
Università degli Studi Roma Tre

Facoltà di Scienze Matematiche Fisiche e Naturali
Corso di Laurea Magistrale in Matematica

The Typing Problem for

Light Logics with Second Order

il Relatore il Candidato
prof. Marco Pedicini Paolo Tranquilli

Anno Accademico 2004-2005

Keywords: Type Inference, Polymorphic Lambda-Calculus, Light Linear Logic, Implicit Com-
plexity

AMS classification: 03B15, 03B70 (03F52, 68Q15, 68N18)

a mamma e papà
se c'è qualcosa di buono in me

è merito loro

i

Acknowledgments
There are a bunch of people I would like to thank. I will salomonically list them in rigorous

alphabetical order, and I'm sure I'm forgetting someone. If so I prostrate myself begging for an
unmerited pardon.

Thanks to Antonella of the secretariate, both of them. They know why1.
Thanks to Archive. Their music has accompanied me in the frantic days of this work, and

soothed me. They are not the only ones to have done so, but... well, I wanted to say You all look
the same to me is a masterpiece, and Again is the best song ever made. In the end I just wanted
to know how does it feel to thank a musical group in a math thesis.

Thanks to my friends. All of them, apart from Natascia. Thanks. I can only wonder what
would have become of me in these last months without them, and the thought makes me shudder.
Thanks. Now that I think of it. . . it's hard to miss someone with a �rst order quanti�er like this. . .

Thanks to Lorenzo Tortora De Falco. His patience in spite of all has been precious. Moreover,
if someone wants to blame somebody for my choice, he is one of the two. Without him I would
hardly have appreciated a beautiful subject such as Logic.

Thanks to Marco Pedicini, my supervisor. Apart from being the second one in alphabetical
order to be blamed, and the �rst one in the chronological one, he has opened my eyes on λ-calculus,
and, you know, I indeed like λ-calculus very much.

Thanks to mum and dad. With their kid putting three rooms to total disorder (without
speaking of the kitchen) while working, and also being somewhat rude at times, and keeping up
the support, well they deserve all the thanks in the world.

Thanks to Natascia. I owe it to her because of a whole handful of help she has dispensed to
me strictly relating to this last endevour of mine, apart from the more general suppport I thanked
my other friends for. I gladly repay my debt, and thank her again sincerely. Thanks also for the
crutches.

Thanks to Patrick Baillot, and all the guys I've met in Paris. Their welcome has been so nice,
and discussions with them so stimulating, that I look forward to meeting and speaking with them
again.

1a gentile richiesta traduco. Grazie a entrambe le Antonelle della segreteria. Loro sanno perché.

ii

The abuse of structural rules
may have damaging complexity e�ects

iii

Contents

Introduction 1
Outline of the thesis . 3
Notations and conventions . 3

1 Pure λ-calculus 5
1.1 De�nition and α-equivalence . 5
1.2 Reduction . 9
1.3 Representation of recursive functions . 13

2 Typed λ-calculus 22
2.1 An introduction to type systems . 23
2.2 System S: simple types . 25

2.2.1 De�nition . 25
2.2.2 First properties . 27
2.2.3 What do we get from S? . 31
2.2.4 What do we lose with S? . 36
2.2.5 Type checking, typability and type inference 37

2.3 System PCF: easier programming . 45
2.3.1 De�nition and �rst properties . 45
2.3.2 What do we get from PCF? . 48
2.3.3 TC, TYP and type inference . 49

3 Polymorphic λ-calculus 51
3.1 De�nition and �rst properties . 51
3.2 What do we get from F? . 58

3.2.1 Representation of free structures . 58
3.2.2 Strong normalization . 65

iv

CONTENTS CONTENTS

3.3 Functions representable in F . 68
3.3.1 HA2 . 70
3.3.2 Translation into F . 71
3.3.3 Removing the junk term . 75
3.3.4 An example of an unrepresented function 77

3.4 What do we loose with F? . 78
3.4.1 Undecidability of TC . 79
3.4.2 Undecidability of TYP . 82

4 Light logics and λ-calculus 96
4.1 An introduction to LL . 96

4.1.1 AL as a type system . 98
4.2 Light logics . 104

4.2.1 EAL . 104
4.2.2 Representation theorem for EAL . 110
4.2.3 LAL . 116
4.2.4 Representation theorem for LAL . 131

4.3 TC, TYP and type inference . 150
4.3.1 Type inference for EAL . 151
4.3.2 Type inference for DLAL . 165
4.3.3 Typing in polymorphic light logic . 169

Bibliography 172

v

Introduction

Since Church introduced λ-calculus back in 1936 [Chu36], this formal language has become a
paradigm in studying computability, and a model for a new style of programming, the functional
one.

We can point out two ways of dealing with the notion of deterministic computability. One is
the theoretical abstraction of mechanical functioning: the Turing machine, introduced in the same
year, 1936. Is as if we take a machine with really limited capacities: we employ a �nite alphabet,
a tape (potentially in�nite) in which only the input is written, a �nite set of states of the machine,
and a head capable of reading and writing on a single cell at a time, moving left or right and of
changing the state, all based exclusively on the state and the symbol being read. A program is
then a table that assigns to every pair consisting of a symbol and a state a triple with the new
state, the symbol to be written and the movement to be done. Up to now a rigorous concept of
time or space needed for a computation is based on the number of steps one such simple machine
needs to carry out the algorithm.

The other way around is an axiomatic approach to the subject. We precise what is computable
with a mathematical de�nition of an algebra of functions: the least class containing some base
functions and closed with respect to certain schemes. So rather than preoccupying ourselves with
the actual way a function can be computed, we give a rigorous mathematical foundation to the
functions.

We may regard λ-calculus as lying in the middle. It is highly formal, but it in fact it also
shows how we have to e�ectively compute the function. Basically the two main ideas behind it
are regarding all, programs and data, in a single class of objects, and then cut down to the two
most basic constructs of functions the building of such objects: application of an object to another
and abstraction, that is the de�nition of a function by stating that a variable component of an
object has to be regarded as a parameter for the function. By the Church-Turing thesis, in fact
all these notions are equivalent in de�ning what up to today is the accepted de�nition of what is
computable.

1

INTRODUCTION

This last approach gained more and more importance as various developments were made in it:
type assignment, a way to give a tight discipline on otherwise �wild� applications, brings around
the proofs-as-programs paradigm: the Curry-Howard isomorphism, for which a proof in a logic
system can be translated into a program and viceversa, with cut-elimination being equivalent to
the execution of the program.

In the meantime on both the sides of the approach to computable functions a notion of complex-
ity classes has been developed. The two main classes we will interest ourselves in are the Kalmar
recursive and the polytime functions. This notion regards both the sides of the approach to recur-
sive functions: they can be viewed as classes of functions that require a time to be computed on
Turing machines bounded by respectively a tower of exponentials of �xed height and a polynomial
in the size of the input. Or else they also have an axiomatic de�nition: Kalmar recursive functions
where in fact �rst introduced as a function algebra, while it is quite a recent result (1992, [BC92],
due to Bellantoni and Cook) that also polytime functions have a de�nition that does not explicitly
refer to polynomials, using a new notion of safe recursion.

We may say that recently the λ-calculus was brought up-to-date by a new approach starting
from the Curry-Howard isomorphism. Using the tools provided by linear logic new systems were
developed that capture the above complexity class from a proofs-as-programs point of view: LLL,
light linear logic in 1998 due to Girard, and ELL, elementary linear logic in 2003 due to a germinal
idea presented again by Girard and then developed in full by Danos and Joinet. With some
accommodations this approach has been adapted in the form of a type assignment system to the
λ-calculus.

This brings an exciting new possibility: of the three approaches here described to computability,
λ-calculus is by far the one more suitable to be developed as the core of a programming language.
ML and its object-oriented spawn OCAML are examples of it. Developing a type discipline that
certi�cates good complexity bounds may lead to an e�ective control on the resources needed by a
program, implicitly, without having to control the e�ective time of computation.

However this brings some complication: the type assignment disciplines are up to now far from
being easy and intuitive, so we would like to leave to a machine the problem of �nding the right
type, while we occupy ourselves with just writing a program, eventually modifying it if we get a
negative result for the typing. And in fact we also have a need to use polymorphism, without which
we do not have enough expressive power. Unfortunately the two needs somewhat clash against
each other: renouncing to polymorphism brings type inference to our reach, while exploiting the
full power of polymorphism poses much problems to deciding automatically the type assignment.

2

Outline of the thesis INTRODUCTION

Outline of the thesis
In chapter 1 we will give a survey on pure λ-calculus. We will go over the basic de�nitions and

properties, and then show the range of its expressive power.
Chapter 2 is dedicated to introduce type assignment systems, starting from simply typed λ-

calculus. Again de�nitions and properties are exposed, as well as the limits of its expressive power.
A full account on its type inference is presented. The second part of the chapter consists in a brief
outline of a �rst extension of simply typed calculus: PCF. Type inference is shown also for this
system.

Chapter 3 is dedicated to introduce the concept of polymorphism. This is done by exposing
system F. Its expressive power is assessed, and then its main undecidability results are shown:
typability and type checking for this system are undecidable.

In chapter 4 then we start to speak of linear logic and its application to implicit complexity.
After a brief outline of a�ne logic we get to know the type assignment systems for elementary
a�ne logic, light linear logic and the recent dual light a�ne logic. Their expressive power in the
sense of completeness for their respective complexity classes is depicted. Then the algorithms for
typing of the propositional fragment are outlined, in order to arrive �nally to speak of the problems
arising with second order.

Notations and conventions
We denote the set of booleans B = { true, false }.
When we speak of a function we mean a partial function, unless otherwise speci�ed or clear

from the context. Given a function ϕ : X → Y we denote its domain and range by
DOM(ϕ) := {x ∈ X | ϕ(x) is de�ned },
RAN(ϕ) := {y ∈ Y | ∃x ∈ DOM(ϕ) with ϕ(x) = y }.

When describing a function, every time there is no way to determine its value it is to be regarded as
unde�ned in that case (so for example g(f1(n), f2(n)) is unde�ned at n either if f1(n) is unde�ned,
or f2(n) is unde�ned, or at last if both are de�ned but g(f1(n), f2(n)) is not). We denote by f |X the
restriction of f to some set X, i.e. the function de�ned on X ∩DOM(f) such that f |X(x) = f(x).
Also we write f(X) for RAN(f |X). If a function has domain and range in the same set we de�ne
its support as

SUPP(f) = {x ∈ DOM(f) | f(x) 6= x }.

Whenever we have a sequence of objects written X1, X2, . . . , Xn we may denote it by ~Xn,
or simply ~X if there is no need to specify the length. We specify ~Xn

0 or ~X0 if we want the

3

Notations and conventions INTRODUCTION

index to start from 0. We denote by ~X \ Xi the result of deleting Xi from the sequence,
obtaining X1, . . . , Xi−1, Xi+1, . . . , XN . Given a function ϕ, by −−−→ϕ(X) we mean the sequence
ϕ(X1), . . . , ϕ(Xn). Whenever there is no fear of misunderstanding we will denote by ~X also the
set {X1, . . . , Xn }, and we will switch between the notations at will. Being this a subject where
sequences of various objects are frequently encountered, we will heavily use this notation. The set
of sequences (also called words) of arbitrary (yet �nite) length with components in the set X is
denoted by X∗, with the empty word denoted by ε:

X∗ ::= ε | XX∗.

The length of a word w is denoted by |w|. The same notation is used for the cardinality of sets, in
accordance with the notation depicted above.

4

Chapter 1

Pure λ-calculus

An extensive introduction to λ-calculus in general and the pure one in particular is given
in [Kri90]. However we give a survey of the topic in this chapter.

Pure λ-calculus (also called untyped λ-calculus) consists of a set of terms, various equalities
between these terms and some notions of reduction on terms.

1.1 De�nition and α-equivalence
Let V be a countable set of variables, over which we range with letters such as x, y, z.

De�nition 1.1.1 (Λ). The set Λ of λ-terms is built from the following grammar using the symbols
λ, (,), . and x with x ∈ V:

Λ ::= V | (λV.Λ) | (Λ Λ).

A term is named a variable, an abstraction or an application depending on which of the three rules
of construction is used last. In an application we say the �rst term is applied to the second.

We usually use letters such as M , N to range over terms. As a convention, parentheses are
omitted wherever possible: a sequence of applications associates to the left, so that we denote
((. . . ((M1M2)M3) . . .)Mn) = (M1M2 . . .Mn), and the scope of an abstraction is as large as possi-
ble, so for example λx.M N means (λx.(M N)) and not ((λx.M)N). Also dots between abstractions
are omitted, so that λxλy.M means λx.λy.M . We may abbreviate λx1 . . . λxn.M with −→λxn.M and
(M N1 . . . Nn) with (M ~Nn).

5

1.1. De�nition and α-equivalence
CHAPTER 1

PURE λ-CALCULUS

Given a term M we can recursively build its construction tree tree(M):
tree(x) := x,

tree(λx.M) :=
λx

tree(M)

,

tree(M N) :=
@

tree(M) tree(N)

.

An occurrence of a variable is a �place� the variable occupies in the term or in its construction
tree. Formally it can be de�ned as follows: let L, D and R be partial functions on Λ so that L
and R are de�ned only on applications while D only on abstractions in the following way:

L(M N) = M, R(M N) = N, D(λx.M) = M.

Given a sequence ~f ∈ {L,D,R }∗ we denote (f1 ◦ f2 ◦ · · · ◦ fn)(M) by simply writing ~f(M). We
call ~f a path in M if ~f(M) is de�ned. So, speaking more generally of subterms and occurrences of
subterms, we have the following de�nition:
De�nition 1.1.2 (subterm, subterm occurrence). A subterm of a given term M is the result
of applying a path to M . An occurrence of a subterm is a path leading to it.

Often (if not always) we will speak of a variable or a subterm meaning instead one of its speci�c
occurrences, or we will denote an occurrence of a variable x by x itself.

Some measures on terms are useful:
De�nition 1.1.3 (term size, term depth). The size of a term M , denoted |M |, is the number
of nodes (together with leaves) of its construction tree. So

|x| := 1,

|(M N)| := 1 + |M |+ |N | ,

|(λx.M)| := 1 + |M | .

Its depth d(M) is the maximum length of the branches of its construction tree. So
d(x) := 0,

d(M N) := 1 + max(d(M),d(N)),

d(λx.M) := 1 + d(M).

6

1.1. De�nition and α-equivalence
CHAPTER 1

PURE λ-CALCULUS

Given a term M we de�ne various (�nite) subsets of V. The set of variables of M , denoted by
V(M), is the set of leaves of the construction tree of M . Its free variables, FV(M), are variables
in V(M) not �captured� by an abstraction above in the tree. The bounded variables BV(M) are
those bounded by some abstraction in the term. The following recursive de�nitions are given:

V(x) := {x},

V(λx.M) := V(M),

V(M N) := V(M) ∪V(N);

FV(x) := {x}, BV(x) := ∅,

FV(λx.M) := FV(M) \ {x}, BV(λx.M) := BV(M) ∪ {x},

FV(M N) := FV(M) ∪ FV(N); BV(M N) := BV(M) ∪ BV(N).

A term with no free variables is called closed. We distinguish between free and bounded occurrences
of variables by checking if the given occurrence is within the scope of an abstraction of its variable.
We trivially extend the above de�nitions to more than one term:

∗V(M1,M2, . . . ,Mn) :=
n⋃

i=1

∗V(Mi)

where ∗V is either V, FV or BV.
Having also the notion of subterm we may de�ne the scope of a bounded variable.

De�nition 1.1.4 (scope). Given M and x ∈ BV(M), for every subterm of M with the form
λx.N we say that N and all its subterms are in the scope of x.

At the basis of any process involving the λ-terms is the notion of substituting a variable with a
term. It is designed to avoid two problems occurring when substituting �blindly�: nothing is done
when trying to substitute a term for a bounded variable if we are in the scope of its abstraction, and
there is no free variable capture, i.e. if I want to substitute x with N in M , there is a renaming of
bounded variables in M so that a free variable in N is not captured by an abstraction whose scope
contains x. In order to obtain such a notion, we �rst introduce one that circumvents only the �rst
(and easiest) problem: the simple substitution. We more generally give a notion of simultaneous
substitution.
De�nition 1.1.5 (simple substitution). The operation of simple substitution consists of replac-
ing free occurrences of variables x1, x2, . . . xn in M with given terms N1, N2, . . . Nn and is denoted

7

1.1. De�nition and α-equivalence
CHAPTER 1

PURE λ-CALCULUS

by M〈N1/x1, . . . Nn/xn〉, abbreviated by M〈−−→N/x〉:

y〈
−−→
N/x〉 :=

Ni if y = xi for some i,
y otherwise,

(M1M2)〈
−−→
N/x〉 := (M1〈

−−→
N/x〉M2〈

−−→
N/x〉),

(λy.M)〈
−−→
N/x〉 :=

λy.M〈(
−−→
N/x) \ (Ni/xi)〉 if y = xi for some i,

λy.M〈
−−→
N/x〉 otherwise.

We are now ready to move on to a more suitable notion of substitution.
De�nition 1.1.6 (substitution). We denote by M [N1/x1, . . . , Nn/xn] the result of substituting
x1, . . . , xn with N1, . . . , Nn in M . We abbreviate it by M [

−−→
N/x]. Formally:

y[
−−→
N/x] := y〈

−−→
N/x〉,

(M1M2)[
−−→
N/x] := (M1[

−−→
N/x]M2[

−−→
N/x]),

(λy.M)[
−−→
N/x] := λz.M〈z/y〉[

−−→
N/x],

where in the last case z is a variable not in FV(~N). Note that in this case, the most delicate one,
the de�nition is possible because substituting a variable for a variable does not change the term
structure (thus keeping the recursive de�nition possible). Any ambiguity in the same step can be
overcome with an enumeration of V (for example by leaving z = y when y is not free in ~N , and
by taking z as the �rst variable not free in ~N otherwise). However any such ambiguity will be
vanquished by the de�nition of α-equivalence.

If the Nis are all equal to N we will use the abbreviation M [N/~x].
In order to reason about substitution on a purely syntactic level we introduce the concept of

context.
De�nition 1.1.7 (context). A context is a λ-term with �holes� into which any term may be
plugged. Formally the set of contexts C[] ranged over by the meta-variable C[] is de�ned by the
grammar

C[] ::= � | V | (λV.C[]) | (C[]C[]).

Given a context C[] and a term, we denote by C[M] the result of substituting every occurrence
of the hole � with M , regardless of variable capture. We call a context simple if � occurs exactly
once in it. We trivially extend to contexts basic de�nitions on terms such as bounded variables or
size. We additionally de�ne a set BHV(C[]) as the set of bounded variables in C[] whose scope
contains a hole.

8

1.2. Reduction
CHAPTER 1

PURE λ-CALCULUS

De�nition 1.1.8 (relation that passes to context). We say a relation ∼ passes to context if
given any context C[], we have

M ∼ N =⇒ C[M] ∼ C[N].

This condition is equivalent to saying:
M ∼ N =⇒ λx.M ∼ λx.N, (M P) ∼ (N P), (P M) ∼ (P N).

We go on de�ning a syntactic equivalence between terms. We want to achieve a system where
the names of bounded variables do not count (so that an occurrence of a bounded variables may
be seen as a pointer to its abstraction, where the label really does not count).
De�nition 1.1.9 (α-equivalence). α-equivalence, denoted by ≡α, is the least equivalence rela-
tion that passes to context for which:

λx.M ≡α λy.M〈y/x〉, given that y /∈ V(M).

More precisely:
x ≡α N ⇐⇒ N = x,

(M1M2) ≡α N ⇐⇒ N = (N1N2) with M1 ≡α N1,M2 ≡α N2,

λxM ≡α N ⇐⇒ N = λy.N ′ with ∀z /∈ V(M,N ′) : M〈z/x〉 ≡α N
′〈z/y〉.

We will now always regard two α-equivalent terms to be identical, so that we are now working
with Λ/ ≡α rather than Λ, though we will keep using the same name. We may now see as the
result of the substitution M [

−−→
N/x] is really an α-equivalence class.

We now have the freedom to rename bounded variables at will. To simplify things, we may use
this freedom so that whenever we deal with a set of terms we rename bounded variables so that
they are di�erent from the free variables and also between each other. Under this convention we
may use simple substitution without checking variable capture.

1.2 Reduction
We are now ready to introduce a concept central to λ-calculus, the core of its computational

signi�cance: β-reduction.
De�nition 1.2.1 (β-reduction, β-equivalence, β-normal). The binary relation on terms β→
(β-reduction step) is the least relation that passes to context such that

((λx.M)N)
β→M [N/x].

9

1.2. Reduction
CHAPTER 1

PURE λ-CALCULUS

Given a termM , we call a subterm of the form ((λx.N1)N2) a β-redex. We say we contract it if we
apply a β-reduction step that changes it into N1[N2/x], and we call such subterm β-contractum.

We denote the transitive and re�exive closure of β→ by β
� (β-reduction). Clearly:

M
β
� N ⇐⇒ ∃ ~Mn

0 |M0 = M,Mn = N,∀i : Mi
β→Mi+1

where possibly n = 0. The least equivalence relation containing β-reduction is called β-equivalence
and is denoted by ≡β . We have:

M ≡β N ⇐⇒ ∃ ~Mn
0 | M0 = M,Mn = N,∀i : Mi

β→ Mi+1 or Mi+1
β→ Mi.

A term with no redexes, that is a term M for which there is no term N such that M β→ N , is
said to be β-normal, or just normal, or also in normal form.
Remark 1.2.2. Every term can be uniquely written in the form

−→
λyn(M ~Nm),

where M is either an abstraction (and m ≥ 1) or a variable. In the former case we call (M N1)

the head redex.
Looking at this form we see that a term is in normal form if and only if M is a variable and

all the Nis are normal. If we drop the condition on the Nis then the term is said to be in head
normal form.

We may regard a β-reduction step as a step of a computation (possibly started by applying the
program M to the input N and thus trying to reduce M N), and a β-normal form as its output.
So questions arise:
• a β-reduction depends on the redexes I choose to contract. Does it change the result? Closely
related to it: is the result unique?
• does a result always exist?
• if a result exists, how can I get to it? Do I always reach it no matter what reduction steps I
take?
• can I check if a result exists? In other words, is there an algorithm that terminates always
and tells whether there is a result or not?

De�nition 1.2.3 (weak normalization, strong normalization). We say a termM normalizes
weakly, or simply say it normalizes, if there is a normal termM ′ such thatM β

�M ′. We sayM ′ is
a normal form of M . A term M instead normalizes strongly when every reduction is �nite, or said

10

1.2. Reduction
CHAPTER 1

PURE λ-CALCULUS

di�erently there is no in�nite sequence M0,M1,M2, . . . such that M0 = M and Mi
β→Mi+1 (such

a chain, whether in�nite or not, is called reduction chain). In the �rst case we write M ∈ WN ,
while in the second one M ∈ SN .
De�nition 1.2.4 (normalization tally). The normalization tally of a term M , written ||M || is
de�ned to be the maximum length of a reduction chain starting from M , eventually ∞.
Remark 1.2.5. A term is strongly normalizing if and only if its tally is �nite. This is because
from the axiom of choice comes that every �nitely branching tree with �nite branches is �nite
(König's lemma), and so there is a maximum length of its branches.

We may already see that there are non trivial (i.e. non normal) strongly normalizing terms,
terms that are normalizing but not strongly and terms that are not even normalizing. This is also
an occasion to see reduction and bounded variable renaming at work.
Example 1.2.6. Let I be the term λx.x (the identity), and D the term λx.x x. There is only one
way to reduce (D I):

(λx.x x)(λy.y)
β→ (λy.y)(λz.z)

β→ λz.z,

so it is strongly normalizing.
On the other hand (DD) has only one redex, and

(λx.x x)(λy.y y)
β→ (λy.y y)(λz.z z) = (DD)

so every reduction step leaves it unchanged and thus it is not normalizing.
Finally (λx.y)(DD) has two possibilities: one leads directly to the free (and β-normal) variable

y, while the other as seen before leaves the term unchanged. So the term is normalizing but not
strongly.
Remark 1.2.7. A normal term is minimal for β-reduction: if a term M is normal and M β

� M ′

then M ′ = M . However the converse does not hold, as was shown by the example of (DD).
To answear the �rst of the questions comes the notion of con�uence.

De�nition 1.2.8 (Church-Rosser property). A binary relation ∼ over any given set is said to
be con�uent, or to have the Church-Rosser property, if

x ∼ y and x ∼ y′ =⇒ ∃z | y′ ∼ z and y′′ ∼ z.
Theorem 1.2.9 (Church-Rosser). β-reduction on terms has the Church-Rosser property.
Proof. See [Kri90, �I.3].

11

1.2. Reduction
CHAPTER 1

PURE λ-CALCULUS

Immediately follows
Corollary 1.2.10. If a term has a normal form it is unique. We denote the (eventual) normal
form of a term M by M∗.
Proof. Suppose M β

� M ′ and M
β
� M ′′, and both M ′ and M ′′ are normal. From the Church-

Rosser property there is M ′′′ such that M ′ β
� M ′′′ and M ′′ β

� M ′′′. But then, they are normal,
so M ′ = M ′′′ = M ′′.
Remark 1.2.11. With con�uence we may see that

M ≡β N ⇐⇒ ∃M ′ |M
β
�M ′, N

β
�M ′,

and also that if M ≡β N and N is normal then N = M∗ (and in particular M β
� N).

As for the question about how reaching a normal form if there is one, the answear is the so
called lazy reduction, also called left reduction.
De�nition 1.2.12 (deterministic strategy). A deterministic strategy is a computable function
s on terms such that s(M) gives either a redex of M or a �STOP� signal (note that if M is normal
s must give the STOP signal). Applying a strategy to a term M = M0 means yielding Mi+1

obtained with a reduction step done contracting s(Mi) in Mi, while s(Mi) is not the STOP signal.
In the latter case we sayMi is the (unique because of determinism) normal form ofM with respect
to s, and write it asM∗

s . We writeM →s N for a single step of the reduction given by the strategy,
and M �s N for multiple (possibly none) steps.

We also de�ne a tally ||M ||s as the length of the (unique) chain leading to M∗
s if it exists, ∞

otherwise.
De�nition 1.2.13 (head reduction, lazy reduction). De�ne the following strategies:
• the head reduction strategy h gives the head redex of a term if there is one, STOP otherwise.
Note that a term is in normal form for this strategy if and only if it is in head normal form.
• the lazy or left reduction strategy ` gives the redex most to the left of the term, if the term
has any redex, STOP otherwise. Here normality is equivalent to β-normality.

Note that the lazy reduction begins with head reduction, and if this terminates to a head normal
form

−→
λyn.(x ~Nm)

it goes on by processing N1 in the same manner. If it �nds the β-normal form of N1 it begins
working on N2 and so on.

12

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

Theorem 1.2.14. Given a term M , if the normal form M∗ exists then
M �` M

∗.

A somewhat weaker notion of normalizability is that of solvability.
De�nition 1.2.15 (solvable term). A term M is said to be solvable if one of the following
equivalent properties hold:

1. ∀N : ∃~Ph, ~xk, ~Qk | (M [~P/~x] ~Q) ≡β N ;
2. ∃~Ph, ~xk, ~Qk | (M [~P/~x] ~Q) ≡β I, where I is the identity λx.x;
3. ∃~Ph, ~xk, ~Qk | (M [~P/~x] ~Q) ≡β y with y /∈ FV(M).

Remark 1.2.16. We may note that for closed terms all the part about substitution is not needed:
a closed term M is solvable if and only if there exist terms ~Qk so that (M ~Q) ≡β I. Also trivially
if (M N) is solvable so is M (and so if M is not solvable neither is M N).
Theorem 1.2.17. The following properties about a λ-term M are equivalent:

1. M is solvable;
2. M is β-equivalent to a term in head normal form;
3. head reduction on M terminates.
From this theorem follows that a normalizable term is also a solvable term.

1.3 Representation of recursive functions
Now let's get down to what λ-calculus is about. In representing function λ-calculus is halfway

between Turing machines, as it gives proper instruction to compute the function in question, and
the axiomatic approach to recursive functions, as it is purely formal.

In order to talk about representing functions we must �rst of all have a way to represent integers
in N and the boolean values true and false. Let us write

(MnN) for (M(M . . . (M︸ ︷︷ ︸
n times

N) . . .)),

that is the result of applying n times M to N .

13

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

De�nition 1.3.1 (Church integers, booleans). Given n ∈ N we de�ne the following term as
the Church representation of n:

n := λfλx.(fnx).

We also call n an iterator : it can be seen as taking a function and an object as arguments and give
(with lazy reduction) the function iterated n times on the object as output.

Booleans true and false are represented by the following terms:
true := λxλy.x, false := λxλy.y.

They are a particular case of selectors as we will see afterwards. We can regard them as an
IF...THEN...ELSE construct in a λ-term: if b ∈ B then (bM N) can be read as IF(b) THEN M

ELSE N :
(bM N)→h

M if b is true,
N otherwise.

Note that all these representations are closed and normal. Note also that 0 = false, but 1 6= true.
De�nition 1.3.2 (representation of functions). A function ϕ : Nk → N or ϕ : Nk → B is said
to be represented (resp. strongly represented) by a closed term Φ (notation Φ = ϕ, though Φ is
not unique) if and only if for every ~n ∈ Nk:
• if ~n ∈ DOM(ϕ) then (Φ~n) ≡β ϕ(~n);
• if ~n /∈ DOM(ϕ) then (Φ~n) /∈WN (resp. not solvable).

Note that in the �rst case, as ϕ(~n) is normal, we have the equivalent condition
(Φ~n)�` ϕ(~n),

while the latter case is equivalent to the lazy strategy yielding an in�nite reduction (resp. the head
reduction strategy). Clearly a strong representation is also a weak representation.

We recall here one of the many de�nitions used to characterize recursive functions.
De�nition 1.3.3 (recursive functions). Given functions g : Nh → N and ~fh with fi : Nk → N

the composition scheme COMP gives a function COMP(g, ~f) : Nk → N de�ned by
COMP(g, ~f)(~n) := g(f1(~n), . . . , fh(~n)).

Given a function f : Nk+1 → N the minimization scheme µ gives a function µf : Nk → N so that
µf(~n) = m ⇐⇒ f(~n, i) = 0,∀i < m : f(~n, i) is de�ned and 6= 0.

The set of recursive (partial) functions is the least set of functions closed under the composition
and minimization schemes and containing the following functions called base functions:

14

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

• the constant function 0 : N→ N, de�ned by 0(n) = 0;
• the successor succ : N→ N, de�ned by succ(n) = n+ 1;
• the addition add : N2 → N, with add(m,n) = m+ n;
• the multiplication mult : N2 → N, with mult(m.n) = mn;
• the characteristic function of ≤, χ≤ : N2 → N, de�ned by χ≤(m,n) = 1 ifm ≤ n, 0 otherwise;
• the projections πi

k : Nk → N de�ned by πi
k(~n) = ni.

We are leaving out functions to booleans on purpose, as the 0 − 1-valued functions can take
their place. However we will keep using the λ-terms representing them mainly for commodity of
the IF...THEN...ELSE construct.

We now want to show that λ-calculus represents all partial recursive functions.
Lemma 1.3.4 (representation of base functions). The base functions are strongly represented
by the following terms:
• 0 := λd.0;
• succ := λnλfλx.(n f (f x)) or λnλfλx.(f (n f x));
• add := λmλnλfλx(mf (n f x));
• mult := λmλnλf(m (n f));
• χ≤ := λmλn.(mA (λd.1) (nA (λd.0))) with A := λfλg.(g f); we may note we can make this
function output representations booleans simply replacing 1 with true and 0 with false;

• πi
k :=

−→
λxk.xi (those terms are called selectors).

Proof. Constant and projections are trivial.

(succn)→h λfλx.(n f (f x))�h λfλx.(fn (f x)) = n+ 1.

In a similar way we see (addmn)
β
� m+ n and (multmn)

β
� mn.

(χ≤mn)
β
� (Am (λd.1) (An (λd.0)))→h

→h (An (λd.0) (Am−1 (λd.1)))→h

→h (Am−1 (λd.1) (An−1 (λd.0)))�h

�h (Am−k (λd.1) (An−k (λd.0))),

15

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

Now if m ≤ n when k = m we have
((λd.1)(An−m (λd.0)))→h 1.

Otherwise when k = n and we take another step
((λd.0)(Am−n−1 (λd.1)))→h 0.

We will now denote n̂ := (succn 0). Clearly n̂ β
� n and (succ n̂) = n̂+ 1.

Now, to represent the composition scheme one would be tempted, when having the representa-
tions fi and g of ~f and g, to simply use the term

−→
λx.(g (f1 ~x) . . . (fh ~x)).

The fact is that it could be normalizable even if one of the fi is not de�ned at some point. For
example, if f is the function never de�ned (represented by the term λd.(DD), with D like in
example 1.2.6), and g = 0, then for any n

((λx.((λd.0) (f x)))n)
β
� 0

when we want it to be unde�ned.
Let us �rst de�ne that naïve composition between two termsM andN asM◦N := λx(M (N x)).

We may see by induction that if k ≥ 1 then ((λm.(m ◦N))k P)�h λx(P (Nkx)).
Now if Φ and ν are two terms let 〈Φ, ν〉 be the term (ν (λg.(g ◦ succ))Φ 0).

Lemma 1.3.5. If ν is not solvable then neither 〈Φ, ν〉 is. If ν ≡β n for some n ∈ N, then
〈Φ, ν〉 ≡β (Φn) (and so it is solvable if and only if Φn is, and is not solvable if Φ is not).
Proof. From remark 1.2.16 we get the �rst claim. If ν ≡β n and n ≥ 1:

〈Φ, ν〉 ≡β (n (λg.(g ◦ succ))Φ 0)�h ((λg.(g ◦ succ))n Φ 0)�h

�h ((λx.Φ (succn x)) 0)→h (Φ n̂) ≡β (Φn).

If n = 0 more simply we have
〈Φ, ν〉

β
� (0 (λg.(g ◦ succ))Φ 0)�h (Φ 0).

Let 〈Φ, ~νk〉 be inductively de�ned by 〈〈Φ, ~νk−1〉, νk〉.

