated subprocess of process P , and a place
named “unused”, that remains filled as long as the subnet does not correspond
to any node in the tree-like structure. Moreover, we associate a distinct label to
each subnet, and all the places of the subnet will be decorated with such a label.



The net has two sets of transitions: the first set permits to model the execu-
tion of the in and out capabilities, while the second set is used to cope with
the structural congruence rule for replication.

We concentrate on the first set of transitions. A capability, say, e.g., inn, can
be executed when the following conditions are fulfilled: the tree-like structure
must have a specific structure and a place corresponding to a sequential subpro-
cess inn.Q is marked in a subnet whose label appears in the right position in
the tree-like structure. Moreover, the number of active ambients created by the
execution of the capability, added to the number of currently active ambients,
must not exceed the number of active ambients in the process R we want to
reach. This condition is checked by requiring that there exist a sufficient number
of “unused” places that are currently marked. The execution of the capability
causes the following changes to the marking of the net: the place correspond-
ing to the new tree-like structure is now filled and the marking of the subnet
performing the inn operation is updated (by adding the tokens in the places
corresponding to the active sequential and replicated subprocesses in the contin-
uation Q). Moreover, a number of subnets equal to the number of active ambients
in the continuation Q become active: their places will be filled with the tokens
corresponding to the active sequential and replicated subprocesses contained in
the corresponding ambient, and the tree-like structure is updated accordingly.

Besides deciding reachability, the net system described above can be used to
check the weaker property of spatial reachability.

3.2 Spatial reachability

The spatial reachability problem for processes P and R roughly consists in check-
ing if, starting from P , it is possible to reach a process R′ “greater than” R, in
the following sense:

– R′ has the same spatial ambient structure of R, and
– the sequential and replicated active subprocesses contained in each ambient

of R are also present in the corresponding ambient of R′.

The �s relation is a formalization of the “greater than” concept:

Definition 8. Let P and Q be pMA−openg! processes.
P �s Q iff

– either Q ≡ P |
∏
iMi.Pi |

∏
j !M

′
j .P
′
j,

– or P ≡ P1 | n[P2], Q ≡ Q1 | n[Q2] and Pi �s Qi for i = 1, 2

The spatial reachability problem for processes P and R consists in checking
if there exists R′ such that P →∗ R′ and R �s R′.

The mapping of processes to Petri nets markings outlined above satisfies the
following property: if P1 �s P2 then the marking corresponding to P2 covers the
marking corresponding to P1. Hence, the Petri net constructed in the previous
section permits to reduce the spatial reachability problem for processes P and
R to a coverability problem. As coverability is decidable in P/T nets, we obtain
the following:



Theorem 2. Let P,R be pMA−openg! processes. The spatial reachability problem
for P and R is decidable.

4 Undecidability Results

In this section we discuss the undecidability of reachability for the two fragments
pMA−open and pMAg!.

As far as pMA−open is concerned, we resort to an equivalent result proved by
Boneva and Talbot in [1] for a slightly different calculus. That calculus, proposed
in [6, 7], differs from pMA−open only for three extra rules in the definition of the
structural congruence relation: 0 ≡ 0, !!P ≡ !P , !(P | Q) ≡ !P | !Q. These rules
are added by Boneva and Talbot to guarantee that the congruence relation is
confluent, thus decidable.

The undecidability of reachability is proved by Boneva and Talbot showing
how to encode two-counters machines [11], a well known Turing powerful formal-
ism. The encoding preserves the one-step property: if the two-counters machine
2CM moves in one step to 2CM ′ then [[2CM ]]→∗ [[2CM ′]], where [[ ]] is the con-
sidered encoding. Even if the calculus in [1] is slightly different from pMA−open ,
the encoding of two-counters presented in that paper applies also to our calcu-
lus; this because the encoding does not apply the replication operator to the
empty process, to replicated processes and to parallel composition of processes
(i.e. the cases in which the three extra structural congruence rules come into
play, respectively).

As far as pMAg! is concerned, we present a modeling of Random Access
Machines (RAMs) [15], a formalism similar to two-counters machines. The en-
coding that we present is an enhancement of the RAM modeling in [2]: the main
novelties are concerned with a more restricted use of replication and a reshaping
of the garbage processes.

4.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers r1, . . . , rn,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : I1), . . . , (m : Im). In [12] it is shown that the following two
instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next
instruction;

– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by execut-
ing the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the



program is reached. It is not restrictive to assume that the instruction number
reached at the end of the computation is always m+ 1, and to assume that the
computation starts and terminates with all the registers empty.