16

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

Lemma 1.3.6. If any of the νis is not solvable so is 〈Φ, ~νk〉. If νi ≡β ni for all i and for some
nis, then 〈Φ, ~νk〉 ≡β (Φ ~ni), and thus it is solvable if and only if (Φ ~ni) is.
Proof. By induction using the above lemma.
Proposition 1.3.7. Given functions g : Nh → N and fi : Nk → N strongly represented by terms g
and fi then COMP(g, ~f) is strongly represented by

−→
λxk.〈g, (f1 ~x), . . . , (fh ~x)〉.

Proof. By a simple application of the above lemma.
To introduce the minimization scheme, we need the so called �xed point combinators. One

may see that the minimization scheme is what makes the recursive functions go out of the total
functions. When we will study a discipline on λ-terms to have strong normalization, or even
normalization within some complexity boundary, there will be no �xed points and minimization.
De�nition 1.3.8 (Curry's and Turing's �xed point combinators). A �xed point combinator
is a closed normal term M such that (M F) ≡β (F (M F)) for all F . So for we may regard (M F)

as a �xed point of the function F for any F . The two most known �xed point combinators are
• Y := λf.(X[f]X[f]) with X[] := λx.(� (xx)). This is called Curry's �xed point combinator.
We see that

(Y F)→h (X[F]X[F])→h (F (X[F]X[F])) ≡β (F (Y F)).

However it is not true that (Y F)
β
� (F (F Y)).

• Θ := (AA) with A := λaλf.(f (a a f)). This is Turing's �xed point combinator. We have
with two head reduction steps:

(AAF)�h (F (AAF)).

Remark 1.3.9. Fixed point combinators are a potent yet dangerous tool in λ-calculus program-
ming. In practice we may design a termM which, apart from the input the program has to process,
is made to accept itself as an argument. So the complete program will be (MM), M will begin
with λm and anywhere I want to replicate the program I may put (mm). But like a virus, a
self-replicating λ-term may go out of control and have ill complexity e�ects.

Let T be the term
T := λfλgλn(g n (f g (succn))n)

and ∆ a �xed point of T , for example ∆ := (X[T]X[T]). Then
(∆ Φ ν)→h (T ∆ Φ ν)�h (Φ ν (∆ Φ (succ ν)) ν).

17

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

Lemma 1.3.10. If B ≡β true then for any terms M1 and M2 we have
(BM1M2)�h M1.

Proof. See [Kri90, �II.3].
Lemma 1.3.11. Let Φ be any term, and n ∈ N. If (Φn) is not solvable then neither is (∆ Φn).
Moreover, if (Φn) ≡β false then

(∆ Φn) ≡β (Φ ν (∆ Φ (succ ν)) ν) ≡β n,

while if (Φn) ≡β true then (∆ Φ n̂)�h (∆ Φ n̂+ 1).
Proof. Being (∆ Φn) �h ((Φn) (∆ Φ (succn))n) we get the �rst claim from remark 1.2.16. If
(Φn) ≡β true then also (∆ Φn) ≡β n. The last claim follows from the previous lemma:

((Φ n̂) (∆ Φ (succ n̂)) n̂)�h (∆ Φ (succ n̂))

which is the desired result.
Let now Γ := λn.(n (λd.true) false): it is the term that represents the characteristic function

of N \ {0}.
Proposition 1.3.12. Given a function f : Nk+1 → N strongly represented by the term f . The
minimization µf is strongly represented by

G =
−→
λnk(∆ (λm.(Γ (f ~nm))) 0).

Proof. From the above lemma. Let ~n ∈ Nk. Let us write N = λm.(Γ (f ~nm)). Suppose now
µf(~n) = p is de�ned. So f(~n, p) = 0 and for all i < p : f(~n, i) 6= 0 and is de�ned. So trivially
(Np) ≡β false and (Ni) ≡β true for all i < p. Applying the above lemma yields the reduction:

(G~n)�h (∆N 0̂)�h (∆N 1̂)�h . . .�h (∆N p̂) ≡β p.

µf(~n) may be unde�ned for two reasons. Either f(~n, p) is unde�ned and f(~n, i) 6= 0 for all i < p,
and then we have (G~n) ≡β (∆N p) which is unsolvable from the above lemma; or else f(~n, i) 6= 0

for all i ∈ N, in which case proceding as above:
(G~n)�h (∆N 0̂)�h (∆N 1̂)�h . . .

and so on, giving an in�nite head reduction which by theorem 1.2.17 gives unsolvability.

18

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

Remark 1.3.13. The classic recursion scheme, which from functions
g : Nk−1 → N and h : Nk+1 → N

gives a function REC(g, h) : Nk → N de�ned so that

REC(g, h)(m,~nk−1) :=

g(~n) if m = 0,
h(m− 1, ~n,REC(g, h)(m− 1, ~n)) otherwise,

can be simulated using the minimization scheme and thus it is not shown how to represent it.
However we note as also for recursion we may use more directly the �xed point operators. Take a
function r from functions to functions, such that

r(f)(m,~nk−1) :=

g(~n) if m = 0,
h(m− 1, ~n, f(m− 1, ~n)) otherwise,

This is easily representable in λ-calculus if g, h and pred, the predecessor function, are repre-
sentable, for example by the term

R = λfλm
−→
λx.(χ≤ (predm) 0 (g ~n) ((h~n) (f (predm)~n))).

We will see how to express the predecessor function inside system F framework, see example 3.2.4.
Then the terms which represents REC(g, h) should be a �xed point of R, as REC(g, h) is the
(unique) f such that f = r(f). The only thing to be done is manipulating the terms involved so
that also the condition on points where the function is not de�ned is satis�ed, just like we had to
check for the other schemes.

So, at last:
Theorem 1.3.14 (λ-calculus represents recursive functions). Every recursive (partial) func-
tion is strongly represented by a λ-term.
Proof. Now it is trivial: λ-calculus strongly represents the base functions, and composition and
minimization schemes are strongly representable.
Remark 1.3.15. The converse is also true, as, however long to do, we can design a Turing machine
that emulates λ-calculus. So the functions represented (not necessarily strongly) by λ-calculus are
those T-computable and thus recursive. This is the Church-Kleene theorem.

Now we are ready to reply to the last unanswered question: is there a terminating algorithm
that tells me whether a term is normalizable or not? In other words, is WN recursive? The
answear is no.

19

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

LetMn be a (computable) enumeration of Λ. Given a termM let us denote by JMK the Church
integer n such that M = Mn (we are embedding the encoding of terms into integers inside the
system).
Theorem 1.3.16. For every term F , there is a term A such that A ≡β (F JAK).
Proof. Let us consider the function from N to itself that taken n gives m such that Mm = (Mn n).
We see it is computable. This means, from the above theorem, that there is a term U that
represents this function: applied to n it β-reduces to the integer m. That is:

∀n : (U n) ≡β J(Mn n)K.

Let
B[] := λn.� (U n)

and let us consider B[F]. For any n ∈ N we have
(B[F]n)

β→ (F (U n))
β→ (F J(Mn n)K).

We may take n = JB[F]K, so that (Mn n) = (B[F] JB[F]K) and chose A as this last term:
A := (B[F] JB[F]K)

β
� (F J(B[F] JB[F]K)K) = (F JAK).

So we are now ready for the following theorem. We recall that a subset of Nk is said to be
decidable or recursive if its characteristic function is recursive (that is if we can algorithmically
decide whether a particular ~n ∈ Nk belongs to it or not). We extend this notion to Λ using the
above enumeration: X ⊆ Λ is decidable if and only if {n | Mn ∈ X } is decidable. Two subsets
X and Y (of any set for which recursive sets has been de�ned) are said to be recursively separable
if there is a recursive subset A such that X ⊆ A and Y ⊆ Ac; in this case we say A recursively
separates X and Y. A subset X of a certain set is said to be saturated with respect to a certain
equivalence relation ∼ if whenever x ∈ X and x ∼ y then also y ∈ X.
Theorem 1.3.17. Let X,Y be two subsets of Λ such that:
• X ∩ Y = ∅;
• X,Y 6= ∅;
• X and Y are saturated with respect to ≡β.

Then X and Y are recursively inseparable.

20

1.3. Representation of recursive functions
CHAPTER 1

PURE λ-CALCULUS

Proof. Suppose A is recursive and separates the two sets: X ⊆ A and Y ⊆ Ac. Let A be the term
that represents the characteristic function of A, i.e.

(An) ≡β

true if Mn ∈ A,
false otherwise.

The two sets are non-void, so let us take M ∈ X and N ∈ Y. Let us apply the above theorem to
the term F = λn.AnN M . There is a term B such that

B ≡β (F JBK) β→ (A JBKN M).

Now suppose B ∈ A: we have (A JBK) ≡β true and so the above term is equivalent to N . So
B ≡β N and from ≡β-saturation of Y we get B ∈ Y ⊆ Ac and we get a contradiction. However if
we suppose B /∈ A we get in the same way B ∈ X ⊆ A.
Corollary 1.3.18. WN is undecidable. So is the set of solvable terms.
Proof. We take WN (resp. the set of solvable terms) as X (resp. the set of solvable terms), and
Y = Xc. The two sets respect all of the hypotheses of the above theorem, and X separates them,
so X is not recursive.

21

Chapter 2

Typed λ-calculus

At the end of the previous chapter we have seen that pure λ-calculus has much expressive power,
but lacks good computational properties: terms can cause in�nite loops and (like all computation
models) there is no way to tell if a certain term will terminate apart from trying to run it and
wait. A �rst way to �x these problems is a discipline that assigns types to λ-terms and that limits
the freedom one had with pure λ-calculus. We can see it as a formal way to tell where we can plug
a given term. We may regard it as a programming language discipline: if we have a function that
accepts objects of type τ and returns something of type σ we know what to expect when plugging
a certain object of type τ . We are prevented from giving as input an object of type di�erent from
τ because it could have unexpected (and unwanted) results. A type practically certi�cates the
formal correctness of a term.

First approaches to this topics were based to the so called Church-style typing. Types were
formally introduced as �ontological�: λ-calculus is rebuilt from scratch taking variables that have
each their speci�c type embedded in them (the variable xτ of type τ) and then giving explicit
conditions under which the other rules for constructing terms may be applied. With such an
approach there is no such thing as an untypable λ-term: we practically cannot write terms that
do not have a type.

Later, and this is the approach used in this text, came the Curry-style typing. Rather than
controlling the way a term is built we try to see if a type can be assigned to a pure λ-term (or, in
some systems, terms with some kind of decorations added to the grammar that de�nes the terms).

We may say that the Curry approach separates the algorithmic content (the pure λ-term) from
the certi�cate of correctness (the proof of the term having a particular type) that was embedded
in the term in Church-style. The two are surely interchangeable and equivalent, if in Curry-style
we take the pair λ-term�certi�cate to recuperate properties given for granted in Church style.

22

2.1. An introduction to type systems
CHAPTER 2

TYPED λ-CALCULUS

Let us �rst introduce these concepts generally.

2.1 An introduction to type systems
Let us call TΣ a certain set of objects called types, ranged over by Greek letters such us

σ, τ, ρ, and which contains objects of the form σ → τ (not necessarily with this symbol). A type
environment is a function A from λ-term variables to types with �nite domain, ranged over by
uppercase letters such as A, B. The statement x : τ is called a type assumption. We may freely
regard a type environment as a function or as a set of type assumptions so that x : τ ∈ A ⇐⇒
A(x) = τ . In particular a �nite set of type assumptions is an environment only if there are no two
type assumptions on the same term variable. We may also write a type environment in the form
of a sequence of type assumptions −−→x : τ = x1 : τ1, . . . , xn : τn. Two type environments A and B
are said to be compatible if A ∪B is a valid type environment, and in such case we write A,B for
A ∪ B. When we write or use A,B we always assume that they are compatible: eventually this
may set an implicit condition on what we are de�ning.

A statement of the form A `M : τ where A is a type environment, M a λ-term and τ a type is
called a sequent, it is read �A induces the type τ on M � and it is ranged over by uppercase Greek
letters such as Γ,∆. We simply write ` M : τ if DOM(A) = ∅. The part on the right, i.e. M : τ ,
is called a type judgement.
De�nition 2.1.1 (type system). A type system Σ is determined by its set of types TΣ and by
a set of rules to derive sequents from other sequents. This set contains at least rules that re�ects
the rules of λ-term construction: they are rules of the form

x : τ ` x : τ
(var) A, x : σ `M : τ

A ` (λx.M) : σ → τ
(abs)

A `M : σ → τ B ` N : σ
A,B ` (M N) : τ

(app)

eventually decorated in some manner speci�c to the system. A system is said to be syntax-driven
if every rule re�ects a rule of λ-term construction. A tree whose nodes are sequents and whose
links are rules of the system is called a type derivation, or simply a derivation. A meta-variable for
derivations is D. If a sequent A `M : τ is the root of some derivation D we write D A `M : τ

and say that in Σ M has type τ within the environment A, written A `Σ M : τ ; we call D a typing
(in Σ) of M , and we will say that M is typable.

Eventually a system may require some changes to the way λ-terms are de�ned. If it is not the
case we say Σ is built upon pure λ-calculus.

23

2.1. An introduction to type systems
CHAPTER 2

TYPED λ-CALCULUS

We note that, by de�nition (we work with α-equivalence classes), a typing for a term must be
a valid typing for an α-equivalent term, so that a renaming of bounded variables in a term may
imply a renaming of type assumption in its type derivation.

We expect from a type system some kind of integration with substitution and reduction. The
former is present in practically all the type systems, the latter has to be distinguished between
di�erent forms, two weaker than the �rst.
De�nition 2.1.2 (closed under substituion, subterm typing, subject reduction). A type
system Σ is closed under substitution if whenever

x : σ,A `Σ M : τ, B `Σ N : σ

we have A,B `Σ M [N/x] : τ .
Σ has the subterm typing property if whenever M is typable within the environment A, then

every subterm N of M is typable within an environment which assigns the same types to variables
in FV(N) ∩ FV(M).

Σ has the subject reduction property if whenever A `Σ M : τ and M β
� N then A `Σ N : τ .

Given a restriction of β-reduction � ⊆ β
� (eventually, but not necessarily, a certain reduction

strategy) we say the system enjoys subject reduction with respect to �, or shortly �-subject
reduction, if the condition above is satis�ed with � substituting β

�.
Σ has the weak subject reduction property if whenever A `Σ M : τ and M

β
� N and N is

normal then A `Σ N : τ .
Given a type system Σ, some questions arise:
• what do I get from adopting Σ?
• what do I lose adopting Σ?
• is there a way to check if a given term is of certain given type in Σ?
• is there a way to check if a given term is typable in Σ?
• is there a way to �nd a type, or even better, all the types of a given typable term?
We call the problems related to the third and fourth questions type checking and typability

respectively.
De�nition 2.1.3 (TCΣ and TYPΣ). An instance of TCΣ is a sequent A ` M : τ de�ned inside
Σ. The type checking problem TCΣ is the problem of determining if an instance is derivable in Σ,
i.e. is A `Σ M : τ .

24

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

An instance of TYPΣ is a term M . The typability problem is the problem of determining
whether there exist an environment A and a type τ such that A `Σ M : τ .

We call a type τ principal for a term M if τ is a type of M (within a certain environment) and
every other type of M can be computed from it with a sequence of certain (�nite) operations.

Every time we will present a system we will point out those questions and try to answear to
them.

2.2 System S: simple types
The �rst type system we will encounter is simply typed λ-calculus, which we call S. It is the

most basic one: it employs the minimum required for a type system.

2.2.1 De�nition

De�nition 2.2.1 (types of S). Given a countable set of type variables V, ranged over by Greek
letters such as α, β, γ, we de�ne TS with the following grammar:

TS ::= V | (TS → TS).

We call →-types (implication types) those for which the second rule was used last.
As a convention we omit the parenthes whenever possible, associating implications to the right,

so that
(τ1 → (τ2 → (. . . (τn−1 → τn) . . .))) = τ1 → . . .→ τn.

Moreover, we will abbreviate
τn → σ := τ → τ → . . .→ τ︸ ︷︷ ︸

n times
→ σ.

We de�ne TV(τ) as the set of type variables occurring in TS:
TV(α) := {α }, TV(σ → τ) := TV(σ) ∪ TV(τ).

We de�ne subtypes and subtype occurrences as we did for λ-terms (giving functions to navigate
the construction tree of the type). So let L and R be functions de�ned on →-types that give the
left or right part of an implication. ~f ∈ {L,R }∗ is a path in τ if ~f(τ) is de�ned, and we call
subtype the result, for which ~f itself is an occurrence.

As for terms, we de�ne a notion length |τ | and depth d(τ):
|α| := 1, d(α) := 0,

|σ → τ | := 1 + |σ|+ |τ | , d(σ → τ) := 1 + max(d(σ),d(τ)).

25

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

We also de�ne a notion of substitution, which for now will be more basic than the one for terms
as there are no bound variables. So we de�ne τ [σ1/α1, . . . , σn/αn] abbreviated by τ [−−→σ/α]:

α[
−−→
σ/α] :=

σi if β = αi,
β otherwise,

(τ1 → τ2)[
−−→
σ/α] := τ1[

−−→
σ/α]→ τ2[

−−→
σ/α]. (2.1)

We will denote by letters such as S the functions on types induced by a substitution depicted
as above. So S will be a →-homomorphism with �nite support when restricted to variables. We
will assume the notation S = [

−−→
σ/α] if we want to specify what actually does the substitution. We

denote by [] the empty substitution, i.e. the identity on types.
De�nition 2.2.2 (rules of S). Simply typed λ-calculus is given by the following rules:

A, x : τ ` x : τ
(var) A, x : σ `M : τ

A ` (λx.M) : σ → τ
(abs)

A `M : σ → τ B ` N : σ
A,B ` (M N) : τ

(app)

So clearly S is syntax driven, and whenever A `S M : τ then FV(M) ⊆ DOM(A).
Example 2.2.3. Every Church integer is typable. For example we can assign to it the type
Intα := (α→ α)→ α→ α:

f : α→ α ` f : α→ α
(var)

f : α→ α ` f : α→ α
(var)

x : α ` x : α
(var)

f : α→ α, x : α ` (f x) : α
(app)

....
f : α→ α, x : α ` (fn−1 x) : α

f : α→ α, x : α ` (fn x) : α
(app)

f : α→ α ` λx.(fn x) : α→ α
(abs)

` λfλx.(fn x) : Intα
(abs)

Also true and false are typable, both for example of type Boolα := α→ α→ α.
x : α, y : α ` x : α

(var)
x : α ` λy.xα→ α

(abs)
` λxλy.x : α→ α→ α

(abs)

x : α, y : α ` y : α
(var)

x : α ` λy.yα→ αα
(abs)

` λxλy.y : α→ α→ α
(abs)

Remark 2.2.4. We may say more about integers and booleans. Let us put upside down the
question, and let us take a-priori the type Intα, or Boolα. What can we say about the normal
closed terms typable with those types? We will answear to this question when we have taken more
con�dence with types (see 2.2.11).

26

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

Remark 2.2.5. We may see that if we erase every reference to λ-terms we obtain proofs in the
implication fragment of classic intuitionistic logic, if we perform the necessary contractions when
joining environments and the necessary weakenings after the axioms. Also the converse is true
if we once again move around weakenings and contractions. This is an example of the so called
Curry-Howard isomorphism, which extends also to a dynamical point of view. and we will see as
most (but not all) systems have an underlying intuitionistic logic in the same way. We will see for
example what is brought to λ-calculus by a more active control on contractions as seen in linear
(light) logics.

We could have de�ned the system with rules that re�ect weakening and contraction, but apart
from not being useful it would spoil the system from being syntax-driven, which is a good property
for resolving TC and TYP.

2.2.2 First properties

A �rst basic property (related to weakening being integrated in the rules), is that if A `S M : τ

and A ⊆ B then also B `S M : τ . It can be proved by �rst renaming all the bound variables in
M so that BV(M) ∩DOM(B) = ∅, and then by appending B \A to all the type environments in
the derivation. We can do this because B \A is compatible with every subset of A and with every
x : σ that disappears in (abs)-rules during the derivation. A (var)-rule so treated is still valid and
so the derivation remains valid. Unsurprisingly we call such an operation weakening.

Conversely we have:
Proposition 2.2.6 (weakening on reverse). We have

A `S M : τ =⇒ A|FV(M) `S M : τ.

Proof. By induction on a derivation of A `S M : τ , depending on the last rule used. We are basi-
cally trimming o� all unused hypotheses in the environment, i.e. those that neither are necessary
for a (var) nor get used and deleted in an (abs).
var: M = x and trivially AFV(x) = x : τ , so we get by another (var) x : τ `S x : τ .
app: M = (M1M2) and applying the induction hypothesis on the premises A1 `M1 : τ ′ → τ and

A2 `M2 : τ ′ and then an (app) yields:
A1|FV(M1) `S M1 : τ ′ → τ A2|FV(M2) `S M2 : τ ′

A1|FV(M1), A2|FV(M2) ` (M1M2) : τ
(app)

and A1|FV(M1), A2|FV(M2) = (A1, A2)|FV(M1)∪FV(M2) = A|FV(M).

27

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

abs: M = λx.M ′, τ = τ1 → τ2, and we apply induction hypothesis on the premise A′, x : τ1 `M ′ :

τ2 getting (A′, x : τ1)|FV(M ′) `S M ′ : τ2. If eventually x /∈ FV(M ′) we add it by weakening,
so in any case by pointing out x : τ1 from A′ we get A′|FV(M ′)\{x}, x : τ1 `S M ′ : τ2. An
application of the (abs)-rule gives the result as FV(M ′) \ {x} = FV(M).

Then we may see properties like closure under substitution and subterm typing:
Lemma 2.2.7 (substitution lemma). S is closed under substitution.
Proof. Let A, x : σ `S M : τ and B `S N : σ. Let us reason by induction on the size of a derivation
ofM (or equivalently on the size ofM), depending on its last rule. The basic idea is that whenever
x is introduced by a (var)-rule we replace it with the type derivation of N .
var: In this case either M = x and σ = τ or M = y ∈ DOM(A). In the �rst case the proposition

goes down to stating A,B `S N : τ which is true by weakening on the derivation of the type
for N . In the second one we have A,B `S y : τ which is true by weakening on M = y's
derivation.

app: M = (M ′M ′′). If x : σ is not present in one of the premises we don't need to apply induction
hypothesis on that premise because we know then x is not free in the term relative to that
premise, and so substitution is harmless. Let's presume the two premises are A′, x : σ `S
M ′ : τ ′ → τ and A′′, x : σ `S M ′′ : τ ′ with A = A′, A′′. Then by induction hypothesis:

A′, B `S M ′[N/x] : τ ′ → τ A′′, B `S M ′′[N/x] : τ ′

A,B ` (M ′[N/x]M ′′[N/x]) : τ
(app)

and (M ′[N/x]M ′′[N/x]) = M [N/x].
abs: M = λy.M ′, τ = τ ′ → τ ′′ and A, y : τ ′, x : σ `S M ′ : τ ′′. We eventually rename y so that it

doesn't appear in DOM(B). So by induction hypothesis:
A, y : τ ′, B `S M ′[N/x]
A,B ` λy.M ′[N/x]

(abs)

and λy.M ′[N/x] = M [N/x].

Proposition 2.2.8 (subterm typing). S enjoys subterm typing. In particular, if N is a subterm
occurrence of M , every D such that D A ` M : τ contains a subderivation D′ A′ ` N : σ,
with A|FV(M)∩FV(N) = A′|FV(M)∩FV(N). We say that D assigns type σ to N .

28

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

Proof. This clearly comes from the fact that type derivations re�ect term construction trees. So if
~f is a path inM leading to N , then following the same path in a typing ofM yields a subderivation
forN . The di�erences between the environments come from variables in A′ which later get bounded
(and so they are not in FV(M)), and variables which are added later (which therefore are not in
FV(N)).

Finally we will prove subject reduction property.
Theorem 2.2.9 (subject reduction). S enjoys subject reduction.
Proof. Clearly subject reduction is equivalent to seeing it for one step reductions. So let D

A `S M : τ and N any term such that M β→ N . Let us reason by induction on D.
var: For this case the statement is true as a variable has no redexes.
app: Here M = (M1M2) and D1 A1 ` M1 : τ ′ → τ and D2 A2 ` M2 : τ ′. We must

distinguish between three cases: either we are reducing a redex in M1, or else in M2, or else
M itself is the redex contracted.
In the �rst case, M1

β→ N1 and N = (N1M2). By induction hypothesis A1 `S N1 : τ ′ → τ

and with an (app) we get what needed. The second case is treated in the same manner.
If M is the redex contracted then M1 = λx.M ′

1 and N = M ′
1[M2/x]. Then going up in the

subderivation for M1 gives
D′

1 A1, x : τ ′ `M ′
1 : τ,

and by substitution lemma A1, A2 `S M ′
1[M2/x] : τ that is what we were looking for.

abs: M = λx.M ′, τ = τ1 → τ2 and D′ A, x : τ1 `M ′ : τ2. We are necessarily reducing a redex
in M ′, so that M ′ β→ N ′ and N = λx.N ′. By induction hypothesis

A, x : τ1 `S N ′ : τ2
A ` λx.N ′ : τ1 → τ2

(abs)

and that is all.

Remark 2.2.10. We may note in the proof that we are saying slightly more than simple subject
reduction. Not only the descendant N gets the same type within the same environment, but given
a certain typing D ofM it induces a particular typing in N such that subterms in N left unchanged
by reduction retain the same type, and also contracta retain the same type of the redexes they
come from. This is useful because there can be di�erent typings within the same environments,

29

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

and so types of subterms could go wild during a reduction. For example the term (λx.d) (I I) is
typed with type α within the environment d : α. This type however does not depend on which
type is assigned to the subterm (I I), and keeps not depending if we contract (I I)

β→ I, so that
we may assign to I a completely di�erent type.
Remark 2.2.11. Let us recover the topic about what closed normal terms are typed with type
Intα and Boolα. Let us take a look at Intα: �rst of all by weakening on reverse we can take a
derivation with an empty environment in the �nal sequent without loosing generality. So the last
rule of such a derivation must be an abstraction, which is the only one that can lead to empty
environment. So the sequent immediately preceding the end must be

f : α→ α ` λf.M : α→ α

with M normal, and its only free variable can be y. So if M is a variable it must be y, that yields
the term λf.f . It is not a Church integer, but we will explain it later. If M = (M1M2), then
M1 cannot be an abstraction, but cannot either be the variable y because of type mismatch. So
it also should be an application but then we could iterate the reasoning in an in�nite chain of
applications. So the only possibility left is for it to be an abstraction. Going up one rule in the
derivation we have the sequent:

f : α→ α, x : α ` N : α.

No more abstractions are possible (here we are using the fact that Intα was built upon a type
variable). So either N is a variable and in such case it must be x (the only one in the environment
with the same type), or an application (N1N2). The �rst case gives λfλx.x = 0. In the second case
N1 must be assigned a type α→ α: if it is a variable it must be f (the only one with implication
type); otherwise (as it cannot be an abstraction) we should have (N11N12), and N11 cannot be
any variable because its type is too complex. Reasoning as before we get another in�nite chain of
applications, so N1 = f . Reasoning on the normal term N2 of type α as we have done for N , and
going on like this until we �nally �nd the x (there are no in�nite terms!) we see that all other
terms of this type are λfλx.(fn x) = n.

How does λf.f fall into this? This is a slight imperfection of the representation of integers, as
it is just an alternative representation of 1, in the sense that using both instead of only the classic
1 gives the same results. For example

succλf.f
β→ λf ′λx.((λf.f) f ′ (f ′ x))

β→ λf ′λx.(f ′ (f ′ x)) = 2.

This is consistent with the idea that integers are iterators: a 1-iterator is practically the identity
on functions1. If we do not want this ambiguity we can leave the classic representation by simply

1putting in η-equivalence, we have 1
η→ I.

30

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

exchanging the abstractions and use instead n := λxλf.(fn x), and the corresponding type Intα :=

α → (α → α) → α. Or else we can make sure that a given result is indeed a Church integer by
putting a term of type Intα i the context λfλx.� f x. We will soon see that every typable term
is SN : so we may say that every normal closed term typable with Intα normalizes to an integer,
and so every term typable with Intk

α → Intα represents a function from Nk → N. We may say
that Intα gives a faithful representation of N. Alas, we will see in 2.2.22 that though we are now
sure the terms typable with Intk

α → Intα represent a class of functions, they represent a really
poor class of functions. If we want to extend the representation we must allow complex types to
appear in Intτ , which in turn may give normal terms that are not integers but have the type of
integers, in any of the two representation of integers we have given. For example

`S λfλxλz.z : Intα→α

in both the ways we may de�ne Intτ (it su�ces to exchange the roles of f and x).
For Boolα we may apply the same reasoning and see that without ambiguities normal closed

terms of this form are either true or false. Still if we allow complex types to appear the type
ceases to give a faithful representation of B.

We will continue this topic in the framework of system F which gives much more satisfaction
in this sense.

2.2.3 What do we get from S?

The best thing I get from adopting S is that every typable term is not only normalizable, but
even strongly normalizable. Because strong normalization implies the weak one we could show
only the second result. There are two main ways to do this. One is by indeed showing �rst WN ,
and then, aided by a complicated translation of terms into other terms, show that WN implies
SN . For example, see [Gan80]. Another shows directly and independently SN using techniques
that may be then expanded to other systems, and this is the one presented here. However we will
also brie�y give the proof of WN , because it highlights an interesting bound on the depth of the
normal form of a term (and thus also to its size).
Theorem 2.2.12. If M is typable in S then M ∈WN .
Proof. Let M be a typable with a typing D. Because of subterm typing every redex has a type.
Given a redex R = (λx.P)Q where λx.P is given type σ1 → σ2 by D, we de�ne the degree of the
redex by ∂(R) := d(σ1 → σ2).

Note that the de�nition on redexes is not independent from D as we have seen in remark 2.2.10.

31

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

We go on de�ning a redex degree of M as
rd(M) := max{ ∂(R) | R redex in M },

and setting it to 0 if there are no redexes. We may see that in general rd(M) ≤ rd(M ′) ifM β
�M ′.

Now, we see that for every term M with rd(M) ≤ d with d > 0 there is a term M ′ such that
M

β
�M ′ and rd(M ′) < d. By the way, we will also show that d(M ′) ≤ 2d(M). Practically we are

contracting redexes bottom-up in the construction tree, so that we do not contract redexes that
were not visible at the beginning of the step. So, by induction on M :
M = x: Nothing to show, M ′ = x.
M = λx.N : rd(N) = rd(M), so by induction hypothesis λx.N β

� λx.N ′, with rd(λx.N ′) =

rd(N ′) < d and
d(λx.N ′) = 1 + d(N ′) ≤ 1 + 2d(N) < 2d(M).

M = (M1M2): By induction hypothesisM β
� (M ′

1M
′
2), withM ′

1 andM ′
2 satisfying the properties.

Now, ifM ′
1 is not an abstraction, or if it is an abstraction but the degree of the redex (M ′

1M
′
2)

is already less than d− 1:
rd(M ′

1M
′
2) = max(rd(M ′

1), rd(M ′
2), ∂(M ′

1M
′
2)) < d,

and
d(M ′

1M
′
2) = 1 + max(d(M ′

1),d(M ′
2)) ≤ 1 + 2max(d(M1),d(M2)) < 2d(M).

If on the other hand M ′
1 = λx.P and the type assigned to λx.P by the initial typing is

τ1 → τ2 with d(τ1 → τ2) = d, we may take one more reduction step and obtain P [M ′
2/x].

Here all the redexes are those in P (that are those in M ′
1), those in M ′

2 (if x appears in P)
and those new, created if M ′

2 is an abstraction and gets in the left part of an application.
As the degrees of the redexes already present does not change with substitution, of those
redexes the only ones that might have degree higher than d − 1 are the last ones. However
they have all degree equal to the depth of the type of M ′

2, i.e. d(τ1) < d(τ1 → τ2) = d. As
for the depth of the term, it is easily seen that

d(P [M ′
2/x]) ≤ d(P) + d(M ′

2) < d(M ′
1) + d(M ′

2) ≤ 2d(M1) + 2d(M2) ≤ 2d(M).

Weak normalization is then obtained by applying the reduction depicted above until rd(M) = 0

and so M is normal.

32

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

Corollary 2.2.13. The depth of the normal form of a term M is bounded by e2(d(M), rd(M))

where ea(m,n) is the tower of exponentials of base a, height n and argument m, that is:

ea(m,n) :=

m if n = 0,
aea(m,n−1) otherwise.

Its size is bounded by 2e2(d(M), rd(M) + 1).
Moreover there is a reduction strategy that makes these bounds valid for every term N in the

reduction chain starting from M .
Proof. It follows directly from the two bounds of the reduction that gives WN in the proof above.
The bound on size is from the easy relation |M | ≤ 2d(M)+1.

Before moving on to strong normalization, we give the de�nition of reducibility candidate for
type τ . This de�nition is valid for all the systems Σ built upon pure λ-calculus, and is easily
extendable otherwise. It is central to many strong normalization theorems. Rather than being
useful here (as we will simply state that a certain �xed set called the reducible terms of type τ
is a reducibility candidate), they will be useful in the future when a de�nition of reducible terms
is not possible. Having chosen a Church-style approach we must take into account also the type
environments in which the typings are carried out.
De�nition 2.2.14 (reducibility candidate). A set

X ⊆ {A type environment } × Λ

of pairs (A,M) such that A `Σ M : τ holds, is a reducibility candidate for τ if the following three
properties hold, where we denote by π2 the usual projection (π2X = RAN(π2|X), with π2(a, b) := b):

1. π2X ⊆ SN ;
2. if (A,M) ∈ X and M β

� N then (A,N) ∈ X.
3. ifM typeable with type τ within A is not an abstraction and for everyM ′ such thatM β→M ′

(single step) we have (A,M ′) ∈ X then (A,M) ∈ X.
Note that the last clause implies that a normal typable term that is not an abstraction also is in
π2X. In particular (A, x) ∈ X for every (A, x) such that A(x) = τ .

Note also that if subject reduction holds then we must not check whether the type is preserved
in the second property.

33

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

De�nition 2.2.15 (reducible terms). The set REDτ of reducible terms of type τ together with
environments is de�ned inductively on τ as follows, assuming that all pairs (A,M) in REDτ must
be such that A `S M : τ :

(A,M) ∈ REDα ⇐⇒ M ∈ SN,

(A,M) ∈ REDτ1→τ2 ⇐⇒ ∀(B,N) ∈ REDτ1 : ((A,B), (M N)) ∈ REDτ2 .

As usual in order to use A,B = A ∪ B we implicitly impose in the quanti�er that A and B are
compatible. We will switch here to the insiemistic notation A ∪B for ease of notation. We de�ne
the set of reducible terms as the union of the projections π2 REDτ with τ ranging over the types.
Note that if (A,M) ∈ REDτ and A ⊆ A′ then (A′,M) ∈ REDτ .
Lemma 2.2.16. REDτ is a reducibility candidate for every τ .
Proof. By induction on τ , checking the three properties of candidates:
τ = α: 1. the �rst property is satis�ed by de�nition.

2. SN is closed under β
�, and so the property holds.

3. Every reduction chain must have its �rst step in one of the M ′s, which in turn by
de�nition are in SN , so the chain must be �nite. In fact ||M || = 1 + max(||Mi||).

τ = τ1 → τ2: 1. Let (A,M) ∈ REDτ1→τ2 . Let us take any variable x not present in A and con-
sider (x : τ1, x) ∈ X by induction hypothesis 3. By de�nition and induction hypothesis
1, we have

(M x) = π2(A ∪ {x : τ1}, (M x)) ∈ π2 REDτ2 ⊆ SN.

Moreover for every reduction chainMi starting fromM we have a corresponding reduc-
tion chain (Mi x) starting from (M x), so that ||M || ≤ ||(M x)|| <∞.

2. Let M β
� N with (A,M) ∈ REDτ1→τ2 . Let (B,P) be in REDτ1 with A and B compat-

ible. Then
(A ∪B, (M P)) ∈ REDτ2 , (M P)

β
� (N P),

so by induction hypothesis 2 we get (A ∪B, (N P)) ∈ REDτ2 which was what needed.
3. Let (B,P) be any term in REDτ1 , with B compatible with A: we want to show that

(A∪B, (M P)) ∈ REDτ2 , and we show it by another induction on ||P || (de�ned because
by induction hypothesis 1 P ∈ SN). As M is not an abstraction each redex in (M P) is
either inM or in P . In the �rst case reducing it leads to (M ′ P) for one of theM ′s, and
so by de�nition (A ∪ B, (M ′ P)) ∈ REDτ2 . In the second case the one step reduction
leads to (M P ′) with P β→ P ′: (B,P ′) ∈ REDτ1 by induction hypothesis 2, and so by

34

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

the other induction hypothesis (||P ′|| = ||P ||− 1) we also get (A∪B, (M P ′)) ∈ REDτ1 .
Now using induction hypothesis 3 we have (A, (M N)) ∈ REDτ2 .

We now bring down to reducibility the abstraction that eludes the properties of reducibility
candidates in the third clause.
Lemma 2.2.17 (abstraction). Given A and M , if for every (B,N) ∈ REDτ1 such that A and
B are compatible we have (A ∪B,M [N/x]) ∈ REDτ2 then (A, λx.M) ∈ REDτ1→τ2 .
Proof. We obviously have (A ∪ {x : τ1},M) ∈ REDτ2 , so M itself is reducible. Let (B,N) be any
pair in REDτ1 such that A and B are compatible, and let us show that (A∪B, (λx.M)N) ∈ REDτ2

by induction on ||M || + ||N || (de�ned because both reducible). We have that every one step
reduction that contracts a redex in M or in N makes the pair end within REDτ2 by induction
hypothesis. The only other redex left is the term itself, and by reducing it we remain in REDτ2 by
hypothesis. So, by the third property of reducibility candidates, we get what needed.

Now what remains to be done is proving that all terms are reducible, then SN follows from
the �rst property of reducibility candidates. Something stronger needs to be proved:
Theorem 2.2.18. Let (A,M) be such that D A `S M : τ , FV(M) ⊆ ~xn and ~Nn are terms
such that ∀i : (B,Ni) ∈ REDA(xi) with B compatible with A. Then (A ∪B,M [

−−→
N/x]) ∈ REDτ .

Proof. By induction on M .
M = xi: Tautological.
M = (M1M2): We have subderivations of D that by weakening we may consider within the same

environment and that give types τ ′ → τ to M1 and τ ′ to M2. By induction hypothesis
(A∪B,M1[

−−→
N/x]) ∈ REDτ ′→τ and (A∪B,M2[

−−→
N/x]) ∈ REDτ ′ , so by de�nition we get what

needed.
M = λy.M ′: We rename y so that it does not appear anywhere else. τ = τ1 → τ2 and y : τ1, A `S

M ′ : τ2. Let us take any (C,P) ∈ REDτ1 such that C is compatible with A∪B. In particular
(B ∪ C,Ni) remains in REDA(xi). By induction hypothesis we have

(A ∪B ∪ C,M ′[
−−→
N/x][P/y]) = (A ∪B ∪ C,M ′[P/y,

−−→
N/x]) ∈ REDτ2 ,

so by the lemma above we get (A ∪B, λy.M ′[
−−→
N/x]) ∈ REDτ1→τ2 .

Corollary 2.2.19. All typable terms are reducible, and so all typable terms are in SN .
Proof. Just take ~N = ~x and B = A|~x.

35

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

2.2.4 What do we lose with S?

What actually is missing in simply typed λ-calculus is expressive power. First of all, we can't
use �xed points, so we lose the possibility to easily express function de�ned recursively2.
Proposition 2.2.20. Church's and Curry's �xed point combinators are not typable in S.
Proof. This follows directly from the fact that there is no way to type self application of variables,
i.e. (xx) is not typable no matter what environment one sets. Note that in Church-style there are
some self applications that are typable, for example (I I).
Proposition 2.2.21. There is no term Y typable with (σ → σ) → σ such that given any term
typable with σ → σ we have Y M β

�M (Y M).
Proof. Trivial: it would contradict strong normalization theorem.

There is also another problem regarding what functions are representable. As we saw in ex-
ample 2.2.3, Church integrals are typable of type Intα. We will see that every type for Church
integrals is Intτ for some τ (thus Intα is a principal type), if we take them as a whole3, so it
depends on the choice of τ . The �rst choice would be to take τ as simple as possible, i.e. a variable,
and then in order to be coherent we should stick to Intα, so that we say a closed term F represents
a function f : Nk → N if and only if it is typable with type Intk

α → Intα and for every ~n ∈ Nk we
have (F ~n) ≡β f(~n). However the resulting representable functions are quite a poor class.
Theorem 2.2.22. The functions representable by terms of type Intα → Intα → . . . → Intα

for some α are the least class closed under composition containing 0, succ, add, mult, χ0 (the
characteristic function of {0}) and the projections. This class is practically that of multivariate
polynomials extended with conditional clause.
Proof. One direction is trivial, as it su�ces to see that the representations of base functions here
listed, as seen in 1.3.4, are typable with the appropriate type. We can represent χ0 with the typable
term:

χ0 := λnλfλx.(n (λd.x) (f x)).

The converse has been proved in [Sch76].
2unrestricted minimization scheme is out of the question as it leads out of the class of total functions, while by

SN we must remain inside of it. We may also note how if we stick to typable λ-terms there is no distinction between
strong and weak representation.30 is in fact of principal type α → β → β, while 1 has principal type (α → β) → α → β. Starting from 2 the
principal type must be the one stated above.

36

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

On the other hand we may take Intτ with τ exchangeable. A typical example is taking α0 := α

and inductively αi+1 := αi → αi, and then taking integers of Inti := Intαi
. With this convention

we may easily, for example, represent the exponential of type Inti+1 → Inti → Inti:
exp := λmλn.(mn),

that represents exp(m,n) := nm. Note that the type of the exponent is more complex than that of
input and output. We can now represent a great deal of functions, but still we cannot for example
represent such simple functions as χ= or χ≤, even if we let the type of integers be built from any
type, i.e. if we let integers to be of type Intτ for any τ . By corollary 2.2.13 we know we remain
inside the scope of elementary space functions. This by a known result means we are inside the
elementary functions (see 4.2.1). However the inclusion is strict.

And then again, in order to go beyond polynomial functions, we have to �cheat�: we change
the types of the integers we are dealing with, so that there is no single type for integers but rather
a scheme the types for integers must follow. This is clearly a prelude to polymorphism, where
a single type will do the trick. A �rst solution can be however to adopt some external terms
(constants) that will have reduction rules to emulate that which simply typed λ-calculus cannot
achieve: for example system PCF, shown in the next section.

2.2.5 Type checking, typability and type inference

Adopting Curry-style saves us form cumbersome programming, by splitting the problem of
�nding an algorithm that computes what we want to compute (by designing the pure term) from
the problem of certi�cating that the algorithm is correct from the point of view of termination (by
�nding a typing for the pure term). It is known that the �rst problem is completely up to the
programmer. We would like to leave the second one to a machine.

We will now see as there are no problems regarding the assignment of simple types to terms.
The problems in fact goes down to �nding uni�ers for types, that is substitutions that make two
types equal.
De�nition 2.2.23 (uni�ers). A uni�er for type σ and τ is a substitution S such that S(σ) =

S(τ). We then say that this common value is a uni�ed type for σ and τ .
We will say that a uni�er S for σ and τ is a most general uni�er if for every uni�er T1 of the

same types there exist a substitution T2 such that T1 = T2 ◦ S.
If E is a set of equations on types {σ1 = τ1, . . . , σn = τn }, we say that S is a uni�er for E if

it is a uni�er for each pair (σi, τi), and we say it is a most general one as we did above.

37

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

Example 2.2.24. For example (α→ β)→ β and γ → δ → δ have the uni�ers
S = [δ → δ/β, α→ δ → δ/γ],

S1 = [δ → δ/β, ε→ ε/α, (ε→ ε)→ δ → δ/γ].

The �rst is a most general one, the second is not.
We will say that a type σ is a variant of type τ if there exist substitutions S1 and S2 such that

S1(σ) = τ and S2(τ) = σ. Types uni�ed by a most general uni�er are always a variant of each
other.

In this case with simple types uni�cation is decidable.
Proposition 2.2.25. There is a computable function that accepts a pair of types and outputs
either a substitution or a value fail such that
• if σ and τ have a uni�er then U(σ, τ) is a most general uni�er for them,
• otherwise U(σ, τ) returns fail.

Moreover such function is polynomial on the size of the two types.
We can extend this function to systems of equations E, so that U gives a most general uni�er

if there is a uni�er and fail if there is none.
Proof. Recall R and L are the functions giving the right and left part of an implication, and are
de�ned only on implications.

U on types is de�ned recursively by the following algorithm:
Require: σ and τ types;
1: if σ = τ then return [];
2: else
3: if σ ∈ V then
4: if σ /∈ TV(τ) then return [τ/σ];
5: else return fail;
6: else
7: if τ ∈ V then return U(τ, σ);
8: else
9: S2 ← U(R(σ), R(τ));

10: if S2 = fail then return fail;
11: else
12: S1 ← U(S2(L(σ)), S2(L(τ)));

38

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

13: if S1 = fail then return fail;
14: else return S1 ◦ S2;
The algorithm terminates because each time the recursive call is made at most two times on strictly
smaller types, and a binary tree with �nite branches is �nite. Moreover it gives a most general
uni�er if there is one, which can be seen by induction.

In fact the base is that α and τ cannot be uni�ed if and only if τ 6= α and α ∈ TV(τ), because
in such a case for every substitution S we have |S(τ)| > |S(α)|. Otherwise [τ/α] is a most general
uni�er, as we see that if S1(α) = S1(τ) then in fact S1 = S1 ◦ [τ/α]:

S1 ◦ [τ/α](β) =

S1(τ) = S1(α) if β = α,
S1(β) otherwise.

Now supppose σ = σ1 → σ2 and τ = τ1 → τ2. Every uni�er here is automatically a uni�er
for both the left and the right part of the implications, so if there is no uni�er for σ2, τ2 (and
by induction hypothesis U(σ2, τ2) returns fail), there is no uni�er for σ, τ either. Otherwise by
induction hypothesis S2 is a most general uni�er. Now if there is a uni�er S′ for σ, τ we have
necessarily that S′ = S′1 ◦ S2, because S′ is a uni�er for σ2, τ2. So given S2 it is justi�ed to say
that there exist a uni�er for σ, τ if and only if there exist one for S2(σ1), S2(τ1). If moreover S1 is
a most general uni�er for S2(σ1), S2(τ1) (and it is by induction hypothesis) and S′ is a uni�er for
σ, τ , then we already know that S′ = S′1 ◦ S2, so that S′1 is a uni�er for S2(σ1), S2(τ1) and thus
S′ = S′′ ◦ S1 ◦ S2: S1 ◦ S2 is a most general uni�er.

To extend U to E = {−−−→σ = τ } it su�ces to de�ne
U(E) := U(σ1 → . . .→ σn, τ1 → . . .→ τn)

as
S(σ1 → . . .→ σn) = S(τ1 → . . .→ τn) ⇐⇒ ∀i : S(σi) = S(τi).

Now for the computational cost: if we chose to represent the substitution in the form of the
string [

−−→
σ/α], and accept that applying a substitution on a type is a polynomial operation in both

the size of the type and in that of the string representing S, we see that the composition is
[
−−→
σ/α] ◦ [

−−→
τ/β] =

[−−−−−−−→
τ [
−−→
σ/α]

/
β,
−−→
σ/α∗

]
,

where −−→σ/α∗ is −−→σ/α∗ \ {σ/α | α = βi}, which is polynomial. Now by inspection of the algorithm we
may see that the length of the string describing the substitutions involved is bounded by the size
of the types, and that also the number of recursive calls of U is bounded by two times the size of
the two terms. If we have a polynomial way of checking the condition α /∈ TV(τ) (which can be
taken for granted), we obtain the polynomiality.

39

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

Now there is a way to build standard equations on types that permits to solve our problems.
Proposition 2.2.26. There is a polynomially computable function E that accepts an environment
A, a term M with FV(M) ⊆ DOM(A) and a type τ and outputs a system of equation on type so
that:
• if S is a uni�er for E(A,M, τ) then S(A) `S M : S(τ),
• if S is such that S(A) `S M : S1(τ) then there exist S1 which uni�es E(A,M, τ) and such
that S1|TV(A,σ) = S|TV(A,σ).

In particular E(A;M ;σ) has no uni�er if and only if there is no S with S(A) `S M : S(σ).
Proof. Let E be de�ned by
Require: A, M with FV(M) ⊆ DOM(A), σ;
1: if M = x ∈ V then return {A(x) = σ};
2: else
3: if M = M1M2 then
4: choose α fresh;
5: (E1, E2)← (E(A,M1, α→ σ), E(A,M2, α));
6: in E2 rename TV(E2) \ (TV(A) ∪ {α}) to variables not in A, σ and E1;
7: return E1 ∪ E2;
8: else
9: if M = λx.M ′ then

10: choose α, β fresh;
11: E′ ← E(A ∪ {x : α},M ′, β);
12: in E′ rename TV(E′) \ (TV(A) ∪ {α, β}) to variables not in A and σ;
13: return E′ ∪ {σ = α→ β};

The algorithm always terminates because each recursive call is made on a term of strictly
smaller size.

The rest is seen by induction.
If M = x, and S(A(x)) = S(σ) then clearly S(A) `S x : S(σ). If on the other hand S(A) `

x : S(σ), then necessarily S(A(x)) = S(σ), because the (var) rule must be applied, and so S is a
uni�er for E(A, x, σ).

If M = M1M2 and S uni�es E(A,M1, α → σ) ∪ E(A,M2, α) then by induction hypothesis
S(A) `S M1 : S(α) → S(σ) and S(A) `S M2 : S(α). So applying (app) yields the result. On the
converse if S is such that S(A) `S M : S(σ), then climbing up the derivation gives us

S(A) `S M1 : ρ→ S(σ), S(A) `S M2 : ρ,

40

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

with ρ some type. Now take α, E1 and E2 as chosen by the algorithm, and de�ne S′(α) = ρ

and equal to S in other cases. α was fresh, so it does not appear in A and σ, and we have
S′(A) `S M1 : S′(α → σ) and S′(A) `S M2 : S′(α). By induction hypothesis we have S′′1 and S′′2
that both act like S′ on A, σ and α (and thus like S on A and σ). De�ne

S′′(β) :=


S′′1 (β) if β ∈ TV(E1),
S′′2 (β) if β ∈ TV(E2),
S(β) otherwise.

Because of the renaming internal to the algorithm we have that TV(E1)∩TV(E2) ⊆ TV(A)∪{α}, so
that S′′1 and S′′2 yield the same values in such a set, and thus S′′ is de�ned. Moreover S′′|TV(A,σ) =

S|TV(A,σ). Finally by de�nition S′′|Ei
= S′′i |Ei

, so it uni�es both E1 and E2, and thus uni�es E.
If M = λx.M ′ and S uni�es

E(A ∪ {x : α},M ′, β) ∪ {σ = α→ β}

then by induction hypothesis
S(A), x : S(α) `S M ′ : S(β)
S(A) ` λx.M ′ : S(α→ β)

(abs)

and then S(α → β) = S(σ). On the converse suppose S(A) `S M : S(σ), and let's go up one
rule to S(A), x : σ1 ` M ′ : σ2 where necessarily S(σ) = σ1 → σ2. Take α and β as chosen by the
algorithm and E = E(A∪{x : α},M ′, β). Chose S′ such that it acts like S on TV(A) and σ while
S′(α) = σ1 and S′(β) = σ2. Then

S′(A, x : α) `S M ′ : S′(β)

and thus by induction hypothesis there is S′′ that acts like S′ on the set TV(A) ∪ {α, β} (and so
it is like S on A) and is a uni�er of E. De�ne

S′′′(γ) :=

S
′′(β) if β ∈ TV(E),

S(β) otherwise.
Clearly S′′′(A) = S(A). As we have renamed variables so that TV(σ) ∩TV(E) ⊆ TV(A) ∪ {α, β}
we have

S′′′(σ) = S(σ) = σ1 → σ2 = S′(α→ β) = S′′′(α→ β)

so S′′′ is a uni�er with the required properties for E ∪ {σ = α→ β}.
The polynomial bound is trivial, provided we have a polynomial way to choose fresh variables

and rename variables in environments, which can be taken for granted.

41

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

The equivalent of the most general uni�er regarding a typing of a term is the so called principal
pair.
De�nition 2.2.27 (principal pair, principal type in system S). Let M be a term. We say
(A, σ) is a principal pair for M if
• A `S M : σ,
• if A′ `S M : σ′ then there exist S such that S(A) ⊆ A′ and S(σ) = σ′.

If M is closed we say that σ is a principal type for M if (∅, σ) is a principal pair for M . In other
words if
• `S M : σ,
• if `S M : σ′ then there is S such that S(σ) = σ′.
Note that this notion of principal type is in line with the one given for type system in general.

Note also that if (A, σ) is a principal pair for M then DOM(A) = FV(M).
Now we may see that in fact there is a way to compute a principal pair.

Proposition 2.2.28. There is a polynomially computable function pp that given a term M returns
a principal pair for it if it is typable within some environment and return fail otherwise. Moreover
there is a polynomially computable function pt that given a closed term M returns principal type
for it if it is typable, and fail otherwise.
Proof. Let pp be de�ned as follows.
Require: M ;
1: choose ~αn, β distinct variables, where n = |FV(M)|;
2: A′ ← {x1 : α1, . . . , xn : αn };
3: E ← E(A′,M, β);
4: S ← U(E);
5: if S = fail then return fail;
6: else return (S(A′), S(β));
We see that pp returns fail if and only if U returns it, and it happens if and only if E(A′,M, β)

has no uni�er. We have seen in the above proposition this happens if and only if there is no S
such that S(A′) `S M : S(β). As all the types involved are distinct type variables, it is equivalent
to saying that there are no types ~σ and τ such that −−→x : σ `S M : τ , i.e. M is not typable.

Now suppose pp(M) = (A, τ). We know that A = S(A′) and τ = S(β), and S is a most general
uni�er of E = E(A′,M, β). As S is a uni�er for E, it follows that S(A′) `M : S(β).

42

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

Now takeB and σ such thatB `S M : σ. Take S′ = [
−−−−−→
B(x)/α, σ/β], so that S′(A′) `S M : S′(β),

where we have used that B|FV(M) `S M : σ. So by the proposition above we know there is S′′ such
that S′′(A′) = S′(A′) ⊆ B, S′′(β) = S′(β) = σ and S′′ is a uni�er for E. As S is most general,
we have a substitution S′′′ so that S′′ = S′′′ ◦ S. So S′′′(A) ⊆ B and S′′′(τ) = σ, which was what
needed.

pp is polynomial as both U and E are polynomial.
pt can be easily de�ned from pp: pt(M) := π2(pp(M)).
So we have already solved TYPS.
What about TCS? First we need a slightly modi�ed version of the uni�cation function.

Lemma 2.2.29. There is a polynomially computable function U ′ that given two types σ and τ

outputs S such that τ = S(σ) and SUPP(S) ⊆ TV(σ), and if S′(σ) = τ then S′|TV(σ) = S, or
fail if there is no substitution of σ into τ .

U ′ is extendable to sets {−−−→(σ, τ)}.
Proof. De�ne U ′ with the following algorithm.
Require: τ and σ;
1: if τ = σ then return [];
2: else
3: if σ ∈ V then return [τ/σ];
4: else
5: if τ ∈ V then return fail;
6: else
7: S2 ← U ′(R(σ), R(τ));
8: if S2 = fail then return fail;
9: else

10: S1 ← U ′(L(σ), L(τ));
11: if S1 = fail then return fail;
12: else
13: if S1 6= S2 on SUPP(S1) ∩ SUPP(S2) then return fail;
14: else return S1 + S2;
where S1 + S2 means S1 on SUPP(S1) and S2 otherwise (or viceversa).

By quick induction: if σ = α then clearly S = [τ/α] is the right substitution, and its support
is the strictly necessary (is contained in TV(σ).

If σ = σ1 → σ2 and τ = α then there is no way of substituting σ into τ . If on the other hand
τ = τ1 → τ2, then S(σ) = τ if and only if S(σi) = τi. If one of the two substitutions are not

43

2.2. System S: simple types
CHAPTER 2

TYPED λ-CALCULUS

possible then neither S is. If both are possible, then by induction hypothesis S|TV(σi) = Si, where
S1, S2 are the substitutions given by the algorithm. Moreover SUPP(Si) ⊆ TV(σi), and if there
is β ∈ SUPP(S1) ∩ SUPP(S2) on which S1 and S2 discord then we would have a contradiction
S(β) 6= S(β). If they are consistent with each other then we may easily see that (S1 + S2)(σ1 →
σ2) = τ , SUPP(S1 +S2) = SUPP(S1)∪SUPP(S2) ⊆ TV(σ) and if S′(σ) = τ we have already seen
that S′|SUPP(S1+S2) = S1 + S2.

Polynomiality is carried out like in U .
Likewise the extension is

U ′(
−−−→
(σ, τ)) := U ′(σ1 → . . .→ σn, τ1 → . . . τn).

Proposition 2.2.30 (TYPS and TCS). TYPS and TCS are polynomially decidable.
Proof. Given an instance A ` M : τ of TCS suppose FV(M) ⊆ DOM(A) (otherwise we may
already answear there is no typing), compute pp(M). If it gives fail then surely there is no typing
ending in our instance. So suppose pp(M) = (B, σ). If ~x = FV(M), we compute

U ′({ (B(x1), A(x1)), . . . , (B(xn), A(xn)), (σ, τ) }

and check whether it gives fail.
If it does then there is no substitution S such that S(B) ⊆ A and S(σ) = τ , so by the properties

of the principal pair A ` M : τ is not derivable. Otherwise A and τ can be obtained by B and σ
with a substitution, and so indeed A `S M : τ .

We will now give another version of the principal pair algorithm that does not rely on E and
builds its own constraint on the way. This is a version more suitable for implementation. So let
pp′ be the following algorithm:
Require: M term;
if M = x then return ({x : α}, α);
else

if M = λx.M ′ then
(A, τ)← pp′(M ′);
if (A, τ) = fail then return fail;
else

if x ∈ DOM(A) then return (A \ {x : A(x)}, A(x)→ τ);
else

choose α fresh; return (A,α→ τ);

44

2.3. System PCF: easier programming
CHAPTER 2

TYPED λ-CALCULUS

else
if M = (M1M2) then

(A1, τ1)← pp′(M1);
(A2, τ2)← pp′(M2);
if (A1, τ1) or (A2, τ2) is fail then return fail;
else

in (A1, τ1) rename variables so that FTV(A1, τ1) ∩ FTV(A2, τ2) = ∅;
choose α fresh;
S ← U(τ1, τ2 → α);
if S = fail then return fail;
else return (S(A1 ∪A2), S(α));

Using the same techniques applied in the preceding algorithm we can prove its correctness and
completeness.

2.3 System PCF: easier programming
System PCF is a system that �lls in some characteristic system S lacks, by a simple principle:

if we miss something, we add it. The core of the system is that we add the �x point combinator
we did not have in S. Not only: we embed directly in the system naturals and booleans and some
simple functions on them. We may regard it as something closer to real computer programming:
we do not care about how the base functions and types are intrinsically made, we just use them
as black boxes. So here we will not deal anymore with pure λ-terms, as we will extend them.

System PCF was introduced by Scott [Sco93] in 1969, in a manuscript published only in 1993,
and was later developed by Plotkin in [Plo77]. This section is meant to be only a swift presentation
of the topic, in order to give a more complete look at the scene of typing disciplines.

2.3.1 De�nition and �rst properties

De�nition 2.3.1 (terms of PCF). Terms of PCF are built from the set V of term variables
extended with new constants, denoted by the set L:

• n for each n ∈ N,
• true and false,
• Y, the �xed point combinator,
• if, the if then else construct,
• succ and pred,

45

2.3. System PCF: easier programming
CHAPTER 2

TYPED λ-CALCULUS

• zero?, the characteristic function of 0,
Note that the terms are not underlined to distinguish them from the usual representations within
pure λ-calculus. The rules are the usual ones. Clearly abstraction can only be made with variables.

ΛL ::= L | V | (ΛL ΛL) | λV.ΛL.

Note that the above grammar depends only on L. We will here deal with the de�nition given
above, but in fact we can extend or restrict it depending on the particular choice of L.

We de�ne the usual notions of bounded and free variables and of substitution ignoring com-
pletely the constants. α-equivalent on constants is the equality, and is thus extended as usual.
De�nition 2.3.2 (types of PCF). Types are constructed with the same rules of system S, but
starting from a base set of only two types called base types: VPCF := { o, ı }, where o represents
the boolean type, and ı represents the integer type. The set of types, still ranged over by letters
such as τ or σ, is then de�ned as usual:

TPCF ::= VPCF | TPCF → TPCF.

De�nition 2.3.3 (rules of PCF). The rules of the system are the following ones:

A, x : τ ` x : τ
(var) A, x : σ `M : τ

A ` (λx.M) : σ → τ
(abs)

A `M : σ → τ B ` N : σ
A,B ` (M N) : τ

(app)
A ` Y : (σ → σ)→ σ

(Y)

A ` true : o
(true)

A ` false : o
(false)

A ` if : o→ o→ o→ o
(bool if)

A ` if : o→ ı→ ı→ ı
(nat if)

A ` n : ı
(nat)

A ` succ : ı→ ı
(succ)

A ` pred : ı→ ı
(pred)

A ` zero? : ı→ o
(zero)

So all the constants we have introduced gets assigned some type a-priori. Note that the if then
else construct gets typed in two possible ways, but it strictly requires base types as input. On the
converse the Y-combinator accepts all terms that can be typed as a function that brings a type to
itself.

46

2.3. System PCF: easier programming
CHAPTER 2

TYPED λ-CALCULUS

We say that a term is a program if it is closed and typable with base type. These in fact are the
main objects PCF is concerned with. They can be seen as a particular instance of an algorithm,
after it has been applied to its input and we expect it to return an integer or a boolean.

Now, having introduced special constant with special type assignment rules means that we
must also give special rules for their reduction.
De�nition 2.3.4 (operational reduction). One step operational reduction is the relation →op

given by the following rules:
(λx.M)N →op M [N/x] Y M →op M (Y M)

if true M1M2 →op M1 if false M1M2 →op M2

succ n→op n + 1 pred(n + 1)→op n

zero? 0→op true zero? n + 1→op false

M →op M
′ =⇒ (M N)→op (M ′N)

N →op N
′ =⇒ (Z N)→op (Z N ′), if Z ∈ { if, succ, pred, zero? }.

Operational reduction is the transitive and re�exive closure of →op.
Note that in fact →op is a deterministic strategy rather than a classic reduction: given a term

there can be at most one step that can be done. The rules are designed so that before going on
one tries to reduce the function rather than the argument. This is also done in order to �give a
chance� to the �xed point combinator: once we reduce Y M to M (Y M) the operator duplicates
again only if it goes back to head position.

All the static properties of typings in S still hold here. We may reread each of the proofs by
substituting to the base types two distinct type variables α and β and replacing the constants
with dummy variables being assigned the desired types in the environment. If we require for these
dummy variables to be left unchanged the rest of the proofs carries on normally. Then we easily
translate back.

Also subject reduction holds, by simply inspecting the new cases of reduction and confronting
with the ad-hoc types designed for the constants.

We evaluate a program by applying to it operational reduction until we �nd a constant. But
does it terminate? As the reduction being considered is deterministic there is no distinction between
SN and WN . In any case, we may see that there is no universal normalization property, not even
for programs. Consider the term Y succ: it can be typed with ı, but following the main strategy

47

2.3. System PCF: easier programming
CHAPTER 2

TYPED λ-CALCULUS

leads to an ever increasing term. This should not surprise, that term should represent the �xed
point of the successor function. And in any case, this language has been developed to study the
abstract properties of programs, including eventually non-termination.

2.3.2 What do we get from PCF?

What is the expressive power of PCF? In fact the same of pure λ-calculus.
Example 2.3.5. First of all let us show how recursion is easily programmable here. We have
already told in example 1.3.13 how it can be regarded as a �xed point. In fact if f : Nk+1 → N is
de�ned by:

f(m,~n) =

g(~n) if m = 0,
h(m− 1, ~n, f(m− 1, ~n))

then we can represent f by
f := Y (λxλm

−→
λn if (zero? m) (g ~m) (h (pred m)~n (x (pred m)~n))).

It can be shown that if g and h are of the appropriate types so is f , if before abstraction we assign
types x : ık+1 → ı, m : ı, ni : ı and we type Y with (ık+1 → ı)→ (ık+1 → ı).

In fact there are some problems if we want to be sure that this is de�ned if and only if f is
de�ned. We will put aside those problems by writing the minimization scheme instead. However
recursion is a good tool for programming.

For example we may program add and mult as
add := Y (λfλmλn. if (zero? m)n (succ (f (pred m)n)))

mult := Y (λfλmλn. if (zero? m) 0 (add n (f (pred m)n)))

Also χ≤ can now easily be represented:
χ≤ := Y (λfλmλn. if (zero? m) true

(if (zero? n) false (f (pred m) (pred n))))

Theorem 2.3.6 (PCF represents recursive functions). The functions on integers repre-
sentable by PCF are those and only those recursive.
Proof. With the example above we have all the base functions.

Let check(M,N) be the term if (zero? M)N N . It can be used to make sure we go on only
if M terminates, regardless of M 's value. We have to require that M is of type integer and N is
of base type. We de�ne

checkn(~Mn, N) := check(M1, check(M2, . . . , check(Mn, N) . . .));

48

2.3. System PCF: easier programming
CHAPTER 2

TYPED λ-CALCULUS

it checks one at a time if every Mi terminates, and then evaluates N .
Composition of g : Nh → N and ~f : Nk → N given g and ~f can be represented by

g ◦ ~f =
−→
λn. checkh((f1 ~n), . . . , (fh ~n),

(g (f1 ~n) . . . (f1 ~n))).

It is built so that if any of the f are not de�ned (so that they do not terminate on their input)
neither does the term, regardless of what g might do. The term is clearly well typed.

Minimization is easier. Given f : Nk+1 → N we have
µf =

−→
λn. Y(λgλm. if (zero?(f m~n))m (g (succm))) 0.

We may see that each value before the eventual result gets computed, and so minimization does
not terminate when it does not have to.

The converse holds because we can map PCF into pure λ-calculus.
PCF was introduced to make an abstract study of programs in a framework closer to the

object of study. In particular much study has been done on the interpretation of PCF in domains;
however one has to abandon the idea of a logical framework behind the language.

2.3.3 TC, TYP and type inference

We can easily adapt the algorithms described for S to PCF. Thus we will here make heavy
references to subsection 2.2.5. First we extend TPCF to the set T∗

PCF of types with variables in
order to formulate type parameters:

T∗
PCF ::= VPCF | V | T∗

PCF → T∗
PCF.

A substitution on T∗
PCF has the usual meaning: it substitutes variables in V, leaving the base

types unaltered. We de�ne uni�ers for types and for sets of equations, principal pairs and principal
types in the same manner. We may then temporarily work inside PCF∗, the system obtained with
identical rules but with types in T∗

PCF.
Proposition 2.3.7. There are polynomially computable functions UPCF, EPCF, ppPCF, U ′

PCF

and ptPCF that carry out in PCF∗ the same operations of U , E, pp, and pt in S.
Proof. Take the algorithms described in subsection 2.2.5.

To de�ne UPCF, insert after line 2 the following ones:
if σ ∈ VPCF or τ ∈ VPCF then return fail;
else

49

2.3. System PCF: easier programming
CHAPTER 2

TYPED λ-CALCULUS

as if one of the two is a base type the other must be equal in order for the two to be uni�ed, and
this case is already solved in the preceding conditional clause. The rest of the algorithm works as
usual.