4.2 Modelling RAMs in pMAg!

We model instructions and registers independently. As far as the instructions and
the program counter are concerned, we model the program counter i with an am-
bient pci[]. Each instruction Ii is represented with a replicated process guarded
by the capability open pci able to open the corresponding program counter am-
bient pci[]. The processes modeling the instructions are replicated because each
instruction could be performed an unbounded amount of times during the com-
putation.

The key idea underlying the modeling of the registers is to represent natural
numbers with a corresponding nesting of ambients. We use an ambient named zj
to represent the register rj when it is empty; when the register is incremented we
move the ambient zj inside an ambient named sj , while on register decrement we
dissolve the outer sj ambient boundary. In this way, for instance, the resister rj
with content 2 is modeled by the nesting sj [sj [zj []]] (plus other processes hosted
in these ambients that are discussed in the following).

Definition 9. Given the RAM R with instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn we define [[R]] as the following process

pc1[] |
∏
i∈1...m!open pci.Ci |

∏
j∈1...nR

0
j |

open pcm+1.GC | !openmsg | garbage[open gc]

where Ci (modeling the i− th instruction), R0
j (modeling the empty register rj)

and GC (the garbage collector which is started at the end of the computation)
are shorthand notations defined in the following.

Note the use of two extra processes: !openmsg used to open ambients contain-
ing messages produced during the computation and the ambient garbage[open gc]
which is a container for the produced garbage. The process open gc is used at the
end of the computation to allow the garbage collector to act inside the ambient
garbage as detailed in the following.

The register rj with content l is represented by the process Rlj defined in-
ductively as follows

R0
j = zj [ !open incj .

( msg[ out zj .sj [ REGj ] ] |
in sj .ackij [ out zj .!out sj ] ) |

!open zeroj .ackzj [ out zj .in djj ] |
open gc ]

Rl+1
j = sj [ REGj | Rlj ]

where REGj is a shorthand notation defined as follows

REGj = open decj .ackdj [ out sj .in djj ] | !openmsg



Also in this case, the process open gc is used to allow the garbage collector to
act inside the ambient zj . We will discuss the behaviour of the term REGj , and
of the other processes inside the ambient zj , after having discussed the encoding
for the instructions.

Before formalizing the modeling of the instructions we anticipate that the
names incj , zeroj and decj are used to model requests for increment, test for
zero and decrement of register rj , respectively; the names ackij , ackzj and ackdj
models the corresponding acknowledgements produced by the registers to notify
that a request has been managed.

The instructions are modeled as follows. If the i-th instruction is Succ(rj),
its encoding is

Ci = increqj [ !in sj | in zj .incj [out increqj ] ] |
open ackij .pci+1[]

This modeling is based on two processes. The first one is the ambient increqj
that represents a request for increment of the register rj . The second process
blocks waiting for an acknowledgement that will be produced after the actual
increment of the register; when the acknowledgement is received, this process
increments the program counter spawning pci+1[].

The ambient increqj has the ability to enter the boundary of the ambient
modelling the register rj , to move through the nesting of ambients, and finally
to enter the inner ambient zj . After that, a new ambient incj exits the ambient
increqj becoming in parallel with the processes of the ambient zj . One of these
processes (see the definition of R0

j ) detects the arrival of the new ambient and
reacts by producing sj [REGj ]; the ambient zj then moves inside this new am-
bient. In this way the nesting of ambients sj is incremented by one. After, the
acknowledgement is produced in terms of an ambient named ackij that moves
outside the register boundary.

If the i-th instruction is DecJump(rj , s) the encoding is as follows

Ci = zeroj [in zj ] | decj [in sj ] |
djj [ ACKZjs | ACKDji ]

where
ACKZjs =
open ackzj .in garbage.
msg[ out djj .out garbage.open decj .pcs[] ]

ACKDji =
open ackdj .in garbage.
msg[ out djj .out garbage.open zeroj.open sj .pci+1[] ]

This modeling is based on three processes. The first process is an ambient named
zeroj which represents a request for a test for zero of the register rj ; the second
process is an ambient named decj representing a request for decrement of the
register rj ; the third process is an ambient named djj which is in charge to
manage the acknowledgement produced by the register rj . The acknowledgement
indicates whether the decrement, or the test for zero request, has succeeded.



Let us consider the test for zero request. The ambient zeroj [in zj ] has the
ability to move inside the ambient zj . This can occur only if the register rj is
currently empty; in fact, if rj is not empty, the ambient zj is not at the outer
level. If the request enters the zj ambient boundary, the processes inside the
ambient zj (see the definition of R0

j ) react by producing an acknowledgement
modelled by an ambient named ackzj which moves inside the ambient djj .