For EPCF there is more to add as we have to encode all the new type inference rules. In order
to handle the if term we have to be able to add a new type of condition to the set of equations,
namely τ ∈ VPCF: we will then say that S uni�es E containing such condition if also S(τ) ∈ VPCF.
Note that only variables and base types can be uni�ed to satisfy such a condition. For each set of
constants C with �xed type τC insert a line at the beginning of the algorithm of the form:
if M ∈ C then return {σ = τC};
else

For if and Y insert the following lines:
if M = if then

choose α fresh;
return {σ = o→ α→ α→ α, α ∈ VPCF };

else
if M = Y then

choose α fresh;
return {σ = (α→ α)→ α};

else
The rest is carried out as usual. It is not hard to check that the new lines added complete he
induction basis of the proof of correctness for this system.

ppPCF and ptPCF remain exactly the same, if we simply replace the appropriate functions with
the ones depicted above.

U ′
PCF is obtained adding exactly the same line we have added in UPCF.

Note that the notion of principal pair and principal type is somewhat modi�ed: they do not
anymore valid typings in the system as it is, but we can obtain all the valid typings if we restrict
the substitutions used to the ones that maps the type variables involved in types of TPCF. In any
case:
Theorem 2.3.8. TCPCF, TYPPCF, and checking whether a term can be a program are all poly-
nomially decidable.
Proof. TYP is resolved by checking if pp returns fail. If it does not we can substitute to the type
variable any valid PCF type and obtain a typing. TC is solved by applying pp and then U ′ like in
S. The last one goes down to checking if the term is closed, and if it is applying pt and checking
if the resulting type is not a →-type.

50

Chapter 3

Polymorphic λ-calculus

We have seen how PCF has much expressive power, but it loses, with respect to simply typed
λ-calculus, the correspondence with logic. Such correspondace is recuperated with system F, also
called polymorphic λ-calculus. In fact we are taking the intuitionistic logic framework that we
noted is behind system S and we are adding to it the second-order quanti�cation, i.e. we permit
the quanti�cation of types, so that a single type may represent multiple ones with a common
form. We may regard it as the passage from simple type programming language such as Pascal
or C to object-oriented programming languages such as Obj-C and Java. We are now capable
of de�ning classes that represent many di�erent types, from which we just require some common
characteristics.

System F was introduced in 1971 by Jean-Yves Girard. A survey may be found in [GTL89].
We present a common variant to the system �rst introduced by Girard: by switching to Church
style we do not de�ne the Λ binder that takes types as input. Some minor changes are taken from
Wells (see, for example, [Wel99]).

3.1 De�nition and �rst properties
De�nition 3.1.1 (types of F). The set TF is de�ned from the set of type variables V by the
following grammar:

TF ::= V | TF → TF | ∀V.TF.

Clearly TS ⊆ TF. We will call ∀-types (quanti�ed types) the ones where the third rule was used
last. Otherwise (variable or implication) we will call it a non quanti�ed type. The type ∀α.α may
be denoted as ⊥ (bottom)1.

1in logic ⊥ corresponds to incoherence, as all formulas can be derived from it. In fact there is no closed term of

51

3.1. De�nition and �rst properties
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Apart from the notations already mentioned for system S we also adopt the convention of
omitting the dot between quanti�ers and of abbreviating

−→
∀αn.τ := ∀α1 . . .∀αn.τ,

eventually omitting n if we don't need to specify.
We may regard the quanti�er ∀ the same way we see the λ in terms: it binds the variable, and

can be instantiated (in this case without having to specify an input) with a type that has to be
substituted for every (free) occurrence of the variable bounded by the quanti�er itself. To do this
we need the same machinery we have for λ-terms, and we de�ne it in practically the same way.

Given a term τ we de�ne, apart from the set of variables already mentioned for system S (whose
de�nition we extend by simply ignoring the quanti�ers), the set of free type variables and the set
of bounded type variables:

FTV(α) := {α}, BTV(α) := ∅,

FTV(σ → τ) := FTV(σ) ∪ FTV(τ), BTV(σ → τ) := BTV(σ) ∪ BTV(τ),

FTV(∀α.τ) := FTV(τ) \ {α}, BTV(∀α.τ) := BTV(τ) ∪ {α}.

We extend the de�nitions above to sets of types by means of union, and also to type environ-
ments by applying them to the range of the environment. We will abbreviate by

∀.τ :=
−→
∀α.τ

where ~α = FTV(τ).
We can now de�ne simple substitution σ〈−−→τ/α〉, usual substitution σ[

−−→
τ/α] and α-equivalence ≡α

in the same way we did for λ-terms, using TV, FTV, BTV and ∀ in place of V, FV, BV and λ.
We de�ne substitutions S as we did for simple types, but we will see (lemma 3.1.7) when we are
able to apply them to type derivations.

We will also use renamings ranged over by R, which are bijective substitutions of both type
and term variables with other type and term variables. More precisely a renaming R is de�ned on
terms (and contexts) as R(M) = M [~y/~x] where ~y is ~x permuted, and on types as R(τ) = τ [~β/~α],
where ~β is ~α. For commodity we let renamings act also on bounded variables, i.e. a renaming
induces a speci�c α-conversion.

Subtypes are de�ned like subterms: we add to R and L a third function D de�ned only on
∀-types, which gives the type being quanti�ed.

Moreover we introduce another equivalence relation that comes from the fact that we no longer
require that the binder ∀ accepts input, so that order in quanti�ers and unneeded binding of
type ⊥.

52

3.1. De�nition and �rst properties
CHAPTER 3

POLYMORPHIC λ-CALCULUS

variables are no longer needed taken into account. So de�ne ∼ as the least equivalence relation
such that

σ1 ∼ τ1, σ2 ∼ τ2 =⇒ σ1 → σ2 ∼ τ1 → τ2.

σ ∼ τ =⇒ ∀α.σ ∼ ∀α.τ,

σ ∼ τ, α /∈ FTV(τ) =⇒ σ ∼ ∀α.τ,

σ ∼ τ =⇒ ∀α∀β.σ ∼ ∀β∀α.τ.

We now work with TF/(≡α,∼) rather than TF, though we will keep calling it the same way. Note
that by pruning out unnecessary bindings we have also left out bindings on the same variable.
As with λ-terms, we will freely rename bounded variables to ensure there are no repetitions both
between bounded variables and free variable, and between bounded variables themselves. From
now on when we write ∀α.τ we implicitly take for granted that α ∈ FTV(τ). Note that this means
that no (gen) rule can follow a (var) rule that introduces a non quanti�ed type, as all the free type
variables are also in the environment.

We de�ne also a relation that regulates how types can be directly derived from each other using
the quanti�cation.
De�nition 3.1.2 (direct containment relation). Let X be a type, a set of types or a type
environment. Then we de�ne

τ � σ ⇐⇒ τ =
−→
∀α.ρ, σ =

−→
∀γ.S(ρ)

where ~γ ∩ FTV(X) = ∅ and S is a substitution such that
SUPP(S) ⊆ {~α} ∪ (FTV(ρ) \ FTV(X)).

We de�ne τ 4X σ in the same manner, but with
SUPP(S) ⊆ {~α}.

Both relations are read τ is directly contained in σ with respect to X. If we need to specify, we
sill read the second relation as (ins) before (gen) direct containment, for reasons we will see later.
The relation should be understood as the fact that a term typable with τ in the environment A
such that τ �A σ is typable also with σ within the same environment. We omit X if X = ∅.

The �rst relation can be checked to be transitive. The second one is not. For example α →
β 4 ∀α.α → β and ∀αα → β 4 γ → β, but we should bring α → β to γ → β with a substitution
with SUPP(S) ⊆ ∅.

53

3.1. De�nition and �rst properties
CHAPTER 3

POLYMORPHIC λ-CALCULUS

As we have already said we have the inclusion TS ⊆ TF. On the converse we also have a
function from TF to TS that erases quanti�ers. It is de�ned by

(α)S := α,

(σ → τ)S := (σ)S → (τ)S,

(∀α.τ)S := (τ)S.

We note that really it is not well de�ned over α-equivalence classes, but we will keep it that way,
making it dependant on the representant we choose.
De�nition 3.1.3 (rules of F). System F is given by the following rules that extend those for
system S:

A, x : τ ` x : τ
(var) A, x : σ `M : τ

A ` (λx.M) : σ → τ
(abs)

A `M : σ → τ B ` N : σ
A,B ` (M N) : τ

(app) A `M : ∀α.σ
A `M : σ[τ/α]

(ins)
A `M : τ

A `M : ∀α.τ (gen) where α /∈ FTV(A).

The last two rules are called instantiation and generalization. We will abbreviate multiple consec-
utive uses of those rules by

A `M :
−→
∀α.τ

A `M : σ[
−−→
τ/α]

(ins) A `M : τ

A `M :
−→
∀α.τ

(gen)

where clearly in the latter we require ~α ∩ FTV(A) = ∅.
We may immediately see that F is not syntax-driven. We will call (ins) and (gen) rule term-

invariant rules, as the term being typed does not change between premise and conclusion. Note
that they even do not depend on the term M . There exist (and we will consider them later)
syntax-driven variations that integrate the term-invariant rules in the other ones. It must be noted
however that this does not make the type inference problem any easier, and we will see it later.

System F trivially enjoys properties like weakening, weakening on reverse (if A `F M : τ

then A|FV(M) `F M : τ) and substitution closure, as the induction proofs for system S are
easily extended to the two new rules. The only thing one has to check is that in case of (gen)
the environment eventually added does not contain free the bounded variable, but this is easily
achieved renaming the bound variable.
Proposition 3.1.4 (subterm typing). F enjoys subterm typing. In particular, if N is a subterm
occurrence of M , every D such that D A `M : τ contains a subderivation D′ A′ ` N : σ.

54

3.1. De�nition and �rst properties
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Proof. Though not syntax-driven anymore, a derivation still re�ects the construction tree of the
term, though now decorated by new rules that do not change the term. Still an abstraction must
be introduced by an (abs)-rule and an application by an (app) one. So the proposition follows
easily from an induction on D.

So we can now de�ne IDT(D, N) (initial derived type for N in D) as the type τ such that
A′ ` N : τ is the �rst sequent appearing in D regarding N (so it is the conclusion of a (var), (abs)
or (app) generating the occurrence N). In the same way we de�ne FDT(D, N), the �nal derived
type, where A′ ` N : FDT(D, N) is the premise of a (var), (abs) or (app), or the last sequent if the
subterm being analyzed is M itself. So between the sequent corresponding to IDT(D, N) and that
corresponding to FDT(D, N) there are only the term-invariant rules (gen) and (ins). In particular
the environment does not change, so we de�ne DE(D, N) (derived environment) as this unique
environment. In particular:
Proposition 3.1.5. For every subterm occurrence of M , with D A `M : τ , let

D′ A′ ` N : σ

be any subderivation corresponding to N . Then IDT(D, N) �A′ FDT(D, N).
Proof. By inspection of the e�ect of a chain of term-invariant rules on the type, where the en-
vironment A′ does not change. (gen) brings from a type σ′ to ∀α.σ′ where α /∈ FTV(A′), so
σ′ �A′ ∀α.σ′. (ins) brings ∀α.σ′ to σ′[ρ/α], and by taking S = [ρ/α] we see that ∀α.σ′ �A′ S(σ′).
Then by transitivity follows the result.

In order to have a derivation slightly better to manipulate we introduce a property regulating
consecutive uses of (ins) and (gen).
De�nition 3.1.6 ((ins) before (gen) property). A derivation D is said to have the (ins) before
(gen) property if every (gen) rule is never immediately followed by an (ins) rule.
Lemma 3.1.7 (type substitution). Let D A ` M : τ , as usual with the convention that
there are no clashes between bounded and free variable. If ~α are variables that either occur free in
A ` M : τ or do not occur at all, then D[

−−→
τ/α] is a valid derivation, where the substitution [

−−→
τ/α]

is made on every sequent in the derivation. Note that the new derivation has the same structure,
i.e. the rules used are the same and in the same order.

Said in other words, if A ` M : σ is derivable, so is A[
−−→
τ/α] ` M : σ[

−−→
τ/α], using a derivation

with the same structure.

55

3.1. De�nition and �rst properties
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Proof. The renaming convention here is essential, as otherwise one could substitute a complex
type for a variable yet to be bounded, making the (gen) impossible to apply. Choosing a variable
appearing free at the end guarantees that it is not bounded by any (gen) in the derivation, so all
rules get preserved. We speak also about variables not occurring at all for induction's sake. The
idea is that we are substituting at the source of each variable, where it was introduced: (var) or
eventually (ins). So by induction on D:

var: Trivial: A′[
−−→
σ/α], x : τ [

−−→
σ/α] `F x : τ [

−−→
σ/α].

abs: M = λx.M ′, τ = τ1 → τ2 and we have the subderivation
D′ A, x : τ1 `M ′ : τ2.

~α must still appear free at the end of D′ if they appear at all, so by induction hypothesis D′[
−−→
σ/α]

is a valid derivation and so applying back (abs) gives the result.
app: As before, apart from the fact that in the case one of the two subderivations does not contain
one (or more) of the ~α free in the conclusion then by the renaming convention it does not contain
it anywhere else above. So we can still apply induction hypothesis.
ins: τ = τ ′[ρ/β] and there is a subderivation D′ A ` M : ∀β.τ ′. Note that β 6= αi for every i.
If some αis do not appear free at the end of D′, we still can apply the induction hypothesis:

D′[
−−→
σ/α] A[

−−→
σ/α] `M : ∀β.τ ′[

−−→
σ/α]

A[
−−→
σ/α] `M : τ ′[

−−→
σ/α]

[
ρ[
−−→
σ/α]/β

] (ins)

and the last type is indeed τ [−−→σ/α].
gen: τ = ∀β.τ ′ and there is a subderivation D′ A ` M : τ ′. Note that as β /∈ FTV(A)

necessarily β 6= αi for all i, and moreover by renaming we may take β so that it does not appear
in σ. By induction hypothesis D′[

−−→
σ/α] is valid, β is still not free in A[

−−→
σ/α], and so applying back

(gen) gives the sequent
A[
−−→
σ/α] `M : ∀β.τ ′[

−−→
σ/α],

and as β /∈ FTV(~σ) we have that the last type is τ [−−→σ/α].

Proposition 3.1.8 ((ins) before (gen)). For every derivation
D A `M : τ

56

3.1. De�nition and �rst properties
CHAPTER 3

POLYMORPHIC λ-CALCULUS

there exist a derivation D′ of the same sequent which enjoys the (ins) before (gen) property. The
size of D′ (number of rules) is less than the size of D, and equal only if D already enjoys the
property. Moreover D′ inherits its structure from D, in the sense that the rules used are the same
and in the same order, apart from some (gen) and (ins) in D which disappear in the new derivation.
Proof. Suppose there is a (gen)-(ins) sequence somewhere in D. We take the subderivation imme-
diately preceding it, say

D̃ A `M : τ
A `M : ∀α.τ (gen)
A `M : τ [ρ/α]

(ins)

where α /∈ FTV(A).
α must appear free in τ because of the convention with ∼. We then apply the lemma above to

D̃ giving a valid derivation
D̃[ρ/α] A `M : τ [ρ/α]

and so we can completely substitute the subderivation depicted above with D̃[ρ/α], which has the
same structure of D̃, so we are erasing the last two rules.

If the new derivation still does not have the (ins) before (gen) property we restart and go on.
As every step reduces the size of the derivation by two we must in the end arrive to an (ins) before
(gen) form. We can even show that this one step �reduction� is con�uent2, and so there is only
one (ins) before (gen) form of a given derivation.
Remark 3.1.9. (gen)-(ins) elimination corresponds to reducing all universal redexes in Church-
style system F.
Proposition 3.1.10. If D A ` M : τ is an (ins) before (gen) derivation and N is a subterm
with a subderivation D′ A′ ` N : σ then IDT(D, N) 4A′ FDT(D, N).
Proof. In an (ins) before (gen) derivation a chain of term-invariant rules is always a chain of (ins)
followed by a chain of (gen). So if ~α are all the variables getting instantiated by the (ins) rules we
have IDT(D, N) =

−→
∀α.σ′, then after the (ins) rules we have σ′[−−→ρ/α] and then after the (gen) rules

FDT(D, N) =
−→
∀γ.σ′[

−−→
ρ/α]

with γ ∩ FTV(A′) = ∅, and SUPP([
−−→
ρ/α]) ⊆ {~α}.

Corollary 3.1.11. If D A `M : τ is an (ins) before (gen) derivation then
• if M = x then A(x) 4A τ ;

2again the renaming convention is essential, as it gives commutativity to the substitution operation in this case.

57

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

• if M = λx.M ′ then there is a subderivation D′ ending with an (abs) in A ` M : σ → ρ with
τ =
−→
∀α.σ → ρ, ~α ∩ FTV(A) = ∅.

• if M = (M1M2) then there is a subderivation D′ ending with an (app) in A `M : τ ′ with τ ′ 4 τ .
Proof. The application of the proposition is straightforward. Note that in the case of abstraction
there cannot be any (ins) rules because there is no ∀ to instantiate.

Inherited from system S we have also subject reduction.
Theorem 3.1.12 (subject reduction). F enjoys subject reduction.
Proof. The proof extends the one given in system S (2.2.9). The cases for (var) and (abs) are
exactly identical. Also the case for (app)-rule is almost identical to the one in system S. The only
di�erence is the case in which M = (M1M2) is itself the redex reduced, as it is not anymore sure
that the rule immediately preceding (app) on the left is (abs). However by applying the above
corollary to the subderivation ending with M1, and noting how there cannot be any quanti�ers on
the type or else (app) would be impossible to apply, we see the rule preceding (app) on the left
must be (abs). So the proof proceeds as in system S (we use substitution lemma).

As for the term-invariant rules, they pose no problem: the term in the premise is the same, so
applying the induction hypothesis is smooth, and as those rules do not depend on the term being
typed we can easily apply them back.

3.2 What do we get from F?
One of the answears to this question could be: self-application, without renouncing to strong

normalization.
First of all, system F gives a nice (and modular) way to represent so called free structures. We

will somewhat restrict the de�nitions for sake of clarity. For a more general survey see [GTL89,
Chapter 11].

3.2.1 Representation of free structures

De�nition 3.2.1 (free structures). A free structure Θ is a set of formal expressions generated
by some �nite symbols f1, . . . , fk called constructors and by elements in some sets U1, . . . , Uh,
following rules speci�ed for every constructor. By this we mean that every constructor has a type
written fi : Si with

Si = T i
1 → T i

2 → . . .→ T i
ni
→ Θ

58

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

where every T i
j is either Θ or one of the Uis3. We require that at least one of the constructors fi is

an atom, by which we mean its type is such that T i
j is not Θ for all the js. So if the constructors

are de�ned as above we have the grammar de�ning Θ as
Θ ::= f1(T 1

1 , . . . , T
1
n1

) | · · · | fk(T k
1 , . . . , T

k
nk

).

A function de�ned by induction on Θ is a function g : Θ → X determined by k functions (or
eventually constants) gi : Si[X/Θ] with the relation

g(fi(
−→
ti)) := gi(

−→
xi),

where xi
j = g(tij) if T i

j = Θ and xi
j = tij otherwise.

Example 3.2.2. N is (or we may say can be represented by) a free structure: it does not depend
on any external set and it has two constructors, the atom 0 : N and the successor succ : N → N.
Every integer is succn(0).

B (and in general any �nite set) is a free structures with only two atoms true and false.
U × V is a free structure with the atom 〈 . , . 〉 : U → V → U × V .
U∗ is a free structure based on the set U : it has two constructors, the atom ε and the append

function · : U → U∗ → U∗.
As a particular case { 0, 1}∗ is a free structure built from three constructors, the atom ε and

the two successors functions succi : { 0, 1}∗ → { 0, 1}∗ which append i to the string.
The set Ub of binary trees with nodes in U is a free structure with two constructors: the atom

leaf : U → Θ which gives a single node equal to the argument, and branch : U → Ub → Ub → Ub,
so that branch(u, x, y) means the tree with u as root and x and y as the two trees branching from
u.

Λ itself, before quotienting it with ≡α, is a free structure based on the set V: its constructors
are the variable var : V→ Λ, the abstraction λ : V→ Λ→ Λ and the application · : Λ→ Λ→ Λ.

Now we will represent free structures with a type. Given that ~U are representend each by a
type νj (we will denote it by νj = Uj), and denoting by σi := Si[

−−→
ν/U, α/Θ] with the obvious

meaning, and choosing α �fresh�, we are now ready to use as a representation of Θ the type
Θ := ∀α.σ1 → . . .→ σk → α.

Note that we are choosing a particular order of the constructors.
3this is where we restrict more than is really necessary, with respect to [GTL89], where T i

j is allowed to be built
with the usual implication rule from Θ and the Uis, provided Θ appears positively.

59

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Now in order to represent a given element of the free structure what we do is we chose distinct
variables y1, . . . , yk to represent each a constructor. What actual variables we choose is unimpor-
tant, as later they will all be bounded. They act as marks to show which constructor is used where.
Now we get to work in the environment {yi : σi}, and we simply translate every constructor fi(

−→
ti)

in yi applied to the translations of the tijs. So, supposing the translation function is already de�ned
on elements u ∈ Ui giving closed terms u typable with νi, we de�ne by induction trans : Θ→ Λ:

trans(fi(
−→
ti)) := (yi

−−−−−−→
trans(ti)),

where we let trans work as the known translation on elements in one of the Uis.
It is easy to show that given any θ ∈ Θ:

−−→y : σ `F trans(θ) : α

.
We �nally de�ne θ :=

−→
λy. trans(θ). Applying consecutive (abs) rules and a �nal (gen) on the

typing depicted above we get
`F θ : Θ.

Also it is now easy to represent the constructors as functions: we take the necessary arguments,
we then recreate the abstracted variables that have to go at the beginning of the term and then
eventually pass them to the arguments in Θ so that they are inherited by the subterms. So:

fi :=
−→
λti.
−→
λy.(yi

~Pni),

where Pj is (tij ~y) if T i
j = Θ and tij itself otherwise.

Suppose we now want to represent the function g : Θ → W , de�ned by induction, with a
(closed) term typable with type Θ→ W : we suppose we already know how to represent elements
of W , and how to represent the functions gi de�ning g, so that we have terms gi typable with
σi[W/α]. In order to get g(θ) all we have to do is just feed the gis as input to θ, as every gi will
go in the variable marking the position of its corresponding constructor and will be thus applied
to the arguments of the constructor which will be meanwhile treated in the same manner. So

g := λt.(t g1 . . . gk).

Eventually some simpli�cations may be carried out on the term given above. In any case it is always
typable with Θ→W : the key fact is that we can instantiate the quanti�er of Θ in t : Θ ` t : Θ to
give

t : Θ `F t : σ1[W/α]→ . . .→ σk[W/α]→W.

Let us see some examples to clarify.

60

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Example 3.2.3. We may de�ne σ × τ using the de�nition of U × V as a free structure with its
single constructor, so that σ × τ := ∀α.(σ → τ → α)→ α, and

〈M,N〉 = λz.(zM N).

The constructor seen as a function is represented by λxλy.λz.(z x y), while the functions de�ned
by induction are none other than the passage from a function de�ned on two inputs to one de�ned
over a pair. In particular from π2

i = λx1λx2.xi comes
πi = λc.(c π2

i).

From a logical point of view we are de�ning the disjunction ∧ using ∀ and →. In fact all the
connectives and constants can be represented by solely these two formula constructors. We present
here how to represent other logical connectives and constants and what kind of data they represent
in λ-calculus.

σ + τ (the counterpart of ∨) is made up of two constructors, the two injections, left and right.
So we represent it by ∀α.(σ → α)→ (τ → α)→ α. So

injlM = λxλy.xM, injrN = λxλy.y N.

A function de�ned by induction is practically a conditional clause on the e�ective content of a
term of type σ + τ .
∃α.τ is de�ned by ∀β(∀α.τ → β)→ β (this is a little astray of our de�nition of free structure).

If a term M is typable with τ [σ/α] then λx.xM is typable with ∃α.τ if we assume type ∀α.τ → β

for x and then instantiate with σ. Induction here means having a function de�ned so that it can
take arguments of type τ [σ/α] for any σ.
⊥ is de�ned by having no constructors: ⊥ = ∀α.α. Clearly there is no term of type ⊥.

Example 3.2.4. N is given by the constructors succ and 0. If we take them in this order we thus
have S1 = N→ N and S2 = N. So

N = ∀α.(α→ α)→ α→ α = ∀α. Intα =: Int .

So, choosing f for succ and x for 0 we have:
trans(succn(0)) = (f trans(succn−1(0))) = · · · = (fn trans(0)) = (fn x),

and n = λfλx.(fn x), which is the classic representation. The representation of the constructor 0
is just 0 (it is not a function), while taking succ gives

succ = λn.λfλx.(f (n f x))

61

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

which is one of the two representations we already gave. A function g : N→W de�ned by induction
on N is (in the sense given for free structures) given by g1 : W →W and g2 ∈W , so that

g(0) := g2

g(succ(n)) := g1(g(n)).

So it is an iteration of g1 on g2: g(n) = gn
1 (g2). In fact

(λn.(n g1 g2))n
β
� (g1n g2).

As we have seen before for system S (remark 2.2.11), also this representation in system F is such
that every closed normal term typable with Int is a Church integer (apart from the ambiguity
between I and 1). The proof is begun by noting that at the end of the derivation the only possibility
is a (gen) that has premise of type Intα. From then on the proof is identical to that for system
S, with some minor changes. As for system S we may take the other representation of integers: it
corresponds to reversing the order of the two constructors, so that there is no ambiguity about 1.

Here the result is much more meaningful than in system S: we will see that the class of the
functions representable in system F is enormous; here we are saying that any given term typable
with type Intk → Int is actually a representation of a certain function. We are saying that the
type Intk → Int represents completely that enormous class of functions. In system S we couldn't
go beyond polynomial functions...

So we have iteration. What about recursion? Given an element u ∈ U and a function h :

U × N→ U we want to represent REC(u, h) : N→ U de�ned by
REC(u, h)(0) = u,

REC(u, h)(succ(n)) = h(REC(u, h)(n), n).

Let us �rst de�ne a function REC′(h) : U × N→ U × N by
REC′(h)(v, n) := (h(v, n), n+ 1).

We have transformed a recursion into an iteration, as REC(u, h)(n) is the �rst component of
(REC′(h))n(u, 0). Now, REC′(h) is represented by

REC′
h = λp.〈h (p true) (p false), succ (p false)〉,

typable with type U × Int → U × Int. Now we can use the argument of the recursion as an
iterator, and then project the �rst component of the result:

RECu,h := λn.(nREC′
h 〈u, 0〉 false),

62

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

and it can have type Int → U . More in general if M is typable with type τ and H with type
τ → Int→ τ we have a term RECM,H of type Int→ τ such that

RECM,H 0 ≡β M, RECM,H n+ 1 ≡β H (RECM,H n)n.

Though cumbersome, this construct can be used to formulate the predecessor function:
pred = REC0,false,

so that
pred 0 ≡β 0, predn+ 1 ≡β false (predn)n

β→ n.

Example 3.2.5. We can say the same things said above for
B = ∀α. Boolα =: Bool .

The representations correspond to the classic ones and functions de�ned by induction is the
IF...THEN...ELSE construct. By the way, if we consider a �nite set as a free structure, we get as
representants the projections πk

i .
Example 3.2.6. We here introduce the type linked to the structure { 0, 1}∗ calling it BInt. In
fact it can be used to encode the integers, given we deal with the trailing zeros. So, given that we
have three constructors, the empty string and the two successors, we have that the type is

BInt := ∀α.(α→ α)→ (α→ α)→ α→ α.

A string (bk, . . . , b0) is represented by
(bk, . . . , b0) = λf0λf1λx.fb0(fb1 . . . (fbk

x) . . .).

The functions representing the two active constructors are
succi = λsλf0λf1λx.(f0 (s f0 f1 x)).

If we choose to use this type to represent integers we put 0 := ε, and n := (bk, . . . , b0) if n =

(bk, . . . , b0)2 in base two. We will see when we will extensively use this representation (chapter 4)
how to deal with trailing zeros. The two successors represent the operation succi(n) = 2n+ i.
Example 3.2.7. Let us take Λ, and suppose we represent V with Int using an enumeration of V:
the corresponding type is

Λ = ∀α.(Int→ α)→ (Int→ α→ α)→ (α→ α→ α)→ α.

63

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

We chose as dummy names for the three constructors v, ` and a respectively. Then:
trans(xn) = v n,

trans(λxn.M) = ` n trans(M),

trans(M N) = a trans(M) trans(N).

So for example:
λx0.x0 x0 = λvλ`λa.(` 0 (a (v 0) (v 0))).

The constructors as functions are
var = λx.λvλ`λa.(v x),

λ = λxλm.λvλ`λa.(` x (mv ` a)),

· = λmλn.λvλ`λa.(a (mv ` a) (n v ` a)).

As a divertissement we may see that the representation of the length function is
length = λm.(m (λd.1) (λd.succ) (λxλy.succ (addx y))),

or even more complex functions such as simple substitution
ssubs : Λ→ Λ→ Int→ Λ,

with ssubs(M,N, n) = M〈N/xn〉, where we use pairs to keep track of the term in case an abstrac-
tion aborts the substitution:

ssubs = λmλnλx.(m

(λy.〈var y, (χ= y x)n (var y)〉)

(λyλp.〈λ y (p true), (χ= y x) (λ y (p true)) (λ y (p false))〉)

(λpλq.〈· (p true) (q true), · (p false) (q false)〉)

false).

Where χ= represents the characteristic function of equality between integers. We can simplify the
above term with

ssubs = λmλnλx.λvλ`λa.(m

(λy.〈v y, (χ= y x) (n v ` a) (v y)〉)

(λyλp.〈` y (p true), (χ= y x) (` y (p true)) (` y (p false))〉)

(λpλq.〈a (p true) (q true), a (p false) (q false)〉)

false).

64

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

3.2.2 Strong normalization

Now we will show that though we have dramatically increased expressiveness, we are still dealing
with a strongly normalizing system.

The ideal would be to de�ne reducible terms as we did for system S. Fact is, for a quanti�ed
type we should have to de�ne something like (A,M) ∈ RED∀α.τ if and only if for every type σ we
have (A,M) ∈ REDτ [σ/α]. We clearly can't do that, as the complexity of τ [σ/α] is higher than
that of ∀α.τ and so recursiveness fails. So, as we are not able to de�ne sets of reducible terms
of a certain type we take all the sets that could be a set of reducible term. From here comes the
de�nition of reducibility candidate we have seen in system S (2.2.14). Note that the de�nition does
not use in any way the type it is designed upon, if not by simply stating that all environment-term
pairs (A,M) are such that A induces the given type on M . We will use letters as Rτ , Sτ as
meta-variables for reducibility candidates for type τ , omitting the type if it is unimportant, and
we will denote by R the set of all candidates of reducibility, where each retains information on the
type it was designed for. <τ will denote the reducibility candidates for type τ .

Given two candidates Rτ and Sσ we de�ne Rτ → Sσ made by pairs (A,M) such that A `F
M : τ → σ by the same relation with which we de�ned REDτ→σ for system S:

(A,M) ∈ Rτ → Sσ ⇐⇒ ∀(B,N) ∈ Rτ : ((A,B), (M N)) ∈ Sσ.

As usual we mean any (B,N) such that A and B are compatible.
Using the proof that REDτ→σ is a reducibility candidate in system S we see that R → S is

actually still a candidate of reducibility.
Now in order to capture the quanti�er one interprets types with reducibility candidates. Let e

range over the functions e : V → R (no assumption on the types of the reducibility candidates).
Let us denote by τe the result of substituting all free variables in τ with the corresponding type
assigned by e, in the following sense: if ~β = FTV(τ) and for all i we have e(βi) ∈ <σi

then
τe := τ [

−−→
σ/β].

Then we extend this de�nition to Ae by applying it on the images of A. We denote by e[R/α] the
function on variables de�ned by

e[R/α](β) :=

R if β = α,
S otherwise.

Now we consistently extend any e to a function on all types so that e(τ) is a candidate of reducibility
for τe. The de�nition is recursive, and exploits the fact that we may consider e[S/α] de�ned every
time e already is. Clearly for variables the claim that the type is αe is satis�ed. Note that in order

65

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

to show the de�nition is well de�ned on ≡α and ∼ equivalence classes we are implicitly showing by
following the induction that if α /∈ FTV(τ) then e[S/α](τ) = e(τ), that e[S/α](τ) = e[S/β](τ [β/α]),
and also that if α 6= β then e[R/α][S/β](τ) = e[S/β][R/α](τ).
τ = τ ′ → τ ′′: e(τ ′ → τ ′′) := e(τ ′)→ e(τ ′′), and the type is τ ′e → τ ′′e = τe.
τ = ∀α.τ ′: We de�ne e(∀α.τ ′) as the set of all (A,M) with A `F M : (∀α.τ ′)e such that for all

S ∈ R we have (A,M) ∈ e[S/α](τ ′). The type is the right one by de�nition. We may see
this case as stating

e(∀α.τ ′) =
⋂

S∈R

e[S/α](τ ′),

given the condition on type, that by lemma 3.2.10 we will see we may drop.
In order to prove by induction that e(τ) is a reducibility candidate the only case remaining to

be shown is the quanti�er. Let us quickly check the properties. Note that the induction hypothesis
is valid for every e. The trick is that as sets, if we chose some S ∈ R, we have e(∀α.τ ′) ⊆ e[S/α](τ ′),
and so by induction hypothesis on τ ′ all the properties (which depend on M and not on the type)
trivially hold.

A function e built in this manner is called an interpretation.
Now we see that this de�nition behaves well with substitution. We use the fact that if α /∈

FTV(τ) then e[S/α](τ) = e(τ).
Lemma 3.2.8.

e(τ [σ/α]) = e[e(σ)/α](τ).

Proof. By easy induction:
τ = β: Trivial for the de�nition of e[R/α] on variables.
τ = τ ′ → τ ′′:

e((τ ′ → τ ′′)[σ/α]) = e[e(σ)/α](τ ′)→ e[e(σ)/α](τ ′′) = e[e(σ)/α](τ).

τ = ∀β.τ ′: If β 6= α then substitution goes to τ ′ after doing the necessary renaming to avoid
variable capture, so that also for any S we have e[S/β](σ) = e(σ), and thus
e(∀β.τ ′[σ/α]) =

⋂
S∈R

e[S/β](τ ′[σ/α]) =

=
⋂

S∈R

e[S/β][e[S/β](σ)/α](τ ′) =
⋂

S∈R

e[e(σ)/α][S/β](τ ′) =

= e[e(σ)/α](∀β.τ ′).

If on the other hand α = β nothing happens both on the left and on the right of the equality.

66

3.2. What do we get from F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

We recall the result shown for system S (2.2.17), the proof is identical.
Lemma 3.2.9 (abstraction). Given e, A and M , if for every (B,N) ∈ e(τ1) such that A and B
are compatible we have (A ∪B,M [N/x]) ∈ e(τ2) then (A, λx.M) ∈ e(τ1 → τ2).

We now bring down the new cases brought by universal quanti�cation.
Lemma 3.2.10 (generalization). If (A,M) ∈ e[S/α](τ) for every S ∈ R then (A,M) ∈ e(∀α.τ).
Proof. There is indeed something to prove: we have to show that Ae `F M : (∀α.τ)e. We
just take S a reducibility candidate for type β where β does not appear free in Ae. This gives
Ae `F M : τe[S/α] and

τe[S/α] = τ [β/α,
−−→
σ/β],

where ~β = FTV(τ)\{α} = FTV(∀α.τ). As β does not appear free in A we can apply generalization
and obtain

A `F: ∀β.τ [β/α,
−−→
σ/β].

Clearly the above type is (∀α.τ)e.
Lemma 3.2.11 (instantiation). If (A,M) ∈ e(∀α.τ) then for any ρ:

(A,M) ∈ e(τ [ρ/α]).

Proof. By hypothesis (A,M) ∈ e[S/α](τ) for any candidate S. If we choose S = e(ρ) and apply
lemma 3.2.8 we get (A,M) ∈ e[e(ρ)/α](τ) = e(τ [ρ/α]).

Now the main result is ready. We say a termM is reducible of type τ if there is an environment
A for which (A,M) ∈ sn(τ), where sn is the interpretation de�ned by

sn(α) = { (B,N) | B `F N : α, N ∈ SN }

which is clearly a candidate of reducibility for α, moreover for type α itself.
Theorem 3.2.12. Let e by any interpretation. Let (A,M) be such that D A `S M : τ ,
FV(M) ⊆ ~xn and ~Nn are terms such that ∀i : (B,Ni) ∈ e(A(xi)) with B compatible with Ae.
Then (Ae ∪B,M [

−−→
N/x]) ∈ e(τ).

Proof. First of all we may see that applying lemma 3.1.7 we can consider the derivation
De Ae `M : τe

67

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

obtained substituting all the free variable present only at the end with the corresponding types
given by e. Then we reason by induction on D. We may see that practically also in system S the
induction was on the derivation, though in that case induction on the term was equivalent. The
proofs given there for (var), (app) and (abs) following from the lemma speci�c to abstraction still
hold here. So let us see the last two cases.

In case (gen) was the last rule used, so that τ = ∀α.τ ′, and we have a subderivation D′ A `
M : τ ′ where α does not appear free in A. We take any S ∈ R and apply induction hypothesis
using e[S/α] as interpretation, and clearly Ae[S/α] = Ae. So

(Ae ∪B,M [
−−→
N/x]) ∈ e[S/α](τ ′)

and (having chosen S arbitrary) by lemma 3.2.10 we get the desired result.
If (ins) was the last rule instead we have τ = τ ′[ρ/α] and a subderivation D′ A ` M :

∀α.τ ′. Then by inducing hypothesis (Ae ∪B,M [
−−→
N/x]) ∈ e(∀α.τ ′), and so by lemma 3.2.11 we get

(A,M) ∈ e(τ ′[ρ/α]).
Corollary 3.2.13. Every term typable in system F is reducible and thus SN .
Proof. We choose e = sn so that τe = τ for any τ . Then chose ~N = ~x and B = A. By applying
the theorem we obtain (A,M) ∈ sn(τ), and in particular by the �rst property of reducibility
candidates M ∈ SN .

3.3 Functions representable in F

Now on to what is the expressive power of the system. The aim of this section is to give a
quick sketch of the proof that closed terms typable with Intk → Int are all those representing
functions provably total in PA2, where PA2 is the theory of Peano arithmetics with second order
quanti�cation. This is by no means intended to be exhaustive on the topic.

We will content ourselves with showing the result for terms of type Int→ Int. The total result
then follows easily with an encoding of Nk by N.

We say that a computable function is provably total in a system for arithmetic T if T proves
that some program representing f terminates on every input. How all this is formalized depends
on the theory and how we set out to encode programs and inputs. For example for PA2 we can
take a λ-term that represents f (possible, as we have already seen), encode λ-terms as integers,
and then write in (primitive and thus quanti�er free) formulas the operation of reduction. Then
we can create a primitive formula P (e, n,m, p) that holds true if and only if the term coded by e
applied on input n and then processed with a computation (we may see it as a list of reductions

68

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

to be done) coded by p gives the term m. In all other cases (such as integers not corresponding
to any coding, or a computation which does not correspond to a possible one, or a term which
is not the normal m) it is false. So we can express �the program coded by e applied on input n
terminates with output m� with the formula T1(e, n,m) = ∃p.P (e, n,m, p). Then we can express
�the program coded by e terminates with a valid output for every input� with the formula

∀n.∃m.∃p.P (e, n,m, p).

Using an encoding of N× N into N we can merge the two existentials, obtaining a formula in the
Π0

2 logical complexity class4.
If M is closed and typable with Intk → Int we may de�ne a function fM : Nk → N by

fM (~n) = m if and only if (M ~n) ≡β m, and unde�ned if (M n) has a normal form which is not a
Church numeral or worse if it does not have a normal form. Strong normalization theorem however
tells us that that (M n) will always have a normal form, and because this normal form is typable
with Int it will be necessarily a Church integer. So indeed fM is provably total, but the proof as
it is is outside PA2. In fact strong normalization theorem implies the consistency of PA2, while
we know by Gödel's second incompleteness theorem that PA2 cannot prove its own consistency,
so apart by direct inspection of the speci�c proof we are sure that any strong normalization proof
has to be outside PA2.

However the need to go beyond PA2 is due to proving for all typable terms that they are
reducible, while here we are interested in just the numerals n (which are immediately shown to be
always reducible, as they are normal) and M alone. So we need only induction on the reducibility
predicates for the types involved in the typing of M , and then by comprehension scheme and
second order quanti�cation (which are all principles contained in PA2) we get normalization for
M and so totality for fM . The proof thus obtained depends on M , but at least we are inside PA2.

The converse is practically due to the Curry-Howard isomorphism. The idea is to take a proof
of the totality of the function and translate it into the typing of a term that in fact computes the
value.

First of all, we must have a way to express our proof of totality in an intuitionistic framework, or
else it will be impossible to translate it into a typing. So we will work in HA2 (Heyting arithmetic
with second order), and we will not loose anything because HA2 is as strong as PA2 in proving
totality of funcitons.

4Π0
k is de�ned to be the set of primitive formulas preceded by k alternating quanti�ers beginning with ∀:

∀x1.∃x2. . . .♦xk.P . Σ0
k is de�ned the same way but the �rst quanti�er is ∃ in this case. The de�nition is up

to equivalence, so every formula is in a complexity class, and Π0
k ∪ Σ0

k ⊆ Π0
k+1 ∪ Σ0

k+1.

69

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

3.3.1 HA2

We will brie�y outline HA2.
De�nition 3.3.1 (formulas of HA2). The set F of formulas in HA2 will be ranged over by
letters such as F , G and are de�ned on two sets, one of variables for integers VHA2 = { ξ, η, ζ, . . . }
and one of variables for sets, for which we will deliberately use V already chosen for type variables.
Terms THA2 are de�ned by

THA2 ::= 0 | VHA2 | succTHA2

and are ranged over by letters such as a, b. The grammar de�ning F is
F ::= THA2 ∈ V | THA2 = THA2 | F ⇒ F | ∀VHA2 .F | ∃VHA2 .F | ∀V.F.

One may note there are some logic symbols �missing�: it is due to the fact that ∧, ∨, ⊥, ∃α and
¬ can be completely simulated by using ⇒, ∀ξ and ∀α. Also ∃ξ can be simulated, but we chose to
retain it in the base formulas. So we de�ne:

F ∧G := ∀α∀ξ.(F ⇒ G⇒ ξ ∈ α)⇒ ξ ∈ α,

F ∨G := ∀α∀ξ.(F ⇒ ξ ∈ α)⇒ (G⇒ ξ ∈ α)⇒ ξ ∈ α,

⊥ := ∀α∀ξ.ξ ∈ α,

∃α.F := ∀β∀η.(∀α.(F ⇒ η ∈ β))⇒ η ∈ β,

¬F := F ⇒ ⊥.

Sequents are expressions of the form F1, . . . , Fn ` G. We will denote by letters such as Γ, ∆

multisets of formulas on the left of `.
De�nition 3.3.2 (rules of HA2). HA2 is de�ned by the following rules, apart from those regu-
lating equality:
axioms:

F ` F (ax) ¬ succ ξ = 0
(a1)

succ ξ = succ η ⇒ ξ = η
(a2)

introductions:
F, . . . , F,Γ ` G

Γ ` F ⇒ G
(`⇒) Γ ` F [a/ξ]

Γ ` ∃ξ.F (` ∃1)

Γ ` F
Γ ` ∀ξ.F (` ∀1)(∗) Γ ` F

Γ ` ∀α.F (` ∀2)(∗)

70

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

eliminations:
Γ ` F ∆ ` F ⇒ G

Γ,∆ ` G (⇒`) Γ ` ∃ξ.F F, . . . , F,∆ ` G
Γ,∆ ` G (∃1 `)

Γ ` ∀ξ.F
Γ ` F [a/ξ]

(∀1 `) Γ ` ∀α.F
Γ ` F [{ξ.G}/α]

(∀2 `)

The (∗) means we are applying the usual condition that the bound variable is not free on the
left of `. The notation F [{ξ.G}/α] means that we are substituting (avoiding as always variable
capture) G[a/ξ] wherever we �nd a ∈ α.

We call a set of occurrences of a formula that get deleted together in (`⇒) or in (∃1 `) parcels
of hypotheses.

We may give derived rules for the other derived symbols. Each of these rule is in fact a com-
bination of those already given, and represents them faithfully, in the sense that the combination
of base rules they hide is the unique way in which one can obtain those symbols. In fact we are
purely interested in the rules regarding regarding ∧:

Γ ` F ∆ ` G
Γ,∆ ` F ∧G (` ∧)

Γ ` F ∧G
Γ ` F (∧1 `) Γ ` F ∧G

Γ ` G (∧2 `)

We may say that comprehension scheme and induction principle are somewhat already present.
For the �rst one we may derive

∀α∃β∀ξ.(ξ ∈ α⇔ ξ ∈ β)

and then apply (∀2 `) to obtain
∃β∀ξ.(C ⇔ ξ ∈ β).

The second is obtained just de�ning integers by the fact that they respect the induction principle.
So we de�ne

Nat(ξ) := ∀α.(0 ∈ α⇒ ∀η.(η ∈ α⇒ succ η ∈ α)⇒ ξ ∈ α).

Then it is easy to check that for any formula F we have:
(
F [0/ξ] ∧ ∀η.(Nat(η)⇒ F [η/ξ]⇒ F [η/ξ])

)
⇒ ∀η.(Nat(η)⇒ F [η/ξ]).

So induction holds provided we relativize universal quanti�ers to naturals.

3.3.2 Translation into F

We �rst translate every formula F of HA2 into a type JF K of system F. So:

71

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

• Ja = bK := σ with σ any type with at least one closed term typable with it, for example
`F I : ∀α.α→ α;
• Ja ∈ αK := α;
• JF ⇒ GK := JF K→ JGK;
• J∀ξ.F K := J∃ξ.F K := JF K;
• J∀α.F K := ∀α. JF K.
One may easily see then that JF ∧GK = JF K× JGK and J⊥K = ⊥.
Now we translate a proof π of HA2 with conclusion F1, . . . , Fn ` G into a type derivation

Dπ x1 : JF1K , . . . , xn : JFnK `F JπK : JGK .

We denote the �nal environment with JΓK if Γ was the �nal multiset on the left of `. Before
going on let us note that there is a problem with the axiom ¬ succ ξ = 0, which is de�ned as
succ ξ = 0 ⇒ ⊥: we should produce a term M such that `F M : σ → ⊥, but no such term
exists. A possible solution is temporarily extend system F with a �junk� term Ω and a �junk� rule
A `F Ω : ⊥. We will deal with this term will later. So, let us de�ne the translation by induction.
axioms:

F ` F (ax) 7−→
x : JF K ` x : JF K

(var)

with the convention that each (ax) introduces a di�erent variable. Identi�cations will even-
tually be done afterwards.

¬ succ ξ = 0
(a1) 7−→ x : σ ` Ω : ⊥

` λx.Ω : σ → ⊥ (abs)

succ ξ = succ η ⇒ ξ = η
(a2) 7−→ x : σ ` x : σ

(var)
` λx.x : σ → σ

(abs)

⇒:
π....

F, . . . , F,Γ ` G
Γ ` F ⇒ G

(`⇒) 7−→

Dπ[x/~y]....
x : JF K , JΓK ` JπK [x/~y] JGK
JΓK ` λx. JπK : JF K→ JGK

(abs)

where ~y are the variables corresponding to the parcel of hypotheses being deleted. If even-
tually ~y is empty we add the assumption x : JF K by weakening.

72

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

π1....
Γ ` F

π2....
∆ ` F ⇒ G

Γ,∆ ` G (⇒`) 7−→

7−→

Dπ1....
JΓK ` Jπ1K : JF K

Dπ2....
J∆K ` Jπ2K : JF K→ JGK

JΓK , J∆K ` (Jπ1K Jπ2K) : JGK
(app)

Note that the environment are necessarily disjoint and thus compatible.
∀1 and ∃1: (` ∀1), (` ∃1) and (∀1 `) does not get any translation, as interpretation of the �rst

order quanti�ers on types do not change. As for (∃1 `) suppose we have
π1....

Γ ` ∃ξ.F

π2....
F, . . . , F,∆ ` G

Γ,∆ ` G (∃1 `)

then we obtain
Dπ1 JΓK ` Jπ1K : JF K ,

Dπ2 [x/~y] x : JF K , J∆K ` Jπ2K [x/~y] : JGK .

Then by substitution lemma we get
Dπ JΓK , J∆K ` Jπ2K

[
Jπ1K /~y

]
: JGK .

∀2:
π....

Γ ` F
Γ ` ∀α.F (` ∀2) 7−→

Dπ....
JΓK ` JπK : JF K

JΓK ` JπK : ∀α. JF K
(gen)

Clearly the condition on free variables is satis�ed.

π....
Γ ` ∀α.F

Γ ` F [{ξ.G}/α]
(∀2 `) 7−→

Dπ....
JΓK ` JπK : ∀α. JF K

JΓK ` JπK : JF K
[
JGK /α

] (ins)

73

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

As for the derived rules for ∧, we are here interested only in (∧1 `):
π....

Γ ` F ∧G
Γ ` F

(∧1 `) 7−→

Dπ....
JΓK ` JπK : ∀α.(JF K → JGK → JF K) → JF K

JΓK ` JπK : (JF K → JGK → JF K) → JF K
(ins)

....
` true : JF K → JGK → JF K

JΓK ` (JπK true) : JF K
(app)

The interesting thing is that this translation maps cut-elimination passages in β-reduction:
terms get substituted for abstracted variables the same way proofs get in the place of parcels of
hypotheses. That is the core of Curry-Howard isomorphism. Next we may see that for every n
there is a unique normal (in the sense of cut-elimination) proof ň of ` Nat(succn 0) and in fact its
translation is the derivation of ` n : Intfootnotethe proof is really similar to the one done to show
that every normal term typable with Int is a Church numeral. The only di�erence is one has to
take into account the presence of the axiom ¬ succ ξ = 0. The consistency of HA2, which gives
that succ ξ = 0 cannot be proved, needs to be exploited..

Now suppose we have the formula F (n,m) which expresses that a given algorithm representing
a function f terminates in output m if given input n. If we are able to prove

∀n ∈ N∃m ∈ N.F (n,m)

it means that in HA2 we have a derivation π that proves
` ∀ξ.(Nat(ξ)⇒ ∃η.(Nat(η) ∧ F (ξ, η))).

Now applying the translation to the formula we get:
J∀ξ.(Nat(ξ)⇒ ∃η.(Nat(η) ∧A(ξ, η)))K = Int→ (Int× JF K).

So translating π gives
`F JπK : Int→ (Int× JF K).

Le us consider the term M = λx.(JπK x true), which is typable with type Int → Int. We have
that M represents f . In fact, given any n ∈ N:

ň....
` Nat(succn 0)

π....
` ∀ξ.(Nat(ξ)⇒ ∃η.(Nat(η) ∧ F (ξ, η)))

` Nat(succn 0)⇒ ∃η.(Nat(η) ∧ F (succn 0, η))
(∀ `)

` ∃η.(Nat(η) ∧ F (succn 0, η))
(⇒`)

74

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

is the proof which translates into (JπK n) typable with Int× JF K. If we then proceed on this
proof by cut-elimination (which corresponds to β-reduction steps) we obtain a cut-free one that
must end with (` ∃1), and this last rule must substitute a term which does not contain variables,
i.e. a term of the form succm 0. So we have a normal proof πn which proves ` Nat(succm 0) ∧
F (succm 0, succn 0), whose translation is β-equivalent to (JπK n). If we apply (∧1 `) we obtain a
normal proof of succm 0 which therefore must be m̌: looking on translations we have that applying
(∧1 `) means having (JπK n true) ≡β m, and therefore (M n) ≡β m. Then again, if we apply to
πn (∧2 `) instead, we get a proof of F (succn 0, succm 0), which means that F (n,m) is true, i.e.
f(n) = m: M indeed represents f .

3.3.3 Removing the junk term

We map typable terms with junk to typable terms without junk.
First de�ne a map on types:

〈〈α〉〉 := α,

〈〈τ → σ〉〉 := 〈〈τ〉〉 → 〈〈σ〉〉 ,

〈〈∀α.τ〉〉 := ∀α.(α→ 〈〈τ〉〉).

This map commutes with substitution, so that
〈〈τ [σ/α]〉〉 = 〈〈τ〉〉

[
〈〈σ〉〉 /α

]
.

Then we label some variables with type variables, so that we have variables xα, and de�ne for
every type τ a term typable with 〈〈τ〉〉:

Bα := xα,

Bτ→σ := λy.Bσ,

B∀α.τ := λxα.Bτ .

Every time we use Bτ we consider a typing Dτ for it that ends in
xα1 : α1, . . . , xαn : αn ` Bτ : 〈〈τ〉〉 ,

where ~αn = FTV(τ). Moreover we have that if τ is a closed type then 〈〈τ〉〉 is a closed type always
such that there is a closed term typable with it.

75

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Now, given a typing D for a term M with junk, we de�ne by induction a translation into a
typing 〈〈D〉〉 for a term 〈〈M〉〉. (var) rule is a�ected only by applying 〈〈 . 〉〉 on the types. (abs) and
(app) simply carry on the induction without adding anything. For the remaining cases

D′ A `M : τ
A `M : ∀α.τ (gen)

becomes, after eventually adding xα : α by weakening if it is not already in the environment:
〈〈D′〉〉 〈〈A〉〉 , xα : α ` 〈〈M〉〉 : 〈〈τ〉〉
〈〈A〉〉 \ {xα : α} ` λxα. 〈〈M〉〉 : α→ 〈〈τ〉〉

(abs)
〈〈A〉〉 \ {xα : α} ` λxα. 〈〈M〉〉 : ∀α.(α→ 〈〈τ〉〉)

(gen)

As for (ins):
D′ M : ∀α.τ
A `M : τ [ρ/α]

(ins)
becomes

〈〈D′〉〉 〈〈A〉〉 ` 〈〈M〉〉 : ∀α.(α→ 〈〈τ〉〉)
〈〈A〉〉 ` 〈〈M〉〉 : 〈〈ρ〉〉 → 〈〈τ〉〉

[
〈〈ρ〉〉 /α

] (ins)
Dρ....−−−→

xβ : β ` Bρ : 〈〈ρ〉〉

〈〈A〉〉 ,
−−−→
xβ : β ` 〈〈M〉〉 Bρ : 〈〈τ [ρ/α]〉〉

(app)

where ~β = FTV(ρ). The only rule left is the junk rule which gives A ` Ω : ⊥, and we replace it with
D⊥ that types B⊥ = I, to which we add A by weakening, obtaining D⊥ A ` I : ∀α.(α→ α).

Note that applying elimination of (gen)-(ins) sequences as we had shown in 3.1.8 get translated
in �rst doing the (gen)-(ins) erasing and then contracting a redex, this latter operation such that
it changes only the terms Bτ . The translation is preserved if we take special attention so that
when doing the substitution Bτ [Bρ/xα] we make the necessary changes to the standard derivation
accompanying Bτ so that we get the standard derivation of Bτ [ρ/α] (which involves changing the
type assigned to weakened variables).

Now we follow the reduction of a typable term with junk with an eye on its typing: if we always
do (gen)-(ins) elimination on both D and 〈〈D〉〉 (which means reducing 〈〈M〉〉) we have that every
reduction step in D may be carried out in 〈〈D〉〉 preserving the fact that one is the translation of
the other. Moreover the translation of an (ins) before (gen) derivation of a normal term is always
such that the term being typed is normal. So, in short words, by keeping the typings with (ins)
before (gen) property, if M β

�M∗ then 〈〈M〉〉 β
� 〈〈M∗〉〉 and 〈〈M∗〉〉 = 〈〈M〉〉∗.

In particular the translation of integers is
〈〈Int〉〉 = ∀α.α→ α→ (α→ α)→ α

and the translation corresponding to the unique (ins) before (gen) derivation of ` λxλf.(fn x) : Int

gives the term
〈〈n〉〉 = λxαλxλf.(fn x).

76

3.3. Functions representable in F
CHAPTER 3

POLYMORPHIC λ-CALCULUS

We can then easily design
weak := λn.λxα.n, `F weak : Int→ 〈〈Int〉〉 ,

contr := λn.red(n I), `F contr : 〈〈Int〉〉 → Int

that preserve the value. red is a term that reduces the type instantiated in Int leaving the value
equal to make the generalization possible again:

red := λnλxλf.(n I (λhλy.f (h y))x), `F red : ∀α. Intα→α → Intα .

Then if M is a term with junk representing f then
M ′ := λn.contr (〈〈M〉〉 (weakn))

represents f and is typable with type Int→ Int.

3.3.4 An example of an unrepresented function

One may ask oneself: is there a computable total function that is not represented in system F?
In other words, is there a recursive total function whose totality cannot be proved in PA2? The
answear is yes.

We may take a coding of typable terms together with their types into integers, say JM, τK5, and
then de�ne N(n) = m if and only if n = JN, τK, m = JM, τK and M = N∗, and N(n) = 0 if n is
not the code of a term. It is computable: namely, the algorithm consists in taking the term coded
by n and normalizing it. All this can even be encoded as recursive functions. And we have shown
by SN that it is total. From what we know now we could already conclude it is not representable:
otherwise it would be provably total in PA2 and so PA2 would prove SN for F. But let's brie�y
check directly on N .

We surely have the following functions, all representable in F:
• app(n,m) := J(N M), τK, if n = JN,σ → τK and m = JM,σK,
•](n) := Jn, IntK,
• [(n) := m if m = Jn, IntK, [(n) = 0 otherwise.
Now we may de�ne D(n) := [(N(app(n,](n)))) + 1. This function is clearly total. Suppose

now P typable with type Int → Int represents D, and let's try to compute D(n) with n =

5in fact we have to encode an entire derivation if we want for this encoding to certi�cate that M has type τ : we
will see that type checking is not decidable, so if we want this encoding to be computable we must ourselves provide
the prof.

77

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

JP, Int→ IntK: we are applying N to the coding of the application (P n), and so it will yield
](D(n)), and in the end D(n) = D(n) + 1, a contradiction. So neither D nor N are representable.

This result is a variant of the famous result by Turing for which there is no total recursive
function enumerating all total recursive functions: from what we have said here we may see there
is no provably total recursive function which enumerates all provably total recursive functions.

3.4 What do we loose with F?
So system F would seem perfect. In fact there are some problems concerning it.
First of all, it would seem that F is maybe too expressive. Given a term in F we are not

able a-priori to tell anything about its computational cost. In fact even the Ackerman function is
typable in system F.
Example 3.4.1. The Ackerman function A : N2 → N is de�ned by:

A(0, n) := n+ 1,

A(m+ 1, 0) := A(m, 1),

A(m+ 1, n+ 1) := A(m,A(m+ 1, n)).

A(n, n) is a function that bounds every elementary function, including all the towers of exponential
of �xed height. To have an idea:

A(1, 1) = 3, A(2, 2) = 7,

A(3, 3) = 26 − 3 = 61 A(4, 4) = 2265536
− 3.

The number of atoms in the universe can be bounded by 2266, so for example A(4, 4) is way more
than the number of all possible sets of atoms in the universe.

It can be seen as a double recursion: one on functions N → N containing one on N. The
polymorphism of system F here suits well for de�ning the representation of A. In terms of recursion
the inner one, supposing we know Am := A(m, .) : N→ N, has Am(1) as base value and hn(i, j) :=

An(i) as step function. We may represent the latter with a context
H[] := λxλy.�x,

so that H[An] = hn and is typable with Int→ Int→ Int if An is typable with Int→ Int. So if
we have An the term representing An+1 is

An+1 := REC(An 1),H[An].

78

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

See example 3.2.4 for the de�nition of REC. Now if we see the outer recursion, we thus have that
the base value is A0 = succ, and the step function is the one depicted above, represented by

K := λfλn.REC(f 1),H[f]

typable with (Int→ Int)→ Int→ Int→ Int. So in the end:
A := RECsucc,K .

This is not nice. In fact usually we are mainly interested in feasible functions, with some bound
on complexity. System F provides no easy way of dealing with it.

Another problem regards type inference. We next show the result proved by Wells in [Wel99].

3.4.1 Undecidability of TC

First we show how type checking results to be undecidable, by reducing to it the following
problem.
De�nition 3.4.2 (SUP). Let ~σn and ~τn be sequences of types in TS (so types without quanti�ers).
Then we call the sequence

(σ1, τ1), . . . , (σn, τn) =
−−−→
(σ, τ)n

an instance of the SUP problem.
Let S be an open substitution, i.e a substitution S with RAN(S) ⊆ TS. We say S is a solution

for −−−→(σ, τ) if there exist open substitutions ~S = S1, . . . , Sn such that for every i we have S1(S(σi)) =

S(τi).
The semi-uni�cation problem, denoted by SUP, is the problem of determining if an instance

−−−→
(σ, τ) has a solution.

Kfoury, Tiuryn and Urzyczyn showed in 1990 that the immortality problem for a Turing ma-
chine (whether a given Turing machine which admits in�nite tape transcription does not terminate
from every possible initial con�guration of status and tape) can be reduced to SUP with two pairs.
(see [KTU93]), and in turn the immortality problem had been already shown undecidable in 1966
by Hooper in [Hoo66].
Theorem 3.4.3 (SUP ≤ TCF). SUP with two pairs is reducible to TC in system F.
Proof. Let (σ1, τ1), (σ2, τ2) be any instance of SUP with two pairs. Let ~αm = FTV(σ1, σ2, τ1, τ2)

and δ1, δ2 be variables not in ~α. Let's build an instance of TCF.
Let M be the term b (λx.c x x), A be the environment

A := { b : ∀γ.(γ → γ)→ β, c : ∀.(τ1 → δ1)→ (δ2 → τ2)→ (σ1 → σ2) }.

79

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

We will show that there is a solution of the SUP instance (σ1, τ1), (σ2, τ2) if and only if A `F
M : β.

Suppose there is a solution of the SUP instance: there are S, S1 and S2 open substitutions
such that Si(S(σi)) = S(τi). Denote ϕ := S(σ1)→ S(σ2) and B := A, x : ∀.ϕ. We have:

S1(ϕ) = S(τ1)→ S1(S(σ2)), S2(ϕ) = S2(S(σ1)→ S(τ2),

so we can instantiate A(c) by applying to it S and giving convenient types for δ1 and δ2 to
obtain S1(ϕ) → S2(ϕ) → ϕ. We may also assume that β does not appear in S(SUPP(S)) and
Si(SUPP(Si)).

Now we have the following derivation:
A ` b : ∀γ.(γ → γ)→ β

(var)
A ` b : ((∀.ϕ)→ ∀.ϕ)→ β

(ins)
D....

A ` λx.c x x : (∀.ϕ)→ ∀.ϕ
A ` b (λx.c x x) : β

(app)

where D is the derivation
B ` c : A(c)

(var)

B ` c : S1(ϕ) → S2(ϕ) → ϕ
(ins)

B ` x : ∀.ϕ
(var)

B ` x : S1(ϕ)
(ins)

B ` c x : S2(ϕ) → ϕ
(app)

B ` x : ∀.ϕ
(var)

B ` x : S2(ϕ)
(ins)

B ` c x x : ϕ
(app)

B ` c x x : ∀.ϕ
(gen)

A ` λx.c x x : (∀.ϕ) → ∀.ϕ
(abs)

The other direction of the proof is more complicated. Let D be a typing D A `M : β. We
will basically �climb� it to get the information necessary to build a solution to the SUP problem.
First of all we suppose D is in (ins) before (gen) form, and that by weakening on reverse all
environments say the strictly necessary, i.e. their domain is the free variables of the term being
typed. Let B = DE(D, c x x) be the derived environment for c x x in D, and let ρ be the type
assigned by it to x. So B = {x : ρ, c : A(c) }. Now let us climb the derivation up to the �nal
derivation for c. Because it is applied to x and D is in (ins) before (gen) form there are only (ins)
rules originating form the (var) rule. So if we add up all the substitutions we obtain a substitution
T so that

FDT(D, c) = (T (τ1)→ T (δ1))→ (T (δ2)→ T (τ2))→ T (σ1)→ T (σ2).

We extend ~α with the necessary variables so that FTV(T (SUPP(T))) ⊆ ~α. The type above means
that the �nal derived type for x (the occurrence to which c is applied) must be T (τ1) → T (δ1),
and then after (app) is applied:

IDT(D, c x) = (T (δ2)→ T (τ2))→ T (σ1)→ T (σ2).

80

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

There are no (ins) following because there are no quanti�ers, and there can't even be some (gen)
because the result must be applied again to x. So the �nal derived type for c x is the same as
above, and thus the �nal derived type for the other occurrence of x must be T (δ2) → T (τ2), and
the initial derived type for c x x is T (σ1) → T (σ2). So afterwards there are no (ins) rules, and so
there are only (gen) rules following, and the �nal derived type for c x x is

FDT(D, c x x) =
−→
∀ε.T (σ1)→ T (σ2).

Then (abs) is applied and we obtain an initial derivation for λx.c x x with
A(c) ` λx.c x x : σ →

−→
∀ε.T (σ1)→ T (σ2).

If we now take a look on the other branch of the �nal (app), we see there can't be any external
quanti�ers, so no (gen) rules and one (ins) rule to delete the only quanti�er of the type of b, so
the �nal derived type for b must be (ψ → ψ)→ β for some ψ. So the type required as input by b
has no quanti�ers. So going back to the right branch, no (gen) rules, and no (ins) neither, and the
application can be carried out only if:

ψ → ψ = σ →
−→
∀ε.T (σ1)→ T (σ2) ⇐⇒ ψ = σ =

−→
∀ε.T (σ1)→ T (σ2).

So we have an expression for σ. If we now return up in the derivation to the branches regarding
the two occurrences of x, we see the �nal types have no external quanti�ers, so no (gen) rules and
(ins) rules to delete all of −→∀ε. If we sum up the substitutions done for the �rst occurrence in T1

and all those for the second in T2, we get the equalities:
T1(T (σ1))→ T1(T (σ2)) = T (τ1)→ T (δ1), T (δ2)→ T (τ2).

Now if we split the two equalities in the left and right part of the implication, and take only the
left one for the �rst and the right one for the other we get the equalities:

T1(T (σi)) = T (τi), for i=1,2.
These are almost the solution to the semi-uni�cation problem. Fact is, there could be quanti�ers
in the range of the substitutions. We have to delete them. To make things uniform, we α-convert
all the bound variables to some arbitrary fresh variable δ, and then apply the erasing function
(.)S. So we de�ne the open substitutions

S :=
[−−−−−→
(T (α))S/α

]
, Si :=

[−−−−−→
(Ti(α))S/α

]
,

that act on the variables ~α, and leave the other as they are (including δ). So in particular
Si(S(σi)) = (Ti((T (σi))S))S = (Ti(T (σi)))S = (T (τi))S = S(τi)

and S, S1, S2 is a solution of (σ1, τ1), (σ2, τ2).

81

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Remark 3.4.4. We may think of some restriction we may impose on what types may be instanti-
ated in bounded variables. One �rst idea would be to let instantiate only types without quanti�ers.
The proof above however shows that as far as type checking is concerned such an approach fails,
because it comes from an undecidability result on types without quanti�ers. However we can
think of other forms of restriction, by controlling the way quanti�ers are distributed in all types.
Wells himself, together with Kfoury, describes in [KW94] an algorithm to solve typability and type
inference in a fragment of system F: the rank 2 fragment. Rank is de�ned inductively so that
rank 0 holds the types without quanti�ers, and then rank k + 1 is built with the usual rules using
formulas of the same or inferior rank, except that on the left of an implication only types of rank
strictly less can be used. In order to leave this structure invariant under instantiation we permit
to instantiate only type of rank 0, i.e. open types. However apart from the positive result about
rank 2, in the same paper typability is proved undecidable for every higher rank.

3.4.2 Undecidability of TYP

In the same work in which he proved undecidability of TCF Wells has proved that there is a
reduction of TCF to TYPF. As there is also a trivial reduction of TYPF to TCF, we have that
the two problems are equivalent and undecidable.
Proposition 3.4.5 (TYPF ≤ TCF). There is a reduction of TYPF to TCF.
Proof. First observe that we can assume the term for which we want to decide typability is closed,
as M is typable if and only if −→λx.M is, where ~x = FV(M): one direction is due to subterm typing,
the other to multiple uses of (abs).