Now, consider the request for decrement. The ambient decj [in sj ] has the
ability to enter the boundary of the process modelling the register rj ; this can
occur only if the register is not empty (otherwise there is no ambient sj). Inside
the ambient sj , the process REGj reacts by producing an acknowledgement
modelled by an ambient named ackdj which moves inside the ambient djj .

The processes inside the ambient djj have the ability to detect which kind
of acknowledgement has been produced, and react accordingly. In case of ackzj ,
the reaction is to move the ambient djj inside the ambient garbage, and to
dissolve the boundary of the outer ambient decj . This is necessary to remove the
decrement request that has failed. In case of ackdj , the process also dissolves
one of the boundaries sj , in order to actually decrement the register. In both
cases, the program counter is finally updated by either jumping to instruction
s, or by activating the next instruction i+ 1, respectively.

This way of modeling RAMs does not guarantee the one-step preservation
property because of the production of garbage, that is processes that are no more
involved in the subsequent computation. More precisely, the following garbage
is produced:

– each increment operation leaves an ambient increqj [!in sj ] inside the ambient
zj , plus the process !out sj at the outer level;

– each decrement operation leaves an ambient djj inside the ambient garbage,
plus the two processes in zj and !openmsg at the outer level;

– each test for zero operation leaves an ambient djj inside the ambient garbage,
plus the process in sj at the outer level.

Clearly, the exact shape of the garbage at the end of the modeling of the
RAM computation is unpredictable because it depends on the exact number
of instructions that are executed. Nevertheless, we use the garbage collector
process GC, activated on program termination, in order to reshape the garbage
in a predefined format.

The key idea underlying the garbage collection process is to exploit the struc-
tural congruence rule !P ≡ P |!P used to unfold (and fold) replication. Consider
an unpredictable amount of processes P in parallel, i.e.

∏
n P with n unknown.

If we add in parallel the process !P we have that
∏
n P | !P ≡ !P , thus reshaping

the process in a known format.
We are now in place for defining the garbage collector process formally

GC = !!out sj | !in zj | !!openmsg | !in sj |∏
j∈1...n(gc[ in zj .(!open increqj | !!in sj) ]) |

gc[ in garbage |∏
j∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ]



The undecidability of reachability and spatial reachability is a trivial corollary
of the following theorem. It is worth noting that in the statement of the theorem
the register rj (which is assumed to be empty at the end of the computation)
is represented by a process which is the same as R0

j with the difference that the
process open gc, initially available in the ambient zj (see the definition of R0

j ), is
replaced by the two processes !open increq | !!in sj left by the garbage collector.

Theorem 3. Given the RAM R with instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn we have that R terminates if and only if∏

i∈1...m!open pci.Ci |∏
j∈1...n( zj [ !open incj .

( msg[ out zj .sj [ REGj ] ] |
in sj .ackij [ out zj .!out sj ] ) |

!open zeroj .ackzj [ out zj .in djj ] |
!open increqj | !!in sj ] ) |

!!out sj | !in zj | !!openmsg | !in sj |
garbage[

∏
j∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ]

is reachable from the process [[R]] (as defined in Definition 9).
Moreover, we have that the RAM R terminates if and only if the process

pcm+1[] |
∏
j∈1...n zj [] | garbage[]

is spatially reachable from the process [[R]].

5 Conclusion

We have discussed the decidability of reachability in Mobile Ambients. We have
characterized a fragment of the pure and public Mobile Ambients, namely the
open -free fragment with guarded replication, for which reachability is decidable.
We call this fragment pMA−openg! . Our decidability result also holds for a variant
of reachability, called spatial reachability, that permits to specify a class of target
processes characterized by a common structure of ambient nesting.

The fragment pMA−openg! has been already investigated by Maffeis and Phillips
in [8] (called Lio in that paper). They show that such a small fragment is indeed
Turing complete, by providing an encoding of RAMs. The encoding they present
permits to conclude that the existence of a terminating computation is an un-
decidable problem, while the decidability of reachability is raised as an open
problem. Our decidability result provides a positive answer to this problem.

In order to prove the minimality of pMA−openg! we make use of (a slight adap-
tation of) the undecidability result by Boneva and Talbot [1]. They prove that
reachability is undecidable for the open -free fragment, equipped with a struc-
tural congruence slightly different from the standard one (see the discussion in
Section 4). Instead of getting decidability by imposing syntactical restrictions



(as we do for pMA−openg! ), they move to a weaker version of the operational
semantics. In particular, they show that reachability becomes decidable when
the structural congruence law !P ≡ P | !P is replaced by the reduction axiom
!P → P | !P .

Acknowledgements We thank Jean-Marc Talbot and Iain Phillips for their
insightful comments on a preliminary version of this paper.
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