Now take the instance of TCF given by the sequent ` (λxλy.y)M : α → α. Then if M is
typable with σ, we can type λxλy.y with σ → αα and so we solve TCF. On the other hand if
`F (λyλx.x)M : α→ α then by subterm typing we can conclude that M is typable.

Now we must introduce a complicate machinery to prove reduction in the other direction. The
main idea of the proof will be to construct, given A, M and σ, a simple contexts C[] such that
when we plug M in the hole all the free variables get captured, and the existence of any valid
typing of C[M] induces type τ on M . So (apart from small tweaking at the end) we may say
A `F M : σ if and only if C[M] is typable.

Rather than build a speci�c context for every environment, term and type may come around
we show a sort of induction that shows the problem solved for types of increasing complexity,
building up a machinery independent of the various environments. The proof will however have an
algorithmic content: given an instance of TCF, we will be e�ectively able to build up the instance
of TYPF, though it may be quite hard.

82

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

At the core (or rather at the beginning) there is the notion of invariant type assumption: the
�rst approach to induce given types to �places� in pure terms. Given a variable present in any place
of a derivation D, we de�ne by D(x) the type σ such that x : σ is present in some environment in D.
It is well de�ned, once we α-convert all bound variables so that there is no name collision. We also
assume that the environment present at the end of any subderivation is present in every sequent of
the same subderivation. Practically we are saying that we do not make use of the fact that (app)
merges environments. We can make such an assumption because of weakening, and because we
know there can't be any collisions with variables that get bounded later in the derivation.

Inducing invariant types
De�nition 3.4.6 (invariant type assumption). Given a term M , an environment A and x ∈
BV(M) (which we will then consider �xed with respect to α-equivalence, and di�erent from all
other variables bound or not) we say A induces the invariant type assumption x : σ if both of the
following properties hold:

1. there is a derivation D A `M : τ such that D(x) = σ;
2. if D is a derivation leading to A `M : τ for some τ , there exists a type variable renaming R such

that R(A) = A and D(x) = R(σ).
We will later de�ne terms that induce some desired types. As for now, we will introduce a

notion that extends that of invariant type assumption: it will allow us to put together various
invariant assumptions. The de�ntion is designed so that we will be able to discard parts of the
environment we have used to build invariant type assumption and which are not needed afterwards,
and also in such a manner that such results will be chainable.
De�nition 3.4.7 (inducing type environments). Let A and B be compatible environments
and C[] a simple context such that
• FV(C[]) ⊆ DOM(A),
• BV(C) ∩DOM(A) = ∅,
• DOM(B) ⊆ BHV(C[]) ∪DOM(A).
Recall that BHV(C[]) is the set of bounded variables whose scope contains the hole.

We say that the type environment A and the context C together induce the type environment
B, written A,C[]BB if for every term M and type environment A′ such that
• A′ is compatible with A,B,
• FV(M) ⊆ DOM(A,B,A′),

83

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

• DOM(A′) ∩ (DOM(A) ∪ BV(C[M])) = ∅,
• FTV(A′) ∩ FTV(B) ⊆ FTV(A),
both of the following properties hold:

1. If σ is such that A′, A,B `F M : σ then there exist a type τ , an environment E with DOM(E) =

BHV(C[]) \DOM(B) and a derivation D that contains the two sequents
A′, A ` C[M] : τ, A′, A,B,E `M : σ.

2. On the converse if D is a derivation containing A,A′ ` C[M] : τ for some τ , then there exist a type
σ, an environment E with DOM(E) = BHV(C[]) \DOM(B) and a variable renaming R invariant
on A,A′, i.e. such that R(A,A′) = A,A′ and D contains also the sequent

A,A′, R(B), E `M : σ.

So confronting the two de�nitions the assumption B plays the role of x : σ, so that a variable
x ∈ DOM(B) ∩ BHV(C[]) will have an invariant type assumption. A′ covers all the extra free
variables that are not handled either by A or by the B: we are not interested in those variables
having an invariant type assumption with C[], and so we permit some variables to be handled
instead by another context containing this one, and so we are able to use multiple contexts to
induce more assumption at the same time.

The condition FTV(A′) ∩ FTV(B) ⊆ FTV(A) is needed because we will have to apply (gen)
on the variables in FTV(B) \ FTV(A). Finally, E is needed to treat those variables bounded by
C[] but which need not to be invariant.

Now in order to be more abstract on the choice of of the context and the term variables we
introduce a relation de�ned purely on sets of types.
De�nition 3.4.8 (inducing types). Let X and Y be sets of types. We call an algorithm Ψ

taking as input a type environment and giving as output a type environment and a context a
witness for X I Y if and only if for every non-empty type environment B with RAN(B) ⊆ Y we
have Ψ(B) = (A,C[]), where RAN(A) ⊆ X, FTV(B) ∩ FTV(X) ⊆ FTV(A) and A,C[]BB. We
say X I Y, to be read X induces Y, if and only if we have a witness for it.
Lemma 3.4.9 (properties of B). B enjoys the following properties:

1. if A induces the invariant type assumption x : σ inM then we can build C[] such that A,C[]B{x :

σ},
2. A,C[]BB =⇒ ∀R renaming : R(A), R(C[])BR(B),

84

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

3. A,C[]BB =⇒ A,C[]BA,B,
4. A,C[]BB, B′ ⊆ B =⇒ A,C[]BB′,
5. A,C[] B B, FTV(Â) ∩ FTV(B) ⊆ FTV(A), and DOM(Â) ∩ (DOM(A) ∪ BV(B)) = ∅ =⇒

(A ∪ Â), C[]BB.
Proof. The only ones that are not trivial are number 1 and 5.

Number 1 is the �rst part of the core tool used in the proof. As x ∈ BV(M) we have that
M = C ′[λx.N] for some context C ′[] and some subterm N . Let C[] := C ′[λx.trueN �]. Now
we check that A,C[]B {x : τ}.

First: FV(C[]) ⊆ FV(M) ⊆ DOM(A), BV(C[]) = BV(M) and by convention BV(M) ∩
DOM(A) = ∅, and �nally DOM({x : σ}) = {x} ⊆ BHV(C[]). Now take a term N ′ and an
environment A′ that satisfy the conditions given in the second part of the de�nition.

1. Suppose A′, A, x : τ `F N ′ : τ ′. As we know that there is a derivation D A ` C ′[λx.N] : τ with
D(x) = σ, we may create a valid derivation D′ from D by substituting the subderivation leading to
λx.N with one (ending in the same type) leading to λx.trueN N ′ and for which the �nal derived
type of N ′ is τ ′, and then applying weakening to add A′. Then

D′ A,A′ ` C[N ′] : τ.

Moreover D′(x) = D(x) = σ, so by the convention of not using (app)-merging D′ contains the
following sequent on N ′:

A,A′, x : τ, E ` N ′ : τ ′,

where E assigns types to all the variables that get bound later, all but x.
2. Suppose now that D A,A′ ` C[N ′] : τ . There is a subderivation leading to A,A′, x : σ′, E `

trueN N ′ : τ ′, and we can safely substitute it with one leading to A,A′, x : σ′, E ` N : τ ′, and
then by weakening on reverse (A′ is not needed anymore) and eventually weakening back to A we
obtain

D′ A `M : τ.

Then by hypothesis there is a renaming R such that R(A) = A and σ′ = D(x) = D′(x) =

R(σ). Let's restrict R to what is strictly necessary, i.e. we may take SUPP(R) ⊆ FTV(σ). As
FTV(A′) ∩ FTV({x : σ}) ⊆ FTV(A) we then have that R(A,A′) = A,A′. If we look up in D the
subderivation ending in N ′ we thus �nally obtain

A,A′, R({x : σ}), E ` N ′ : τ ′′,

for some τ ′′.

85

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Now let's check number 5. DOM(Â)∩ (DOM(A)∪BV(B)) implies both that A and Â are com-
patible and that BV(B)∩DOM(A, Â) = ∅. Take anyM and A′, with FV(M) ⊆ DOM(A, Â,B,A′),
DOM(A′)∩ (DOM(A, Â)∪BHV(C[M])) = ∅, and FTV(A′)∩FTV(B) ⊆ FTV(A, Â). Let us check
the two properties.

1. Let σ be a type such that A, Â,A′, B `F M : σ. Using the fact that A,C[] B B, we take A′ in
de�nition 3.4.8 as A′Â here: in fact the hypotheses on Â and A′ together imply that

DOM(A′, Â) ∩ (DOM(A) ∪ BHV(C[])) = ∅,

FTV(A′, Â) ∩ FTV(B) ⊆ FTV(A).

So by de�nition there exist a type τ , an environment E with DOM(E) = BHV(C[]) \ DOM(B)

and a derivation containing both
A′, Â, A ` C[M] : τ, A′, Â, A,B,E `M : σ.

2. Let D be a derivation that contains A, Â,A′ ` C[M] : τ . Again by taking A′ in the de�nition to
be Â, A′ here, there must be a type σ, an environment E with the right domain and a renaming
R that �xes A, Â,A′ such that D contains

A, Â,A′, R(B), E `M : σ.

So we conclude A ∪ Â, C[]BB.
Lemma 3.4.10 (properties of I). I enjoys the following properties:

1. if A induces the invariant type assumption x : σ in M and if σ is not a ∀-type, or else if FTV(σ) ⊆
FTV(A), then RAN(A) I {σ},

2. X I Y =⇒ ∀R renaming : R(X) I R(Y),
3. X I Y =⇒ X I X ∪ Y,
4. X I Y1 ∪ Y2 =⇒ X I Y1,
5. X1 I Y, FTV(X2) ∩ FTV(Y) ⊆ FTV(X1) =⇒ X1 ∪ X2 I Y,
6. X I X ∪ Y, X ∪ Y I X ∪ Y ∪ Z =⇒ X I X ∪ Y ∪ Z,
7. X I Y1, X I Y2, FTV(Y1) ∩ FTV(Y2) ⊆ FTV(X) =⇒ X I Y1 ∪ Y2.

Proof. Let's �rst see the trivial ones.
2. Let ΠR, where R is a renaming, be the algorithm that taken a function Ψ′ de�ned on environments

returns the function de�ned by ΠR(Ψ′)(B) := R(Ψ(R−1(B))). Then if Ψ′ is a witness of X I Y,
we may easily see by property 2 of B that Ψ = ΠR(Ψ′) is a witness of R(X) I R(Y).

86

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

4. The condition �any environment B with RAN(B) ⊆ Y1∪Y2� clearly implies �any B with RAN(B) ⊆
Y1�. We can take the same witness.

5. If Ψ is a witness of X1 I Y. Take any B with RAN(B) ⊆ Y. Then Ψ(B) = (A,C[]) is such that
RAN(A) ⊆ X1 ⊆ X1 ∪ X2, FTV(B) ∩ FTV(X1 ∪ X2) ⊆ FTV(A) because

FTV(X1) ∩ FTV(B) ⊆ FTV(B) ∩ (FTV(X1) ∩ FTV(Y)) ⊆ FTV(B) ∩ FTV(X1),

and �nally A,C[]BB. We can take the same witness for X1 ∪ X2 I Y.
Now with the more complex ones. Given X,Y, Z ⊆ V subsets of term variables, we denote

by RX,Y,Z a renaming built in some algorithmic manner with SUPP(R) = (X ∩ Y) \ Z and with
R((X ∩ Y) \ Z) completely outside X ∪ Y ∪ Z. Let RX,Y := RX,Y,∅.

1. This completes the core tool we will use for the proof. By property 1 of B we know we can build
C[] such that A,C[] B {x : σ}. Now in order to build the witness let's distinguish between the
two cases. Note that a non empty environment B with RAN(B) ⊆ {σ} means that B is of the
form B = {y1 : σ, . . . , yn : σ} with n ≥ 1.
Suppose σ is not quanti�ed. Then we de�ne

Ψ(B) := (R(A), R(C)[C ′[]]),

where R = R(DOM(A)∪V(C[])),DOM(B) and
C ′[] := (λy1.(λy2 . . . (λ.yn.�)R(x) . . .)R(x))R(x).

Then Ψ is a valid witness. R is needed to avoid variable collision between ~y and the variables already
mentioned in A and C[], so that the initial conditions of the de�nition of R(A), R(C)[C ′[]]BB are
met. Let's take a term M ′ and an environment A′ as usual, and use the fact that R(A), R(C[])B

{R(x) : σ}.
(a) If σ′ is such that A′, R(A), B `F M ′ : σ′, then from it we can derive

A′, R(A), R(x) : σ ` C ′[M ′] : σ′.

Now let us feed C ′[M] and A′ to the de�nition of R(A), R(C[])B {R(x) : σ}: we thus have
τ , E with DOM(E) = BHV(R(C)[]) \ {R(x)} and a derivation containing

A′, R(A) ` R(C)[C ′[M ′]] : τ

and
A′, R(A), R(x) : σ,E ` C ′[M ′] : σ′.

87

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

We can safely substitute the subderivation leading to the sequent above with the one we had
derived from A′, R(A), B `F M ′ : σ′, weakened to add E,R(x) : σ, and indeed

DOM(E,R(x) : σ) = BHV(R(C)[C ′[]]) \DOM(B).

This part does not need to make use of the hypothesis on σ.
(b) Let there be a derivation D containing

R(A), A′ ` R(C)[C ′[M ′]] : τ.

By applyingR(A), R(C)[]B{R(x) : σ} as before we get σ′, E with DOM(E) = BHV(R(C)[])\
{x} and a type-variable renaming R′ with R′(R(A), A′) = R(A), A′ such that D contains also

R(A), A′, R(x) : R′(σ), E ` C ′[M ′] : σ′.

Now if we go up in this derivation and look for the (var) rules that introduce all the R(x),
we see that they cannot be followed by any (ins) or (gen). The �rst one because R′(σ) is not
a ∀-type. The second one because of the ∼ convention. So the R(x)s arrive to (app) still
typed with R′(σ), and so the abstractions must be made to accept them, i.e. all the yis must
have �nal derived type R′(σ), and so D contains also

R(A), A′, R(x) : R′(σ), E,R′(B) `M ′ : σ′′

and as before
DOM(E,R(x) : σ) = BHV(R(C)[C ′[]]) \DOM(B).

Now suppose FTV(τ) ⊆ FTV(A). We then de�ne
Ψ(B) := (R(A), C1[C2[. . . Cn[] . . .]])

where, given R the same as in the previous case, Ri is such that it renames BV(R(C[])) to fresh
variables leaving all other as it is (remember that plugging in the hole of a context captures free
variables), except for R(x) which goes renamed with yi, and Ci[] := Ri(R(C))[]. Now, as before,
let's take a term M ′ and an environment A′. Let's denote ~C[] := C1[. . . Cn[] . . .]. For every i we
have by applying Ri to R(A), R(C)[]B {R(x) : σ}, that R(A), Ci[]B {yi : σ}.
(a) If σ′ is such that A′, R(A), B `F M ′ : σ′. Then by induction, applying the hypotheses on

Ci one at a time, we end up with a type τ , an environment E1, . . . , En with DOM(Ei) =

BHV(Ci[]) \ DOM{yi} (and thus DOM(~E) = BHV(~C[]) \ DOM(B)) and a derivation
containing

A′, R(A) ` ~C[M] : τ, A′, R(A), B, ~E `M ′ : σ′.

88

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

(b) Let there be a derivation D containing
R(A), A′ ` ~C[M ′] : τ.

We apply an induction in reversed order, so that there exists a type σ′, ~E as before, and a
type-variable renaming R′ so that in the end we have a derivation containing

R(A), A′, R′(B), ~E `M ′ : σ′.

R′ is the e�ect of the �rst application of the hypotheses only (the one concerning C1[]):
from then on the type σ becomes part of the A′ of the de�nition, and so must be preserved.

In applying the induction hypotheses in to set as the A′ of the de�nition the union of A′ with
what's left of B (and with what we have got as ~E so far). Here �ts the hypothesis on FTV(σ), as
given that, the hypothesis FTV(A′) ∩ FTV(B) ⊆ FTV(A) always holds true.

3. Let Ψ be a witness for X I Y. If A is an environment let's denote by A∩Y := { (x : τ) ∈ A | τ ∈ Y }.
Let Ψ′ be the following algorithm:
Require: B with RAN(B) ⊆ X ∪ Y;
1: (A,C[])← Ψ(B ∩ Y);
2: B′ ← B \ (B ∩ Y);
3: (Y, Z)← (DOM(A) ∪V(C[]),DOM(B′));
4: (A′, C ′[])← (RY,Z(A), RY,Z(C)[]);
5: A′′ ← A′ ∪B′;
6: return (A′′, C ′[]).
Note that this algorithm de�nition depends only on Ψ, so we can build an algorithm Πself that
taken a function Ψ from environments to environments and contexts returns the function de�ned
by the above algorithm. So we have an e�ective computable way of bringing a witness of X I Y

to what we will now see is a witness of X I X ∪ Y. In particular we are applying Ψ′ = Πself to B
with RAN(B) ⊆ X∪Y. We easily check that RAN(A′′) ⊆ X and FTV(B)∩FTV(X) ⊆ FTV(A′′).
We must show that A′′, C ′[]BB.
As A,C[]BB ∩Y, and RY,Z(B ∩Y) = B ∩Y, we get using property 2 of B that A′, C ′[]BB ∩Y.
now by the fact that Ψ is a witness for X I Y we have already that

FTV(B ∩ Y) ∩ FTV(X) ⊆ FTV(A) = FTV(A′),

but then again also RAN(B′) ⊆ X, so that
FTV(B ∩ Y) ∩ FTV(B′) ⊆ FTV(A′)

89

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

and by property 5 of B (where we use also the way in which we have renamed the variables) we
get A′ ∪B′, C ′ BB ∩ Y. Then property 3 does the trick and gets us

A′ ∪B′, C ′ BB ∩ Y ∪B′

which is exactly A′′, C ′[]BB.
6. Let Ψ1 be a witness of the �rst statement, and Ψ2 a witness of the second one. We de�ne Ψ to be

the following algorithm:
Require: B with RAN(B) ⊆ X ∪ Y ∪ Z;
1: (A′

2, C2[])← Ψ2(B);
2: (A′

1, C
′
1[])← Ψ1(A′

2);
3: (X,Y, Z)← (DOM(A′

1) ∪ BV(C ′
1[]),BV(C2[]),DOM(A′

2));
4: (A1, C1[])← (RX,Y,Z(A′

1), RX,Y,Z(C ′
1[]));

5: return (A1, C1[C2[]]).
Again we give a name to the algorithm which in turn yields the above algorithm from input Ψ1,
Ψ2. We will call it Πchain.
The proof that Πchain(Ψ1,Ψ2) is a witness for X I X∪Y∪Z gets technical beyond the aim of this
work. The proof can be found in the already mentioned article by Wells [Wel99].

7. Let X I Y1 and X I Y2 with FTV(Y1) ∩ FTV(Y2) ⊆ FTV(X). By properties 5 and then 3 above
we get X ∪ Y1 I Y2 and then X ∪ Y1 I X ∪ Y1 ∪ Y2. note that if Ψ1 was a witness of the initial
statement, it is also of the second and then Πself(Ψ) is a witness of the latter. Combining it with
X I Y1 (which by property 3 again yields X I X∪Y1) and property 6 we get X I X∪Y1 ∪Y2. If
Ψ2 was a witness of the second initial statement, this one has witness Πchain(Πself(Ψ1),Πself(Ψ2)).
The last statement reduces to X I Y1 ∪ Y2 with the same witness after appplying property 4.
Thus we de�ne an algorithm that produces a witness for this statement given witnesses for the two
premises, and it is:

Πalt(Ψ1,Ψ2) := Πchain(Πself(Ψ1),Πself(Ψ2)).

Now we need one more result to be able to chain together in�nite chains of sets of types, without
loosing the algorithmic content given by witnesses.
Lemma 3.4.11. Let X,Y ⊆ T, with Y approximated by the sequence Yi of decidable sets, i.e.
Yi ⊆ Yi+1 and Y =

⋃
i Yi. Let Θ be computable function that accepts as input a function and an

integer so that if Ψ is a witness of X I Yi then Θ(Ψ, i) is a witness of X I Yi+1. Then if X I Y1

we have X I Y.

90

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Proof. De�ne the following recursive algorithm Ψ′(Φ, i, B):
Require: Φ function with input environment and output environment and context, i integer, B

environment with RAN(B) ⊆ Y;
1: if RAN(B) ⊆ Yi then return Φ(B);
2: else return Ψ′(Θ(Φ, i), i+ 1, B).
Then take a witness Ψ1 of X I Y and de�ne Ψ(B) := Ψ′(Ψ1, 1, B). Because Y is the limit of Yi

the algorithm always terminates at some step k with RAN(B) ⊆ Yk. It is easy then to show that
Φ at that step is a witness of X I Yk and so the result follows.

Exhausting the types
Now the aim is to build one step at a time the statement ∅ I T.

De�nition 3.4.12 (height and parheight). We de�ne a measure on types that ignores quan-
ti�ers. The height h(τ) is the depth of (τ)S plus one, i.e.

h(α) := 1,

h(τ1 → τ2) := 1 + max(h(τ1),h(τ2)),

h(∀α.τ) := h(τ)

If we write a type τ in the form
τ =
−→
∀α1.ρ1 → . . .→

−→
∀αk.ρk →

−→
∀αk+1.β

then we de�ne the parheight of τ :
ph(τ) := max{h(ρ1), . . . ,h(ρk), 0 }.

De�nition 3.4.13. We now will de�ne the sets with which we will climb all the types.
B := {⊥} ∪ {α→ α | α ∈ V} ∪ V,

U := { ∀.τ | BTV(τ) = ∅ },

C := { τ | FTV(τ) = ∅ },

T(k) := { τ | ph(τ) ≤ k },

U(k) := U ∩ T(k),

C(k) := C ∩ T(k).

Lemma 3.4.14. There is a λ-term J such that the empty type environment induces the invariant
type assumption v : ⊥ and x : α→ α.

91

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Proof. (sketch) The term is
J = λv.(λyλz.v (y y) (y z))(λx.truex (x (x v))) (λw.ww).

This term is typable. Let's quickly check its three main components. We have
v : ⊥, y : Int, z : ⊥ → ⊥ ` v (y y) (y z) : ⊥

if we instantiate the rightmost y as Intα→α, the central one as Intα, the rightmost as Int⊥, and
�nally v as Intα → (⊥ → ⊥)→ ⊥. We then abstract z and y. Then we have

v : ⊥, x : α→ α ` truex (x (x v)) : α→ α

if we let v be of type α. Next with an (abs) and a (gen) we have:
v : ⊥ ` λx.truex (x (x v)) : Int .

The last subterm is easily typable with
` λw.ww : ⊥ → ⊥).

So in the end we have
D ` J : ⊥ → ⊥

and in e�ect D(x) = α→ α and D(v) = ⊥.
The fact that every other typing gives the same type assumptions modulo renaming is shown

by interaction of the various subterms. Both y and w must be quanti�ed or they could not be
applied to themselves, and in any case in order to be applied to themselves they need to have the
quanti�ed variable at the end of the left-going path in their type. Then because y must have the
�nal type of the second subterm (from how we have divided them above) which is an abstraction, it
must have depth at least one. Going on like this we arrive to the conclusion of having as invariant
type assumptions for J the three depicted in the typing above for y, x and v.
Corollary 3.4.15. ∅ I B.
Proof. By property 1 we already have that ∅ I {α→ α} and ∅ I {⊥}, and then by 7 ∅ I {⊥, α→
α}. Then we trivially get from a term an invariant type assumption using the types we have
already induced. In fact the environment v : ⊥, x : α → α trivially induces the invariant type
assumption y : α in (λy.y) (x v). So reusing the �rst property we have {⊥, α → α } I {α}, which
by 4 becomes {⊥, α→ α } I {⊥, α, α→ α}. Combining by property 6

∅ I {⊥} ∪ {α→ α}, I {⊥} ∪ {α→ α} I {⊥} ∪ {α→ α} ∪ {α}

92

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

we obtain ∅ I {⊥, α, α→ α}.
We now have to extend the result to all B. Let αi be a decidable enumeration of V. Then we

denote
Bi := {⊥} ∪

i⋃
j=1

{αj , αj → αj }.

Clearly ⋃i Bi = B. Say Ψ1 is a witness of ∅ I B1, obtained by eventually renaming the above
statement. De�ne Θ(Ψ, i) := Πalt(Ψ,Π1,i+1(Ψ1)) where Ri,j := [αi/αj , αj/αi]. Then clearly if Ψ

is a witness of ∅ I Bi then Θ(Ψ, i) is a witness of ∅ I Bi+1. So, using lemma 3.4.11, we have
∅ I B.

We now begin to cover up all the universal type, i.e. U, using the following proposition of which
we will not present the proof.
Lemma 3.4.16. Given a type τ in U(k + 1), we can build a term Mτ and an environment Aτ so
that RAN(Aτ) ⊆ U(k) ∪ B and they together induce the invariant type assumption x : τ .
Corollary 3.4.17. B I U ∪ B.
Proof. Take τ ∈ U(k + 1): by property 1 we gain immediately RAN(Aτ) I {τ}. Because B covers
all free variables, we can then apply 5 and have U(k) ∪ B I {τ}. Say Ω(τ) is the witness we
algorithmically build from Aτ and Mτ . Ω(τ is independent of k: it is a witness for U(k)∪B I {τ}
for any k such that τ ∈ U(k). Consider an enumeration τj of U such that ph(τj) ≤ ph(τj+1) and
the sequence of sets Ui :=

⋃
j≤i{τj}.

Given τi+1 and k such that τi+1 ∈ U(k + 1) we have that U(k) ⊆ Ui, and as FTV(Ui) = ∅,
we may apply 5 and have that Ω(τi+1) is a witness of B ∪ Ui I {τi+1}. Note that necessarily
τ1 = ⊥ ∈ B, the unique closed type of parheight 0, so we have a witness Ψ1 for B I B ∪ U1. As
step algorithm we take Θ(Ψ, i) := Πchain(Ψ,Πself(Ω(τi+1))). In fact if Ψ is a witness of B I B∪Ui,
being that Πself(Ω(τi+1)) is a witness of B∪Ui I B∪Ui ∪ {τi+1} we have that Θ(Ψ, i) is indeed a
witness of B I B ∪ Ui+1. Applying lemma 3.4.11 we get what needed.

Now it's time for the closed types, which have a similar lemma which gives rise to a similar
corollary.
Lemma 3.4.18. Given τ ∈ C(k + 1) there exist a term Nτ and a type environment Bτ with
RAN(Bτ) ⊆ B ∪ U(2) ∪ C(k) that induce the invariant type assumption x : τ .
Corollary 3.4.19. B ∪ U I B ∪ C.

Now we have all we need to tackle down the whole set of types.

93

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

Lemma 3.4.20. For every type τ there is an environment a term Pτ and an environment Eτ with
RAN(E) ⊆ B ∪ C such that they induce the invariant type assumption x : τ .
Proof. Take σ = ∀.α1 → . . .→ αn → τ where ~α = FTV(τ). Clearly we have σ ∈ C. Now de�ne

Eτ :=
−−→
b : α, c : σ, d : ∀.(γ → δ!)→ (δ2 → γ)→ δ3

and Mτ := (d (λx.x) (c~b)). In order for c to accept all the bis, its type must be instantiated with a
substitution such that T (αi) = αi, and so T (τ) = τ , and thus T (σ) = α1 → . . .→ αn → T (β)→ τ .
So (c~b) must be given type T (β)→ τ . Checking the way Eτ (c) must be instantiated, we then see
that γ needs to become τ . So the identity in which x is bound needs to be accepted by τ → ρ for
some ρ, and so the type assumed for x before it's abstracted away must necessarily be τ .
Corollary 3.4.21. B ∪ U I TF.
Proof. The proof proceeds like the two corollaries above.

At last come the results we sought.
Theorem 3.4.22. ∅ I TF.
Proof. It is given by subsequent uses of property 6: ∅ I B and B I B∪U together imply ∅ I B∪U,
this with B ∪ U I B ∪ U ∪ C yield ∅ I B ∪ U ∪ C, and �nally this with the last result above give
∅ I TF.
Theorem 3.4.23 (TC ≤ TYP). TCF is reducible to TYPF.
Proof. Let A ` M : τ be an instance of TC. Choose z fresh and consider the environment
B = A ∪ {z : τ → ⊥}, and build C[] from Ψ(B) = (∅, C[]) where Ψ is a witness of ∅ I TF, so
that ∅, C[]B B. The claim is that A `F M : τ if and only if C[zM] is typable. The preliminary
hypotheses for zM together with ∅ all trivially hold.

Suppose A `F M : τ . Then we can easily derive B ` zM : ⊥. By de�nition 3.4.7 of B, there
is a derivation ending in ∅ ` C[zM] : σ.

Suppose now that C[zM] is typable, i.e. A′ ` C[zM] : σ. We can assume A′ is empty as by
de�nition FTV(C[]) ⊆ ∅ and all the free variables of M get captured by C. So by de�nition of B
the same derivation contains the sequent

R(B), E ` zM : ρ

for some ρ and some type variable renaming R. Then again, FTV(zM) is inside R(B), so by
weakening on reverse we have a derivation of R(A), z : R(τ)→ ⊥ ` zM . Also take the (ins) before

94

3.4. What do we loose with F?
CHAPTER 3

POLYMORPHIC λ-CALCULUS

(gen) form of it. Somewhere up in the derivation there must be an (app) rule of the form

R(B) ` z : R(τ)→ ⊥
(var)

R(A), z : R(τ)→ ⊥ `M : R(τ)
R(A), z : R(τ)→ ⊥ ` z,M : ⊥

(app)

where we see there can't be any (ins) after having introduced z, nor there can be any (gen) before
applying it. Again we can apply weakening on reverse on the derivation on the right and have

R(A) `M : R(τ).

Now applying R−1 yields the desired result:
A `M : R(τ).

Corollary 3.4.24. TCF and TYPF are equivalent problems and both undecidable.

95

Chapter 4

Light logics and λ-calculus

Linear logic was discovered by Girard in 1987 [Gir87]. It has shed a completely new light on
topics which were considered granitic.

What can be considered the main idea behind it? Say we have proved the formula F → G in
classical logic. Fact is, we cannot say anything about the true use of the hypothesis F in proving
the thesis G. We are used to the fact that for example if we have proved G, we may as well say
we prove F → G, though F had nothing to do with G. Or on the converse, we may have used
the hypothesis F a hundred times in di�erent places of the proof, but nevertheless we understately
write just F → G. The rules behind this are the so called structural rules: weakening, i.e. adding
hypotheses, and contraction, i.e. merging two repetitions of the same hypothesis. But what if we
do not allow these rules as they are formulated usually?

Because of its parallelism and application to λ-calculus, we will here always stick to the intu-
itionistic fragment of the logic systems we speak of. So Our sequents will be asymmetrical, with
only one formula on the right.

4.1 An introduction to LL

We will now brie�y outline linear logic. Structural rules are being restricted, and as the impli-
cation takes on a completely new meaning, it is replaced by a new symbol, linear implication (.
We want F (G to mean that we may prove G using exactly once, no more no less, occurrences
of the hypothesis F . We may already see a functional meaning behind this connective: as τ → σ

meant vaguely �take an input of type τ and use it to compute something of type σ�, here σ (τ

will mean �take an input of type τ and use it exactly once to compute σ�.
Clearly having only this can hardly be much expressive. So in order to recuperate the power

96

4.1. An introduction to LL
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

structural rules gave to us, we reintroduce them in a controlled way. We will use modalities, which
can be viewed as a status mark of the formula. !A (bang A) will thus mark an hypothesis that
acts like in the intuitionistic case: as it stands for a place that may be occupied by none, one or
multiple copies of itself. In short words, we let weakening and contraction work only on hypotheses
(i.e. formulas on the left of `) marked in this way. And when can we say a formula may act in
this way? Only if it was in turn obtained by hypotheses marked in the same manner, otherwise by
transitivity of the implication it we still would not now how many times this unmarked hypothesis
gets used. ! and its dual ? are called modalities or exponential. The breakthrough with linear
logic can be brought down to having decomposed the implication in two distinct operations: one is
raising the hypothesis to a new status, and the other of e�ectively using the hypothesis in deriving
the thesis.

This brings a revolution in logic as it used to be. In fact the restriction of structural rules
breaks down the symmetry of the usual connectives, and we discover that in fact there are two
varsions of each classic connective and constant, di�erent in the sense that they need completely
di�erent proofs to be proved. Thus ∧ splits into ⊗ (multiplicative disjunction) and & (additive
disjunction). Proving F ⊗G means �we have used some of the hypotheses to prove F and all the
other ones to prove G�, while proving F & G is �we have used all the hypotheses in proving F
and all the hypotheses again for G�. The dual ∨ in the same manner splits in &(multiplicative
conjunction) and in ⊕ (additive conjunction). Again the two have a di�erent meaning: F &

G is
�we have proved under all the hypotheses that excluding one proves the other�, while F ⊕G means
�we have used the hypotheses to prove F � or else �we have used the hypotheses to prove G�. So
for example we do not have F (F ⊗ F but we have F (F & F , we have F (F ⊕ G but we
do not have F (F

&

G. Also the logic constants undergo the same splitting. The truth value
can be represented in two ways: 1 (one), which represents something that is provable without
needing hypotheses, �it is true because it is provable�, and > (top), which represents something
we may always regard as being hypothesis, �it is true because everything that is provable comes
from it�. The opposites respectively are ⊥ (bottom), from which we can derive any formula, �it is
false because otherwise anything would be provable�, and 0 (zero), which comes from proving two
opposites, �it is false because it is a contradiction�.

Another great revolution is the introduction by linear logic of a parallel concept of proof, where
anywhere it's possible we transcend the particular order in which we add rules. This idea is carried
out by proof nets. A proof is not a tree anymore, but a graph. Rules can be viewed locally, without
necessarily looking at what's around... almost. Whenever we have to consider the environment,
a so called box will be created. Proof nets enjoy the bene�ts of cut-elimination, which becomes
almost local: the process can be done locally and in more points at the same time, in parallel.

97

4.1. An introduction to LL
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Almost, because when it comes to boxes the operation must regard all the box.
When it comes to typing, linear logic has to be deployed with all its power to have much

expressiveness: we have to express the additives in a distinct way from the multiplicatives we are
used to (implication, but also pairing, which we have not presented but is easily implemented).
This can be cumbersome. So, because it is easier to program, and it does not give rise to problems
of expressiveness and completeness, usually a variant of linear logic is adopted: a�ne logic. The
idea is that what we really don't want is not knowing how many times the hypothesis is used in
a proof. We accept not knowing if it was used once or not at all. Basically, we have restricted
contraction but unrestricted weakening. So F (G means �in proving F we have used G at
most once�. The main di�erence is that while retaining control over duplication of hypotheses,
the multiplicatives become stronger that the additives: in type assignment it means that we can
emulate an additive with a multiplicative.

Because of our interest mainly in λ-calculus, we will be in contact only with the implicational
fragment, and in particular in its application to typing discipline. From now on we will identify
types with formulas.

4.1.1 AL as a type system

LL poses various programming problems. It appears that additives are necessary to represent
functions, so that we need to add to the syntax of the terms with, �rst and second constructs, that
introduce a new type of pair with respect to the classical representation, that have the following
typing rules:

A `M1 : τ A `M2 : τ
A `M1 &M2 : τ & σ

A `M : τ & σ
A ` firstM : τ

A `M : τ & σ
A ` secondM : σ

The problem with the usual pair is that it represents ⊗, which means that if not banged both
the components have to be used, and nothing can be discarded. The usual projection is not
applyable anymore, whereas with the & pair we must use only one of the componets: the two pairs
complements each other. In any case programming becomes harder.

To avoid those problems, we put aside our claim to control weakening, and concentrate on
contraction: we permit unrestricted weakening. As a consequence multiplicatives become stronger
than the additives, so that the additives can be completely represented by the multiplicatives, and
thus, in the same way as we have seen in remark 3.2.3, all can be taken down to ∀ and (. A
system based on linear logic with unrestricted weakening is called a�ne. It has a drawback: namely
the full logic system loses determinism in cut-elimination, because we can cut two formulas both
introduced by weakening and we can choose which side we erase, so that we have two completely

98

4.1. An introduction to LL
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

di�erent proofs. However this problem disappears in the intuitionistic case: the formula on the
right cannot be obtained by weakening.
De�nition 4.1.1 (types of AL). The set of linear types are built from V with the following
grammar:

TAL := V | TAL (TAL | !TAL.

Depending on the last rule used we call τ a variable, a(-type (or implication), and a !-type (bang
or exponential or modal type). A type which is not exponential is called linear

TV(τ) and substitutions are de�ned as for TS, by ignoring ! and treating(as →. Paths and
subterms are de�ned similarly by introducing a function D on type de�ned on bang types which
gives the argument of !.
De�nition 4.1.2 (rules of AL). AL is given by the following set of rules. An additional (and
capital) condition is that every variable being introduced in the derivation is considered new. The
only way a repetition can be achieved is through contraction. Because of this condition there is
no need to check compatibility of environments when merging them: they come form di�erent
derivations and thus are disjoint. First the usual rules. As in system F, we build in weakening by
letting additional environment in the (var) rule.

A, x : τ ` x : τ
(var) A, x : σ `M : τ

A ` (λx.M) : σ(τ
(abs)

A `M : σ(τ B ` N : σ
A,B ` (M N) : τ

(app)

Now the two structural rules, contraction and weakening :
~x : !σ : !σ,A `M : τ
y : !σ,A `M [y/~x]

(con) A `M : τ
A,B `M : τ

(weak)

where !A is de�ned by (!A)(x) := !A(x) and ~x : !σ means x1 : !σ, . . . , xn : !σ. We require n ≥ 21.
The rules used to handle the modality are dereliction and promotion:

A,B `M : τ
!A,B `M : τ

(der) !A `M : τ
!A `M : !τ (prom)

Finally, a rule that handles substitution, cut :
−−−−−−→
A ` N : σ −−→x : σ,B `M : τ

~A,B `M [
−−→
N/x] : τ

(cut)

where −−−−−−−→A ` N : !σ means having n derivations of form Ai ` Ni : σi.
1this requirement is for formal tidiness, rather than for correctness: in fact a 1-ary contraction would correspond

to a rule that does nothing, while the 0-ary case would be a special case of weakening.

99

4.1. An introduction to LL
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Remark 4.1.3. Let's discuss some issues about the rules.
Instead of saying that every variable is new, we may equivalently require that every time we

merge environments from di�erent derivations (so in the application and cut rules) they are disjoint,
not only compatible.

Weakening, cut and contraction can be de�ned in a �slower� way, the �rst ones acting on only
one assumption and the other on a single pair of variables. The two de�ntions are equivalent, and
there is no complication in grouping the rules as one.

Cut rule is introduced to obtain substitution which is not granted by the other rules. In fact
the problem is that we cannot guarantee that a banged type is obtained directly with a promotion:
so we do not have any induction hypothesis valid for dereliction, we cannot apply back contraction
on the environments after repeatedly applying induction hypothesis, and �nally we cannot apply
back promotion after substituting one of the type assumptions with a derivation. We can give
an alternative system without the cut rule in which cut is integrated in those rules that pose a
problem with substitution, so to give:

A ` N : !σ ~x : !σ,B `M : τ
A,B `M [N/~x] : τ

(con)
−−−−−−−−→
Ai ` Ni : !σi

−−−→xi : σi, B `M : τ
~A,B `M [

−−→
N/x] : τ

(der)
−−−−−−−→
A ` N : !σ −−→x : σ `Mτ

~A `M [
−−→
N/x] : !τ (prom)

where in contraction we mean that in −−−→x : !σ all the types are equal to !σ. With the two rule above
the standard ones can be emulated by using (var) rules on the left, and substitution lemma (i.e.
(cut) rule) can be proved.

Also we may split promotion into two di�erent rules keeping the system equivalent. The two
rules, one of which we continue to call promotion, while the other is called bracket or digging,
would be (if we decide to leave out the cut rule):

−−−−−−→
B ` N : σ −−→x : σ `M : τ

~B,A `M [
−−→
N/x] : !τ (prom) !!A,B `M : τ

!A,B `M : τ
(brack)

This new promotion is obtained by applying �rst dereliction to all the environment and then the
standard promotion. The bracket is obtained by applying substitution lemma (which because of
the remark above is valid in this system) to the premise, cutting with

x : !σ ` x : !σ (var)
x : !σ ` x : !!σ (prom)

On the converse the usual promotion can be obtained by the two rules above by �rst applying
the new promotion (thus doubling the bangs in the environment) and then multiple uses of the

100

4.1. An introduction to LL
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

bracket. This decomposition is useful, as we will see that ELL is obtained from this system by
adopting this new kind of prom rule and leaving out dereliction and bracket, and then LLL by
tweaking more this new kind of promotion.

As we saw for simply typed λ-calculus this system lacks expressive power: the solution is the
same, adding polymorphism (and so as we have said including additional structures). So we extend
types and add the two rules to handle the quanti�er.
De�nition 4.1.4 (types and rules of AL2). Types TAL2 are de�ned by the grammar

TAL2 ::= V | TAL2 (TAL2 | !TAL2 | ∀V.TAL2.

Free type variables, bounded type variables, substitutions are de�ned as for TF.
Two rules are added to the ones presented for AL:

A `M : τ
A `M : ∀α.τ (gen) A `M : ∀α.τ

A `M : τ [ρ/α]
(ins)

where in (gen) we require as usual that α /∈ FTV(A).
Example 4.1.5. We rede�ne the type for integers as Int := ∀α.!(α (α) (α (α. Every
Church integer is typable with this type. We cannot use anymore the classic Int, apart from 1

and 0 (not even this last one if we renounce to unrestricted weakening).

f1 : α (α ` f1 : α (α
(var)

fn : α (α ` fn : α (α
(var)

x : α ` x : α
(var)

fn : α (α, x : α ` (fn x) : α
(app)

....
~f : α (α, x : α ` (f2 (. . . (fn x) . . .) : α

~f : α (α, x : α ` (f1(. . . (fn x) . . .) : α
(app)

~f : α (α ` λx.(f1(. . . (fn x) . . .) : α (α
(abs)

~f : !(α (α) ` λx.(f1(. . . (fn x) . . .) : !α
(der)

f : !α (α ` λx.(fn x) : !(α (α)
(con)

` λfλx.(fn x) : !(α (α) (α (α
(abs)

` λfλx.(fn x) : IntAL
(gen)

For 1 no contraction is needed (and in fact no dereliction either), and for 0 we have to have
weakening to introduce f .Clearly it is not possible to type integers with the type used in S: no
bang, no repetitions.
De�nition 4.1.6 (forgetful function, embedding into linear). The forgetful function is a
function bringing AL2 types, environments and sequents into their counterparts in system F. We

101

4.1. An introduction to LL
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

denote it with a bar, and de�ne it on types by:
ᾱ := α,

τ1 (τ2 := τ̄1 → τ̄2,

∀α.τ := ∀α.τ̄ ,

!τ := τ̄ .

Basically it erases the modalities. It is trivially extended to environments and sequents by acting
on the types involved (and thus leaving the term unchanged). Clearly if applied on objects without
quanti�ers it gives objects in system S.

On the converse we embed simple types in linear ones with a function denoted by a hat, de�ned
by

α̂ := α,

̂τ1 → τ2 := !τ̂1 (τ̂2.

We extend the de�ntion to environments prepending a bang, i.e. Â(x) := !Â(x), as environments
are really hypotheses.

Note that ¯̂τ = τ , and similarly for environments and sequents, while it is not true that ˆ̄τ = τ ,
as informations on the type get lost when reverting to simple types.

We may say that AL and AL2 give us the tools to study better the computation of a λ-term,
but in fact the system itself relatively to the terms being typed is nothing new. In fact the following
proposition tells us that the terms typable are exactly the same of system F (system S if we do
not use quanti�ers). So also the representable functions are the same.
Proposition 4.1.7. For every typing D Γ in AL2 there is a valid typing D Γ in system F

On the converse, for every typing D Γ in F there is a valid typing D̂ Γ̂ in AL2.
Proof. Reasoning by induction it su�ces to see that every rule in one of the system can be emulated
in the other after applying the right translation. For the �rst claim the validity of the (var), (app)
and (abs) rules is trivially preserved by the forgetful function. (weak) is unsurprisingly emulated
by applying weakening. For (con) and (der) we apply multiple times substitution lemma. The
(prom) rule can be safely erased. (gen) and (ins) are identical.

Regarding the opposite direction there is some tweaking to be done about repeated variables.
Note that it must be done only on application, as is the only rule that can duplicate variable
occurrences. Let us reason by induction on the size of the derivation.

102

4.1. An introduction to LL
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

(var): A (var) yielding A, x : σ ` x : σ becomes
Â, x : σ̂ ` x : σ̂

Â, x : !σ̂ ` x : σ̂
(der)

(abs): The premise of the rule is A, x : σ ` M : τ which by induction hypothesis becomes
Â, x : !σ̂ `M : τ̂ , which in turn by (abs) rule becomes

Â ` λx.M : !σ̂(τ̂ ,

and in fact !σ̂(τ̂ = σ̂ → τ .
(app): We have A `S M : σ → τ and B `S N : σ. For every x ∈ FV(M) ∩ FV(N) we rename it
in one of the two with a fresh variable x′. Say that after this A, B, M and N become A′, B′, M ′

and N ′. Then we apply induction hypothesis and obtain two derivations which yield:

Â′ `LL M
′ : !σ̂(τ

B̂′ `LL N
′ : σ̂

B̂′ ` N ′ : !σ̂ (prom)
Â′, B̂′ ` (M ′N ′) : τ̂

(app)

Now we apply multiple contractions to bring back Â, B̂, M and N .
(gen) and (ins): These pose no problem.

Again ¯̂
D = D, and not the converse.

Corollary 4.1.8 (strong normalization). Terms typable in AL are strongly normalazing.
Let's unearth immediately a problem with AL (and its restrictions):

Proposition 4.1.9. AL does not enjoy subject reduction.
Proof. Take the typing y : α, z : α → !α ` (λx.z x) y : !α, and with a (cut) insert it in x : !α `
λw.w xx : !((α → αα) → α), obtained with a �nal contraction. We have that a single β-step on
only one of the two copies of the term brings to λw.w (z y) ((λx.z x) y) which evidently cannot be
typed with the same environment above because y is of a type not banged.

The problem is that we have shared a derivation using contraction, but then we have applied
reduction to only one of the copies thus breaking the sharing. In order to remain inside the type
we have to apply the same step to all the copies cut with a contraction. This is not the only
problem with sharing. One way of resolving them is by seeing the proof that hides behind the term
and apply cut-elimination: the complexity results will be in general guaranteed if we adopt this
strategy of elimination. In some way the typing is not anymore a simple certi�cate which we put
aside after obtaining it: it also tells us how we have to reduce the term to use all the information
contained in it.

103

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

4.2 Light logics
So linear logic as a type assignment gives us new insight into the use we do of input in the

term. These are tools that we need only to exploit.
In 1998 Girard presented such a way to use them, presenting LLL, light linear logic, in [Gir98].

It is a system that captures polynomial time. The sense of it is that if we bound the number of
concatenated boxes we have a proof net that normalizes in polynomial time, not only with respect
to the number of cut-elimination steps, but also to the steps that a Turing machine needs to do to
normalize it. On the converse every polynomial function has a representation as proof net of LLL.

Expanding a germinal idea contained in that paper 3 years later Danos and Joinet introduced
ELL, elementary linear logic, which captures the class of elementary functions.

The idea in the two is to again restrict the use of contraction, not by tampering directly with
it, but by better controlling the way modalities are dispensed.

We here present in reversed order the type systems related to these two approaches to complex-
ity, linked with the intuitionistic implicational versions of the two logic systems. Again we permit
unrestricted weakening: the completeness results regarding the corresponding complexity classes
remain sound, and programming becomes easier, without having to introduce additives.

4.2.1 EAL

De�nition 4.2.1 (elementary functions). Elementary recursive functions, also called Kalmar
recursive functions from the �rst who introduced them in 1943, are recursive functions for each of
which there exists a Turing machine that computes it in a running time bounded by a tower of
exponentials of �xed height, applied to the arguments.

Equivalently, they are the least class of functions containing the constant 0, the successor
succ, the addition add, the multiplication mult, the predecessor pred, the subtraction sub, the
exponential exp, and closed under compostion and bounded sum and product, i.e. if we have
elementary functions f : Nk+1 → N we have that the following functions h1, h2 : Nk+1 → N are
elementary:

h1(n, ~m) =
n∑

i=0

f(i, ~m), h2(n, ~m) =
n∏

i=0

f(i, ~m).

EAL is obtained from AL by assuming the all-in-one promotion and not permitting anymore
dereliction and bracket. The types being used are the same of AL. We here give rules without cut
(that will be embedded in contraction and promotion).

104

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

De�nition 4.2.2 (rules of EAL). Rules for EAL are the following:
A, x : τ ` x : τ

(var)

A, x : σ `M : τ
A ` (λx.M) : σ(τ

(abs) A `M : σ(τ B ` N : σ
A,B ` (M N) : τ

(app)

A ` N : !σ ~x : !σ,B `M : τ
A,B `M [N/~x] : τ

(con) A `M : τ
A,B `M : τ

(weak)

−−−−−−−→
A ` N : !σ −−→x : σ,B `M : τ

~A, !B `M [
−−→
N/x] : !τ (prom)

Note that we allow some variables to remain named the same across promotion: this is for ease of
notation, without having to rename them if they come directly from a (var).

Note also that every EAL derivation is trivially an AL derivation without need of translation
if we take the de�nition of AL with the all-in-one promotion.

As we did for AL we can introduce polymorphism obtaining EAL2. The types being used are
the same, and the two rules (gen) and (ins) apply too.
Example 4.2.3. Again we must change the type for integers. Throughout this section Int will
denote

Int := ∀α.!(α→ α)→ !(α→ α).

Type derivation for Church integers is obtained from that in AL (see example 4.1.5) by replacing
the dereliction rule with an all-in-one promotion.

The new restriction indeed cuts down on the functions being represented.
Theorem 4.2.4. A term typable in EAL2 can be reduced in elementary time, i.e. there exist
a Turing machine that given any EAL2-typed term together with its derivation reduces it with a
computational cost bounded by a tower of exponentials.
Proof. (sketch) What we do is that we take the proof-net representation of the term and we check
in that framework what happens. The restriction on rules permits to have a stability notion, for
which we can carry out all cut-elimination steps one exponential level at a time, where by level
we mean how many boxes (which are drawn when using the promotion rule) contains the cut we
want to reduce. With the restrictions we have that reducing a cut in a certain level can create
new cuts only at a higher level, and does not make any node change level (the total exponential
depth of the proof does not change). So say we are reducing cuts at level d: we reduce at most s

105

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

cuts where s is the size of the proof at the moment. Each reduction produces at most s copies of a
rule at a higher level, so the at the end of this steps the proof will have size at most ss + 1, which
is de�nitely under 22s . So if we clear a level at a time starting from the lower one and proceding
increasingly we have a bound on cut reductions by a tower of exponentials of height proportional
to the total depth of the proof. Moreover every cut reduction is elementary for Turing machines
and so the e�ective computational cost is elementary.
Remark 4.2.5. We may note that we may speak of elementary bound only if the depth of the
proof is �xed. In particular if we take a term of type σ(τ it is not true that applied to any term
of type σ the two reduce in elementary time with respect to the size of the argument, because we
can take terms of exponential depth proportional to their size, and thus the tower of exponentials
becomes of varied height. However this does not pose a problem as far as we are concerned with
functions on integers, as we will see that the exponential depth of any integer is 1.

In order to have a better understanding on the way the type assignment rules work on pure
terms, we will now introduce new terms that re�ect them. Basically substitution due to promotion
and sharing due to contraction will be made explicit. With pure λ-terms typing is no longer a
certi�cate we can put aside once read: it contains information we want to use in reducing the term.
These new terms make this mechanism explicit: we can de�ne a reduction on this terms that in
fact re�ects the cut-elimination of the associated proof-net.
De�nition 4.2.6 (ΛEA). The set of elementary a�ne terms are built with the grammar

ΛEA ::= V | (ΛEA ΛEA) | (λV.ΛEA) | {ΛEA}ΛEA→~V | (!ΛEA){
−−−−→
ΛEA/V}.

We will call the two new constructs contracted term and boxed term. Practically we are writing in
the syntax the substitutions related to contraction and promotion. We use `{' and `}' to distinguish
such an operation from the brackets of substitions. Brackets are a way of writing in brief an
operation done on terms, while here the braces are coded in the syntax. We call auxiliary the
variables appearing in the construction of these new terms, i.e. ~x in {M}N→~x and (!M){

−−→
N/x}.

We require that all variables appear at most once in every term (appearing in the term and in
the list of auxiliary variables of boxed and contracted terms does not count). In a boxed term we
require that all free variables must become auxiliary. The de�nition of free and bounded variables

106

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

is extended to the new constructs by
FV({M}N→~x) := FV(M) \ {~x} ∪ FV(N),

FV((!M){
−−→
N/x} := FV(M) \ {~x} ∪ FV(~N),

BV({M}N→~x) := BV(M) ∪ BV(N),

BV((!M){
−−→
N/x} := BV(M) ∪ BV(~N).

We extend α-equivalence to encompass also auxiliary variables, and substitution to avoid variable
capture just like if auxiliary variables were bounded. We also identify boxed and contracted
terms in which the corresponding list of auxiliary variables is in di�erent order. If we α-convert
variables so that no name clash ever happens we can apply substitution without worries. For
ease of notation we may rewrite a term (!M){

−−→
N/x, y′/y} by (!M [y′/y]){

−−→
N/x}, contradicting the

rule of all free variables appearing auxiliary: this is a notation, we have to keep track of the free
variables and eventually put them again in the list. !M is short for (!M){} (also regarding the
above notation), (!qM) is short for M preceded by q modalities. If we write (!qM){

−−→
N/x} we mean

that the auxiliary information is for the last ! applied, while all the other ones follow the convention
of hiding auxiliary variables.

We rede�ne the size of the term extending to the new cases by
|{M}N→~x| := |M |+ |N |+ |~x| − 1,∣∣∣(!M){
−−→
N/x}

∣∣∣ := |M |+ 1 +
∑

i

(|Ni|+ 1).

Clearly these new terms can be transformed into a usual term by applying the substitutions
that are hard-coded into them. However there is also a subtler way of expanding an elementary
a�ne term into a pure one.
De�nition 4.2.7. Let's denote by (M)+ the following function (.)+ : ΛEA → Λ:

(x)+ := x,

(λx.M)+ := λx.(M)+,

(M1 M2)
+ := (M1)

+ (M2)
+,

({M}N→~x)+ := (M)+[(N)+/~x],

((!M){
−−→
N/x})+ := (M)+[

−−−−−→
(N)+/x].

107

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

We de�ne another translation (.)− : ΛEA → Λ:
(x)− := x,

(λx.M)− := λx.(M)−,

(M1M2)− := (M1)− (M2)−,

({M}N→~x)− :=

(M)−[N/~x], if N is a variable,
(λz.(M)−[z/~x])N otherwise,

((!M))− := (M)−

((!M){
−−→
N/x, P/y})− := (λy.((!M){

−−→
N/x])−) (P)−,

where we assumed all the terms substitute for the auxiliary variables of a boxed term are not
variables.
Remark 4.2.8. We say the second one is subtler because it does not cause a heavy increase of
the size. In fact |(M)−| ≤ 2 |M |. Note that they are equivalent, in the sense that (M)−

β
� (M)+.

These new terms have the corresponding new rules:
De�nition 4.2.9 (rules of EALs). The typing system EALs (elementary a�ne logic with shar-
ing) is given by the following rules over terms of ΛEA.

A, x : τ ` x : τ
(var)

A, x : σ `M : τ
A ` (λx.M) : σ(τ

(abs) A `M : σ(τ B ` N : σ
A,B ` (M N) : τ

(app)

A ` N : !σ ~x : !σ,B `M : τ
A,B ` {M}N→~x : τ

(con) A `M : τ
A,B `M : τ

(weak)

−−−−−−−→
A ` N : !σ −−→x : σ `M : τ

~A,` (!M){
−−→
N/x] : !τ (prom)

Note that the de�nition of the promotion can in fact be adapted to the convention of not stating
the explicit substitution of variables by omitting the relative (var) rules and simply writing

−−−−−−−→
B ` N : !σ −−→x : σ,B `M : τ

~A, !B ` (!M){
−−→
N/x] : !τ (prom)

We extend as usual to EAL2s with second order adding (gen) and (ins). We may omit drawing
an eventual (var) used in contraction.

108

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Remark 4.2.10. Note that now EALs is syntax driven, and EAL2s is almost syntax-driven in
the same sense of system F.

First of all we relate the new terms to the classic ones.
Proposition 4.2.11. If A `EAL2s

M : τ then
A `EAL2 (M)+ : τ

and A `EAL2 (M)−.
On the converse if A `EAL2 M : τ there is a term N ∈ ΛEA such that (N)+ = M and

A `EAL2s
N : τ.

Proof. Regarding (.)+ both directions are by simple induction on the derivation. Each rule simply
translates into the corresponding one of the other system. In particular N is built from M by
leaving explicit all the substitutions required by contraction and promotion. Note that a-priori the
term N does not depend solely on M , or on the �nal sequent of the derivation: we have to use the
entire derivation leading to A `M : τ to build it.

As for (.)−, where the de�nition di�ers we just have to replace the cut implemented in (prom)
or (con) with abstraction followed by an application.
De�nition 4.2.12 (reduction on TEA). We de�ne the following one step relations, intending
that the de�nition given should pass to context.

(λx.M)N
β→M [N/x],

{M}
(!N){

−−→
P/x}→~y

→dup {. . . {M [(!N){
−−→
x1/x}/y1, . . . , (!N){

−−−→
xk/x}/yk]}

P1→
−→
x1 . . . }Pk→

−→
xk
,

(!M)
{−−→
N/x, (!P){

−−→
Q/z}/y

}
→!−! (!M [N/y]){

−−→
N/x,

−−→
Q/z},

({M}P→~xN)→@−c {(M N)}p→~x,

(M {N}P→~x)→@−c {(M N)}p→~x,

(!M){
−−→
N/x, {P}Q→~y/z} →!−c {(!M){

−−→
N/x, P/z}}Q→~y,

{M}{N}P→~y→~x →c−c {{M}N→~x}P→~y,

λx.{M}N→~y →λ−c {λx.M}N→~y, if x /∈ FV(N).
In →dup we explicitly ask that (!N){

−−→
P/x} is written with all the free variables appearing in the

auxiliary list.
Note that with the condition on variables not appearing twice there is no capture in the above

de�ntions. We de�ne by �EA the transitive and re�exive closure of all the above one step reduc-
tions.

109

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Theorem 4.2.13. Every term in ΛEA typable in EALs normalizes with �EA in elementary time.
Proof. This is in fact a restatement of theorem 4.2.4. Practically the rules for →EA are the
embedding into ΛEA of the rules of cut-elimination in ELL, apart from the rules of interaction of
contraction which are not present in the parallel notion of proofnets (@− c, c− c, λ− c) or are a
simple rewriting rule (!− c). However the presence of those can be seen to not alter the resulting
complexity.

So we will use this form for the terms, so that we have an easier understanding on how typing
works. We will identify type derivation of the two system, writing `EAL indi�erently for terms in
one or the other system. In this framework the Church integers are the terms:

n := λf.{(!λx.f1(f2 . . . (fn x) . . .))}f→~f .

Again we will denote by n the classic pure form or the one given above depending on the context.

4.2.2 Representation theorem for EAL

From now on Int will denote the integers in EAL2, i.e.
Int := ∀α.!(α(α)(!(α→ α),

and Intτ is Int instantiated with τ .
De�nition 4.2.14 (representing functions in EAL2). We say a function f : Nk → N is
represented in EAL2 if there is a pure term f typable in EAL2 with Intk (!q Int so that given
~n ∈ Nk we have

f ~n
β
� !qf(~n).

Moreover we say the representation f is �at if q = 0, oblique otherwise. We call q the obliqueness
of the representation.

Flat functions will be the ones possible to iterate.
Theorem 4.2.15. Every elementary function is representable by a term typable in EAL2. On the
converse every term typable with Intk (!q Int represents an elementary function.

One direction is practically ready. Given M typable with Intk (!q Int, applying it to ~n we
have a term of type !q Int. If we apply the forgetful function we have that the term is typable as
an integer in system F, so we already know its normal form is an integer (up to identi�cation of 1

with the identity). By theorem 4.2.1 we know that computation time can be bounded by a tower

110

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

of exponentials with height proportional to the depth of the proof net associated with M ~n. This
has a �xed depth independent of ~n, so the computation time is elementary.

The proof of the other direction will be carried out with an axiomatic approach, i.e. we will
use the axiomatic characterization of the class of elementary functions, rather than coding Turing
machines in the system.

First let us introduce a tool of great use in programming with EAL2, the iteration scheme.
clearly it will be restricted in some manner to prevent uncontrolled iteration.
Proposition 4.2.16 (iteration). There is a scheme (a context with three holes in our case)
ITn,M,N so that given terms A `EAL M : τ (τ and B `EAL N : τ (A and B disjoint), we have
the typing

!A, !B,n : Int ` ITn,M,N : !τ
such that ITn,M,N represents M iterated n times on N .
Proof. The scheme is ITn,M,N := (!y N){(n (!M)/y}. We have (ITn,M,N)+ = (nM N), so it is
easy to see that indeed the scheme being represented is the iteration. Let's see how typing works.

n : Int ` n : Int
(var)

n : Int ` n : Intτ
(gen)

A ` M : τ (τ
!A ` (!M) : !(τ (τ)

(prom)

!A, n : Int ` n (!M) : !(τ (τ)
(app)

y : τ (τ ` y : τ (τ
(var)

B ` Nτ

B, y : τ (τ ` y N : τ
(app)

!A, !B, n : Int ` (!y N){(n (!M)/y} : !τ
(prom)

Note that
• we can apply an iteration only on a function which preserve the exponential depth, i.e. we can't
apply it to a function σ(!σ.
• the returned value has its exponential depth lifted. So, by the above point, we cannot iterate an
iteration.

Now with the most basic base functions. 0 and projections pose no problems.
Lemma 4.2.17 (succ). succ is representable in EAL2 by a �at term succ.
Proof. We easily (and linearly) derive

f1 : α(α, z : α(α,` λx.f1 (z x)

and
f2 : !(α(α), n : Int ` n f2 : !(α(α).

111

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Applying a promotion to the �rst one cutting it with the second we then have
f1 : !(α(α), f2 : !(α(α), n : Int ` (!λx.f1 (z x)){(n f2)/z} : !(α(α)
f : !(α(α), n : Int ` {(!λx.f1 (z x)){(n f2)/z}}f→f1,f2 : !(α(α)

(con)
n : Int ` λf.{(!λx.f1 (z x)){(n f2)/z}}f→f1,f2 : Intα

(abs)
n : Int ` λf.{(!λx.f1 (z x)){(n f2)/z}}f→f1,f2 : Int

(gen)

We take
succ[] := λf.{(!λx.f1 (z x)){(� f2)/z}}f→f1,f2

and easily see that (succ[n])+ = λfλx.(f (n f x)), so that indeed succ := λn. succ[n] is a term of
type Int(Int representing succ.

Now we have the tools necessary to make an integer change depth, but only making it grow
(otherwise we could iterate any function).
Lemma 4.2.18 (coercion). There is a context coerc[] so that

n : !q Int ` coerc[n] : !q+1 Int

is derivable for any q and coerc[n] ≡β n for every n. We denote by coercp[] the context
coerc[. . . coerc[n] . . .] with p copies of the context chained together, so that

n : Int ` coercp[n] : !q Int(!p+q Int .

Proof. We apply the iteration scheme to the �at term succ with base value 0:
coerc[n] := ITn,succ,0 .

Remark 4.2.19. The presence of this term is why we can restrict ourselves to functions which
do not have modalities on the arguments. If we obtain a representation of a function f as a term
M typable with !p Int(!q Int (we suppose only one argument but it is not restrictive), we can
de�ne the term

f := λn.(M coercp[n])

and we have a term representing f with the right typing. So we can take for represented also
functions for which we �nd terms of type !p1 Int(. . .(!pk Int(!q Int.

Also we can lift the obliqueness of a function to a desired value higher than the original oblique-
ness, by using λn. coercp[f n].

Instead we will say we promote a function M : Intk (!q Int by applying a certain number p
of times promotion to M ~n and then abstracting the ns, so that we obtain a term representing the
same function but with type (!p Int)k (!p+q Int.

112

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Lemma 4.2.20 (add and mult). add and mult are representable by �at terms.
Proof. Clearly we can't use iteration because they would not be �at, and we need them �at for
bounded sum and product.

Surprisingly mult is easier. The usual term λnλm.λf.(m (n f)) is easily typable with Int (

Int (Int without use of exponential rules. As for add, once we revert back to pure λ-calculus
the term will be the usual one. However here we must contract the f . So we easily derive these
three sequents

f1 : !(α (α), n : Int ` n f1 : !(α (α), f2 : !(α (α), m : Int ` m f2 : !(α (α),

w : α (α, z : α (α ` λx.w (z x) : α (α.

Then with a promotion we plug the �rst two into z and w in the third one, and get
f1 : !(α (α), f2 : !(α (α), n : Int, m : Int ` (!λx.w (z x)){n f1/w, m f2/z}.

Then we contract and abstract and get
add := λnλm.λf{(!λx.w (z x)){n f1/w, m f2/z}}f→f1,f2 ,

typable with Int(Int(Int.
Lemma 4.2.21 (exp). exp is representable in EAL2.
Proof. Take M := λx.multmx. We get m : Int `M : Int(Int �at. So we can iterate it, using
as base 1 of type Int. So applying the iteration scheme yields

m : ! Int, n : Int ` ITn,M,1 : ! Int
which represents the exponential. By abstracting and precomposing with a coercion we get the
desired term exp of type Int(Int(! Int which represents mn.
Lemma 4.2.22 (pred and sub). pred and sub are representable in EAL2.
Proof. The idea is always that to use a couple in which one component is used to save the last
value which has been visited so that on exit we give it as output.

The de�nition of σ⊗τ is the same used for σ×τ in system F (see 3.2.3), provided we substitute
(for →. In particular it means that apart from exponentiating, we can use one or both the
components of the pair, but at most one time each. We de�ne the term to be iterated of type
τ := (α(α)⊗ (α(α). So we build a term M of type τ (τ :

M := λp.p (λxλy.〈f, x ◦ y〉,

113

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

where I is the identity and ◦ is the composition x ◦ y := λz.x (y z). Provided we type f , x and y
with α(α, and p with τ , we get

f : α(α `M : τ (τ

�at so we can iterate it. Note no exponentials where used. If we start with base value ` 〈I, I〉 : τ

(empty environment) we get at the �rst iteration 〈f, I ◦ I〉 and only from then on we begin to
compose the fs in the second component. Iterating n ≥ 1 times yields 〈f, (f)n−1〉 where (f)n−1 =

f ◦ · · · ◦ f ◦ I with n− 1 copies of f . Applying iteration scheme we get a term
f : !(α(α), n Int ` ITn,M,〈I,I〉 : !τ.

We prepare apart a term ready for the one above to be plugged in by promotion. In fact we easily
get a derivation ending in

z : τ ` λx.z falsex : α(α

which together with the other gives
f : !(α(α), n Int ` (!λx.z falsex){ITn,M,〈π0,I〉 /z} : !(α(α)

n Int ` λf.(!λx.z falsex){ITn,M,〈π0,I〉 /z} : Intα
(abs)

which then is generalized to Int, and after abstraction becomes pred. Having the result of the
iteration (if we plug n in place of n) 〈I, (f)n−1〉 we extract the left component and have (after
reverting to pure terms) λfλx.((f)n−1 x) which is easily seen to reduce to n− 1. If n = 0 we
extract the identity which yields the right result.

So pred is �at: we can iterate it to get an oblique representation of sub.
Lemma 4.2.23 (composition, bounded sum, bounded product). The composition, bounded
sum and bounded product schemes are representable in EAL2.
Proof. Composition is easy, we must just use coercion to have all modalities right. So if the fis are
represented by terms fi of obliqueness pi and g is represented by a term g of type Intk (!q Int
we �rst lift fi to the same obliqueness p = max(pi). Then we promote p − 1 times the term g ~m

getting
~m : !p−1 Int ` (!p−1g ~m) : !q+p−1.

In the last promotion we plug the terms fi ~n, and �nally get
`
−→
λn.(!pg ~m){

−−−−−→
(f~n)/m} : Intk (!q+p Int .

114

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

For sums and products we have to �nd a way to use iteration, given that sum and product are
�at. So take any g with a �at representation, and any f . We want to represent

h(0, ~n) := f(0, ~n),

h(m+ 1, ~n) := g(f(m+ 1, ~n), h(m,~n)).

Say that f is represented by f of obliqueness q. First we promote the �at representation g to a
term g′ of type (!p Int)2 (!p. Note that (g)+ = (g)+. Then consider the type τ := Int⊗!q Int.
By assuming p1, p2 and p3 of type τ , we easily derive

~n′ : Int, p1, p2, p3 : τ ` 〈succ (p1 true), g′ (f (p2 true)~n′) (p3 false)〉 : τ.

We promote, contract and abstract to get
~n′ : ! Int ` λp.{(!〈succ (p1 true), g

′ (f (p2 true)~n′) (p3 false)〉)}p→p1,p2,p3 : !τ (!τ.

Let's call the above term M . Note that if g was not �at we would not obtain the same type as
output. The e�ect of M on a pair 〈x, y〉 with x of type Int and y of type !q Int integers is that

M 〈x, y〉
β
� 〈x+ 1, g(x, y)〉,

where we are really seeing what's happening in pure λ-calculus.
So if we apply it m times to

~n′′ : ! Int ` (!〈1, f 0, ~n′′) : !τ
we get the pair 〈m+ 1, h(m,~n), if we manage to contract the n′s with n′′s. Let's denote by N the
banged pair above. The iteration scheme yields:

n′ : !2 Int, n′′ : !2 Int,m : Int ` ITn,M,N : !2τ.
Let's call K the term obtained from above contracting ~n′ and ~n′′ to −−−−−−→coerc2 n:

~n : Int,m : Int ` K : !2τ.
We prepare apart a term to extract what we need from K.

z : τ ` z true : !q Int
z : !τ ` (!z true) : !q+1 Int

(prom)

With another promotion we plug our iteration in z:
~n : Int,m : Int ` (!2z true){K/z} : !q+2 Int .

So by abstraction we get the desired representation, with obliqueness q + 2.

115

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

4.2.3 LAL

De�nition 4.2.24 (polytime functions). Polytime recursive functions are recursive functions
for which there exists a Turing machine that computes them in a number of steps bounded de�nitely
by a polynomial in the arguments of the function.

In 1992 an axiomatic de�nition of this class of functions was given by Bellantoni and Cook
in [BC92].
De�nition 4.2.25 (BC algebra). We de�ne functions on integers by marking certain arguments
as safe and the other ones as normal, denoting it by f(~x; ~y), where the variables to the left of
the semicolon are the normal ones and the others are safe. We will now use binary notation for
integers. BC, Bellantoni-Cook algebra, is the least class of function thus marked that contains:
• the constant 0(;) that gives zero;
• the projections πm,n

i , where 1 ≤ i ≤ m+ n, with πm,n
i (x1, . . . , xm;xm+1, . . . , xm+n) := xi;

• the successors succi, where i = 0, 1, with succi(; a) = 2 · a+ i = ai;
• the predecessor pred, with pred(; a) = ba/2c, so that pred(0) = 0 and pred(ai) = a;
• the conditional if, with

if(; a, b, c) =

b if a is even,
c otherwise.

and closed with respect to the following schemes:
• safe composition, that given k functions fi(~x;), ` functions hj(~x; ~y) and a function g(~sk;~t`) gives
a function

S-COMP(g, ~f,~h)(~x; ~y) := g(~f(~x;);~h(~x; ~y)).

• safe recursion, that given a function g(~y;~z), and two functions hi(x, ~y;~z, w) gives a function f =

S-REC(g, h0, h2) de�ned recursively:
f(0, ~y;~z) := g(~y;~z),

f(xi, ~y;~z) := hi(x, ~y;~z, f(x, ~y;~z)).

Theorem 4.2.26. A function f(~n) is polytime if and only if f(~n;) is in BC.
Proof. See [BC92]. The breakthrough is given by the fact that the place occupied by the recursive
call in recursion is safe, so that it cannot be itself a recursion argument: hi(x, ~y;~z, w) cannot be
de�ned by recursion on w.

116

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Light linear logic is yet another means of capturing this complexity class.
In LAL we restrict further the creation of modalities. The idea is that we want to restrict

duplication to the minimum necessary, and we want to forbid completely the duplication of du-
plication. So we may say that we mark in a separate way the resources that where obtained by
duplicating something in such a way to be not duplicated again without newly marking it. To do
so we need another mark, a new modality called neutral or paragraph and denoted by §. Basically
once we are allowing contraction we mark the resulting type so that it may not be contracted
again.
De�nition 4.2.27 (types of LAL). Types are built from V with the following grammar:

TLAL ::= V | TLAL (TyLAL | !TyLAL | §TyLAL.

Both §τ and !τ are both called exponential or modal.
De�nition 4.2.28 (rules of LAL).

x : τ ` x : τ
(var)

A, x : σ `M : τ
A ` (λx.M) : σ(τ

(abs) A `M : σ(τ B ` N : σ
A,B ` (M N) : τ

(app)

A ` N : !σ −−−→
x : !σ,B `M : τ

A,B `M [N/~x] : τ
(con) A `M : τ

A,B `M : τ
(weak)

−−−−−−−→
B ` N : aσn −−→x : σ `M : τ

~B,A `M [
−−→
N/x] : bτ

(prom)

where in the promotion rule ~a and b are exponentials, and if b = ! then n ≤ 1 and a1 = ! (if n = 1).
Otherwise if b = § there is no restriction in what modalities and how many of them are used. If
b = ! we call it a !-promotion, in the other case it will be called a �-promotion.

Again adding polymorphism is direct.
De�nition 4.2.29 (types and rules of LAL2). We extend ΛLAL to ΛLAL2 adding the quanti�er:

TLAL2 ::= V | TLAL2 (TLAL2 | !TLAL2 | §TLAL2 | ∀V.TLAL2.

Rules are extended with the usual (gen) and (ins).
Example 4.2.30. Church integers are typable with a type we will again call Int de�ned by

Int := ∀α.!(α(α)(§(α(α).

117

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

In fact we can easily adapt the derivation seen for AL in example 4.1.5, by replacing the dereliction
with a §-promotion. However we will mainly use the binary representation of integers, given by
type

BInt := ∀α.!(α(α)(!(α(α)(§(α(α).

Given a sequence w ∈ { 0, 1 }∗ of length k we have a representation
w := λf0λf1λx.fw0(fw1 . . . (fwk

x) . . .).

In particular if we adopt it to represent integers we take n := w where w is the binary expansion of
n read from the least to the most signi�cant digit, with the di�erence that we represent 0 with the
empty string λf0λf1λx.x. If we see it as a free structure (see 3.2.6), fi represents the constructor
that appends i to the string. We will have to deal with the trailing zeros.

With the new modality we are not in linear logic anymore, strictly speaking. However we can
revert back to EAL (and thus to AL) with a simple function.
De�nition 4.2.31 (injection into EAL). The injection of LAL types, sequents and derivations
is done by turning § into a ! and all §-promotions into normal ones.

Though again the logic system behind this typing system enjoys the intended bound on cut-
elimination, in fact the same does not hold for terms typable with LAL. Not only strong polyno-
miality is absent for these terms, but even weak polynomial normalization does not hold without
reverting to sharing.

Take the term n (λy.y x x) z, with n a Church integer. We can see it is typable with §!α within
the environment y : !((!α)2 (!α), z : !!α. In fact we type

y : (!α)2 (!α ` λx.y x x : !α(!α,
which promoted and combined with n : Intα gives

y : !((!α)2 (!α) ` n(λx.y x x) : §(α(α).

We plug it into w in the §-promotion of
w : !α(!α, z : !α ` w z : !α

and we get
y : !((!α)2 (!α), z : !!α ` n(λx.y x x) z : §!α.

The size of this term is proportional to n. However its normal formMn satis�esMn+1 = yMnMn,
so that the size of the normal form is proportional to 2n. So using a Turing machine takes up
exponential space, and thus exponential time.

118

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

However if we instead see the derivation of the type for the normal forms Mn we have a
representation linear in size with respect to n: we can derive n copies of

z : !α, y : (!α)2 (!α ` y z z : !α.
Then we §-promote one without plugging anything, and then we §-promote them one at a time
plugging in z the derivation obtained at the previous step. With a �nal contraction we identify all
the di�erent ys. The size is clearly linear in n.

However not everything is lost. In fact if we restrict our attention to BInt and functions
(closed terms) on BInt, we will always get an at least weak polynomial reduction. And the
derivation becomes even strongly polynomial if we use the cut-elimination of proof nets associated
to the derivations or equivalently, as we did for EAL, terms in which sharing and promotion are
explicitly written.
De�nition 4.2.32 (ΛEA). The set of light a�ne terms with sharing extends the elementary ones.
They are built from V with the following grammar

ΛEA ::= V | (ΛEA ΛEA) | (λV.ΛEA) | {ΛEA}ΛEA→~V | (aΛ
EA){

−−−−→
ΛEA/V},

where a is a modality. An additional condition on the construction of these terms, apart from the
ones given for ΛEA, is that a term boxed with ! cannot have more than one free variable.

Again there is a direct translation of the rules for standard LAL and LAL2 into a system
based on ΛEA: we will call these systems LALs and LAL2s respectively. The rules are exactly
the same of EALs and EAL2s, apart from the di�erentiation between ! and § promotions, in the
same way as it is outlined for regular LAL rules.
De�nition 4.2.33 (reduction on ΛEA). We de�ne the same one step reduction we have seen
for EAL in 4.2.12, with the following di�erences and additions:
• →!−! gets split in→!−!,→§−! and→§−§, by changing the modality of the boxed terms. In→§−! we
mean that the boxed term being plugged is the one with ! modality. Note that with the condition
on free variables in banged terms, →!−! may be rewritten as

(!M)
{
(!N){P/y}/x

}
→!−! (!M [N/x]){P/y},

where eventually {P/y} is empty.
• There is no →!−c. This comes from the fact that we cannot freely move around a contraction in
a derivation, because it could have been done to make a !-promotion possible by cutting down to
one the number of free variables. →§−c with § subsituting ! is permitted, as §-promotion does not
have any condition on the number of type assumptions.

119

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Note that the size-increasing power of →dup is drastically lessened, as it becomes
{M}(!N){P/x}→~y →dup {M [(!N){x1/x}/y1, . . . , (!N){xk/x}/yk]}P→~x.

Another simpler approach is due to Baillot and Terui [BT04], by introducing a new type
assignment system called DLAL: dual light a�ne logic. The main advantages of such an approach
are that it guarantees strong polynomiality on pure λ-terms, and though it is a proper subsystem
of LAL, it retains the property of being polytime complete. In addition it enjoys subject reduction
property. This is achieved by letting the bang appear only in the form !σ (τ . In fact we erase
any reference to !, reintroduce the intuitionistic arrow and keep track of what type assumptions
should have been marked by ! in the environment.
De�nition 4.2.34 (TDLAL and TDLAL2). Types are built from V with the following grammar.

TDLAL ::= V | TDLAL (TDLAL | TDLAL → TDLAL | §TDLAL.

σ → τ is called intuitionistic implication, while the other arrow is name linear implication. Arrows
of any kind associates to the right as usual. σk → τ is short for σ → . . .→ σ → τ with k copies of
σ, and similarly σk (τ wit all linear arrows. Second order types are gained adding to the above
rules ∀V.TDLAL2.

Sequents in DLAL are di�erent from the usual ones: we distinguish between intuitionistic type
assumptions and linear ones. Such separation is denoted by means of a semicolon: sequents have
the form A;B `M : τ . A will be called the intuitionistic side of the sequent, while B is the linear
side.
De�nition 4.2.35 (rules of DLAL and DLAL2). DLAL is given by the following rules, where
each variable introduced by (var), (weak) or (con) is fresh:

;x : τ ` x : τ
(var)

A;x : σ,B ` λx.M : τ
A;B ` λx.M : σ(τ

(l-abs) A1;B1 `M : σ(τ A2;B2 ` N : σ
A1, A2;B1, B2 `M N : τ

(l-app)

x : σ,A;B ` λx.M : τ
A;B ` λx.M : σ → τ

(i-abs) A1;B1 `M : σ → τ ; z : ρ ` N : σ
A1, z : ρ;B1 `M N : τ

(i-app)

A1;B1 `M : τ
A1, A2;B1, B2 `M : τ

(weak) ~x : σ,A;B `M : τ
y : σ,A;B `M [y/~x] : τ

(con)

−−−−−−−−−→
A;B ` N : §σ ;−−→x : σ,C `M : τ

~A; ~B, §C `M [
−−→
N/x] : §τ

(prom)

120

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

The variants of abstraction and application are called linear and intuitionistic. In the intuitionistic
application z : ρ can be absent. We call a promotion basic if it has no left premise, i.e. if there is
no plugging.

Second order is achieved by adding the usual (gen) and (ins).
Remark 4.2.36. The condition of not allowing §-promotion with a non empty intuitionistic side,
if seen in LAL, leads to not allowing appending additional modalities once ! has been put. The
absence of the ! box is recuperated by the special intuitionistic application: note that it can
be applied only to derivations with at most one type assumption, and this gets moved in the
intuitionistic side.
Example 4.2.37. Church integers are represented by the type, which we will again call the same,
Int := ∀α.(α(α)→ §(α(α). In fact we have a valid derivation for ` n : Int:

; f1 : α (α ` f1 : α (α
(var)

; fn : α (α ` fn : α (α
(var)

; x : α ` x : α
(var)

; fn : α (α, x : α ` (fn x) : α
(l-app)

....
; ~f : α (α, x : α ` (f2 (. . . (fn x) . . .) : α

~f : α (α, x : α ` (f1(. . . (fn x) . . .) : α
(l-app)

; ~f : α (α ` λx.(f1(. . . (fn x) . . .) : α (α
(l-abs)

~f : α (α;` λx.(f1(. . . (fn x) . . .) : !α
(prom)

f : !α (α ` λx.(fn x) : !(α (α)
(con)

` λfλx.(fn x) : (α (α) → §α (α
(i-abs)

` λfλx.(fn x) : Int
(gen)

As always for 1 no contraction is needed and for 0 we have to apply weakening.
We may also rede�ne BInt in DLAL2 as

BInt := ∀α.(α(α)→ (α(α)→ §(α(α),

and the derivation w : BInt can be carried out like the one for Int, by replacing the last contraction
with two distinct ones.

Let's see how this relates to standard LAL.
De�nition 4.2.38 (injection of DLAL into LAL). The injection works in way similar to the
embedding of intuitionistic into linear logic, so we will denote it in the same manner. It is de�ned

121

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

by:
α̂ := α,

σ̂(τ := σ̂(τ̂ ,

σ̂ → τ := !σ̂(τ̂ ,

§̂τ := §τ̂ ,

∀̂α.τ := ∀α.τ̂ .

DLAL2 sequents are translated prepending ! only to the intuitionistic side:
Γ = (A;B `M : τ) 7→ Γ̂ := (!Â, B̂ `M : τ̂),

where here Â is de�ned by Â(x) := Â(x).
Proposition 4.2.39. Every derivation D Γ in DLAL2 can be translated into D̂ Γ̂ in LAL2.
Proof. Reasoning by induction we just need to translate each rule. Of these (var), (weak), (con),
(l-abs), (l-app), (gen) and (ins) pose no problems. Also (i-abs) is easy.
(i-app): By induction hypothesis we have derivations

!A1, B1 `LAL2 M : !σ̂(τ̂ and z : ρ̂ `M : σ̂.

We !-promote the second one and apply (app) getting the desired result.
(prom): This one is translated into a §-promotion. The passage from linear to intuitionistic side
is rendered by choosing ! as modalities for those type assumptions.

Now let us see some properties of DLAL2.
Proposition 4.2.40 (subterm typing). DLAL2 enjoys subterm typing.
Proof. the proof is almost trivial. We reason by induction on the derivation. All rules but (con)
and (prom) are easy.

For (con) we have to apply induction hypothesis making the necessary changes to the subterm
for which we are searching the typing, i.e. if the term is M = M ′[x/~yn], then the subterm is of
the form N = N ′[x/~yk] with k ≤ n, possibly k = 0. So (if N is a proper subterm of M) we apply
induction hypothesis to search a typing for N ′, and then eventually apply back contraction.

For (prom) we have that M = M ′[
−−→
P/xn]. If N is a subterm of one of the Pis or else if it

does not contain any of the variables in ~x we can neatly apply induction hypothesis to one of the

122

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

premises. If on the other hand we have N = N ′[
−−→
P/xk], we apply induction hypothesis to the right

premise to �nd a typing for N ′ and then do a promotion plugging in the necessary Pis.
Note that because of the way a promotion works a typing for a subterm is not a subderivation

of the typing for the main term.
Proposition 4.2.41 (substitution). DLAL2 enjoys the following properties:
• If D A;B `DLAL2 M : τ then

A[
−−→
σ/α];B[

−−→
σ/α] `M : τ [

−−→
σ/α]

is derivable with a derivation with the same structure of D.
• If A;B `DLAL2 N : σ and C;x : σ,D `DLAL2 M : τ then

A,C;B,D `M [N/x] : τ

is derivable with a derivation which has size less than the sum of the sizes of the two derivations.
• If ; z : ρ `DLAL2 N : σ (eventually with empty environment) and A, ~x : σ;B `DLAL2 M : τ then

A, z : ρ;B `M [N/~x]

is derivable.
Proof. We show the properties one at a time:
• The proof carries out like in the proof of the analogous proposition 3.1.7. If we α-convert all the
type variables so that there is no variable clash, we see that the substitution of type variables does
not change the behaviour of any of the rules.
• By induction on the size of the derivation of C;x : σ,D ` M : τ . If it is made only of the (var)
rule then it must be on x, so we can directly replace it with the typing for N . All the other cases
but (prom) are straightforward. Recall that as x is in the linear side it is not repeated.
For (prom) we have to possibilities for x : σ. One is that σ is of the form §σ′, and x : σ′ is present
in the right premise of the rule: in this case we may plug the derivation for N to get the desired
result, using directly the formulation of the (prom)-rule rather than the induction hypothesis. The
other possibility is that x : σ is in the environment of one of the left premises: in this case we use
induction hypothesis and get what we need.
• By induction on the size of the derivation of A, x : σ;B ` M : τ . The last rule just cannot be
(var). All the other rules but (i-app), (prom) and (con) are straightforward, as they preserve the
intuitionistic side.

123

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

If all ~x : σ are present in the left premise of (i-app), then application of the induction hypothesis is
straightforward. If instead one of them (and at most one can) is the only assumption in the linear
side of the right premise then we have the following situation:

D1....
A, ~xn−1 : σ;B `M1 : τ ′ → τ

D2....
;xn : σ `M2 : τ ′

A, ~xn : σ;B ` (M1M2) : τ
(i-app)

Then we apply induction hypothesis on D1 and the preceding point to D2, and we get
D′

1....
A, z : ρ;B `M1[N/~xn−1] : τ ′ → τ

D′
2....

; z′ : ρ `M2

[
N [z′/z]/xn

]
: τ ′

A, z : ρ, z′ : ρ;B ` (M1[N/~xn−1]M2

[
N [z′/z]/xn

]
) : τ

(i-app)
A, z : ρ;B ` (M1M2)[N/~x]

(con)

For (prom), we have that ~x : σ is partitioned between the left premises and the linear side of the
right premise. For each of the premises we apply the induction hypothesis, using for each premise a
di�erent variable instead of z (using a renaming as in the preceding case). As for the right premise,
we repeatedly apply the preceding point, using di�erent variables for z, which all get in the linear
side. Applying back (prom) and shifting all the versions of z to the intuitionistic side in order then
to contract all to z : ρ gives the desired result. Note that if there is no z : ρ then no renaming is
needed.
In (con), if none of ~x : σ is the contracted assumption then the application of the induction
hypothesis is direct. If instead say xn : σ is the assumption contracted from assumptions ~y : σ,
we apply induction hypothesis directly to he subderivation leading to A, ~xn−1, ~y : σ;B ` M ′ : τ ,
where M ′[xn/~y] = M .

De�nition 4.2.42. We will say that a DLAL2 derivation is in canonical form if
• it is in (ins) before (gen) form (see 3.1.6);
• no conclusion of a (prom) rule is a left premise of another (prom) rule;
• every (weak) rule is either the last rule of the derivation or else it introduces only one assumption
which gets abstracted away in the following rule.
• every (con) rule is either followed only by a chain of contractions followed in turn by at most a
single weakening that concludes the derivation (as by the preceding property), or else it contracts
an assumption which gets abstracted away by an (i-abs) immediately afterwards.

124

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Proposition 4.2.43. For every D A;B ` M : τ there is a derivation D′ leading to the same
sequent which is in canonical form.
Proof. To obtain the �rst property we reason as we did for system F (see proposition 3.1.8). We
can do it because of the �rst point of the previous proposition.

To obtain the second property we reason by induction on the size of the derivation. Suppose
we have a (prom) rule which is a left premise of another (prom) rule. We have then the following
situation:

−−−−−−−−−→
A;B ` N : §σ

−−−−−−−−−→
C;D ` Q : §η ;E1, E2,

−−→z : η ` P : ρ
~C,E1; ~D, §E2 ` P [

−−→
Q/z] : §ρ

(prom)
;F1, F2,

−−→x : σ, y : ρ `M : τ

~A, ~C,E1, F1; ~B, ~D, §E2, §F2 `M
[−−→
N/x, P [

−−→
Q/z]/y

]
: §τ

(prom)

Then we substitute ;E1, E2,
−−→z : η ` P : ρ into y of the right premise of the second (prom), and we

obtain a derivation of
;F1, F2, E1, E2,

−→xσ,
−−→z : η `M [P/y] : τ,

with size no bigger than that of the two derivations. Then we apply back (prom), putting together
the left premises of the two rules. Because there is no variable collision we get a derivation for the
same �nal sequent. Having deleted one rule means we also have a derivation with strictly less size,
so we can apply induction hypothesis and get a derivation that satis�es the second property. Also
the �rst property is trivially preserved.

For the third property we may reason by induction on the sum of the depths of all the (weak)
rules contradicting the property (depth in the derivation seen as that of a tree), which should be
regarded as 0 if there is none. Suppose now we have such a (weak) rule.

If the following rule is an abstraction on one of the assumptions introduced by (weak), then we
can leave a (weak) rule only on that assumption and add the other ones by weakening after the
abstraction, eventually merging the weakening with one following the abstraction. This lowers the
depth of the eventual o�ending weakening.

If the following rule is a (con) on some of the assumptions introduced by weakening, we may
completely absorb the contraction in the weakening if it contracts only assumptions given by the
(weak) rule, or else erase both the introduced assumptions and the contraction if it contracts
all weakened assumptions but one, or else just erase the weakened assumptions which should be
contracted and postpone the weakening of the rest of the assumptions after the contraction. Again
if there is another weakening after the contraction we merge the two.

For all the other rules, and the other cases of the two rules already treated, it is straightforward
that we can lower the application of the (weak) rule. Doing this does not strip the derivation of
the two preceding properties.

125

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

The fourth property is gained in a similar way: we just keep lowering the contraction until
we get to where it is really needed, or eventually arrive to the �nal chain of contractions and
weakening. The only rules with which it cannot commute are (i-abs) on the assumption being
contracted2. Note that if the contraction is followed by another contraction that contracts the
same assumption, the two merge rather than commute with one another. Once again the other
properties of canonical derivations are preserved.

Now we get to one of the main di�erences with standard LAL: subject reduction.
Proposition 4.2.44. DLAL2 enjoys subject reduction.

We still need two lemmas.
Lemma 4.2.45 (abstraction property). Suppose D is a canonical derivation leading to A;B `
λx.M : τ whose last rule is neither (weak) nor (con). Then the last rule is the one introducing the
outermost connective of τ .
Proof. By exclusion of the other cases done by induction.

Suppose the last rule is (ins): because the derivation is canonical the rule immediately preceding
it cannot be (weak) or (con), and the term is still an abstraction. Therefore we can apply induction
hypothesis to the premise, which has as outermost connective ∀. However this would contradict
the (ins) before (gen) property.

Both the application rules and the (var) rule are excluded as they cannot yield an abstraction.
So the only rules remaining are those that introduce a connective on the type.
Corollary 4.2.46. No left premise of a (prom) rule in a canonical derivation can be the typing of
an abstraction.
Proof. As the derivation is canonical the last rule of one of the left premises is neither (weak) nor
(con). So if it were a typing of an abstraction by the above lemma its last rule would be the one
corresponding to the outermost connective, which is §. But this would be a contradiction, as in a
canonical derivation no (prom) rule can be a left premise of another (prom) rule.
Proof of subject reduction. Take A;B `DLAL2 M : τ and M

β→ N . We have to show that
A;B `DLAL2 N : τ . By proposition 4.2.43 we can take a canonical derivation for M . Now
we reason by induction on this derivation.
(var): No redex to contract.

2here a di�erence from standard LAL should be noted: in LAL another rule with which contraction cannot
commute is the !-promotion. Here not only there is no !-promotion, but also the rule that simulates it, (i-app), does
not permit contraction on the right premise,as no linear side is accepted.

126

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

(weak) and (con): Trivial. Note that if reducing a redex makes disappear all, or all but one, the
variables being contracted there is no need to apply back contraction.
(l-abs) and (i-abs): Application of the inductive hypothesis is trivial as all the redexes are in
the term being abstracted.
(l-app): We have M = M1M2, and the last part of the derivation is

D1....
A1;B1 `M1 : τ ′(τ

D2....
A2;B2 `M2 : τ ′

A1, A2;B1, B2 `M1M2 : τ
(l-app)

with D1 and D2 still canonical. If the redex being contracted is in M1 (resp. M2) application of
the inductive hypothesis to D1 (resp. D2) gives the desired result after we apply back (l-app).
If instead the redex is M1M2 itself, then M1 is an abstraction. Moreover D1 cannot end with a
(weak) or a (con) as the derivation is canonical. Applying the abstraction property we get that in
fact the last rule of D1 must be (l-abs), so that D1 is

D′
1....

A1;B1, x : τ ′ `M ′
1 : τ

A1;B1 ` λx.M ′
1 : τ ′(τ

(l-abs)

So we can apply a substitution replacing x in M ′
1 with M2, so that we get a derivation of

A1, A2;B1, B2 `M ′
1[M2/x] : τ

an in fact N = M ′
1[M2/x].

(i-app): As for (l-app), with the only di�erence being the di�erent version of substitution lemma
being employed.
(prom): If the redex being reduced is in the term being typed by one of the premises we can just
apply induction hypothesis and then back the (prom) rule. Another case would be that a redex
is created by the substitution done by the promotion, but this would imply that one of the left
premises is an abstraction which is impossible for a canonical derivation as seen in the corollary
above.
(gen) and (ins): Here the application of the induction hypothesis is straightforward.

As last property we will see directly on the DLAL2 terms the polynomiality of a reduction. In
fact we have a stronger property.

127

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

De�nition 4.2.47 (exponential depth of a derivtion). The exponential depth d(D) of a
DLAL2 derivation is the maximal number of right premises of (prom) and (i-app) rules in a
branch.
Theorem 4.2.48 (strong polytime normalization). Given a term M typable in DLAL2 with
a derivation of exponential depth d, it reduces to its normal form in at most |M |2d

β-reduction
steps, and in time proportional to |M |2d+2 in a Turing machine. This result is independent of the
reduction chain.

This result however is shown by injecting DLAL2 terms into an alternative de�nition of ΛEA

introduced by Terui in [Ter02] and there shown to be strongly polynomial. We refer to [BT04]
and [Ter02] to get a grasp of the proof.

We show a sketch of proof of the weaker form of the above theorem.
Theorem 4.2.49 (weak polytime normalization). There is a reduction strategy that yields
the result of the above theorem.
Proof. (sketch) The idea is to look up in the typable terms a notion of box nesting present in
proof nets. In order to do this we decorate the abstractions adding a number indicating the depth,
specifying also whether the abstraction is linear or intuitionistic.

So let us temporarily work with the strati�ed terms de�ned by
Λs := V | (λNV.Λs) | (λN!V.Λs) | (Λs Λs),

and let's denote by λd†.M a term that is either λd.M or λd!.M . d in λd is called the exponential
depth of the abstraction, or simply depth if no misunderstanding is possible. We denote by M [+1]

the e�ect of adding one to all the depths of the abstractions. Now we adapt the derivation rules
to this new notion, in way such that every DLAL2 derivation on pure terms induces a unique
derivation of a term with exponential depths. The rules being changed are:

A;x : σ,B `M : τ
A;B ` λ0x.M : σ(τ

(l-abs) x : σ,A;B `M : τ
A;B ` λ0!x.M : σ → τ

(i-abs)

A;B `M1 : σ → τ ; z : ρ `M2

A, z : ρ;B ` (M1M2[+1]) : τ
(i-app)

−−−−−−−−−→
A;B ` N : §σ ;−−→x : σ,C `M : τ
~A; ~B, §C `M [+1]

[−−→
N/x

]
: §τ

(prom)

Note that raising the exponential depth in promotion is done before subsituting the terms, which
are already ad the right depth.

It is trivial to see that with the modi�cations to the rules depicted above we can decorate
any DLAL2 term with the depth, and that such decoration is unique (with respect to DLAL2

128

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

derivations). Also all the result seen for DLAL2 such as substitution, existence of canonical
derivations, abstraction property and subject reduction still hold for DLAL2 as a type assignment
for strati�ed terms.

We say a redex is of depth d if its main abstraction is of depth d. Now the main property of
strati�ed terms is that
Lemma 4.2.50. Reducing a redex of depth d does not create a redex of depth less than d.
Proof. The only way for a redex to be created by a reduction is if the term being substituted is an
abstraction or the term in which we substitute is an abstraction: so it is su�cient to see that it is
not possible for a DLAL2 typable strati�ed term to have subterms of the form

1. (λd†x.M) (λe†y.N) or
2. λd†xλe†y.M

with e < d. We reason by induction on a canonical derivation.
If the last rule is an abstraction of any type the introduced abstraction is of depth 0, therefore

no term of the second type can be added. Induction hypothesis guarantees us the result.
If it is an application of any kind yielding (λd†x.M) (λe†y).N , then by abstraction property the

last rule of the left premise must be a corresponding abstraction, so that in fact d must be 0 and
so e < d just can't be. As before induction hypothesis does the rest.

If the last rule is (prom) then none of the left premises types an abstraction, so that no new
subterms of one of the two types are created, which together with induction hypothesis gives the
desired result.

The other rules do not introduce new subterms of one of the two types, so that induction
hypothesis su�ces.

Note also that redexes are created using abstraction that were already present: so the total
depth of the derivation is preserved, we cannot create an abstraction of higher depth out of nowhere.

The intended strategy is one that starting from depth 0 reduces all the redexes at a �xed depth
before going on to the next depth. The above lemma guarantees that this in fact leads to the
normal form, as eventual new redexes are created at the same or higher depth, and so there is no
way of missing some redexes.

Let us denote by →d for some d the one step β-reduction restricted to contracting redexes of
depth d, and as usual by �d its re�exive and transitive closure. We need he following lemma
Lemma 4.2.51. If M �d N then the number of steps in the reduction is bounded by |M |.

129

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Proof. Cosder the two cases of redexes being reduced: in case of (λdx.M)N then as x was abstraced
from the intuitionistic side the number of its occurrences in M is at most one, so that eventual
abstractions of depth d in N are not duplicated. If the situation is (λd!x.M)N instead, we can
prove by induction on a canonical derivation that N has no abstractions of depth d. Note how the
induction hypothesis goes down to considering d− 1 when passing the right premise of (i-app) or
(prom). In fact the key case is that in which the last rule is (i-app) and the redex being considered
is the term itself: by the abstraction property the last rule on the left is (i-abs) and so d = 0, while
all the depths in N are raised by one and thus cannot be 0. So also in this case the number of
abstractions of depth d decreases by one. So the length of the reduction is bounded by the number
of abstractions at depth d which in turn is bounded by the size of the term.

Then we go on proving
Lemma 4.2.52. If |M | ≥ 2 and M �d N then |N | ≤ |M | (|M | − 1).
Proof. We reason by looking up what happens to a given symbol of the construction tree of M
(an abstraction, an application or a variable as a leave). If it gets involved in the reduction of
a linear redex then no duplication happens: a single occurrence of variable bounded at depth d

disappears and no other one gets duplicated. If instead the symbol is in N in a reduced redex
of form (λd!x.M)N , then it gets repeated say n times, and in the meanwhile n variables bound
at depth d (the n occurrences of x) disappear, and we have already seen in the previous lemma
that no other ones can be duplicated in this way. The symbol gets in a subterm to be duplicated
again only if to this subterm an intuitionistic abstraction has been applied. But the condition on
(i-app) means that such subterm can have only one free variable, so that there is only one place
the symbol can �nd himself in, and this in turn implies that when the subterm is duplicated, then
again to every variable bounded at depth d that disappears in the process it corresponds a single
new occurrence of the symbol.

So, for any given symbol of the construction tree of M the number of its copies at the end of
the reduction sequence is either 1 or in any case bounded by the number of variable occurrences
bounded at depth d inM , which is trivially bounded in turn by |M |−1. So the number of symbols
in N , i.e. its size, is bounded by the number of symbols in M times |M | − 1.

Now we can get to the �nal result. Take a chain of reductions

M = M0 �0 M1 �1 . . .Md �d M
∗.

If some of the Mi has size less than 2 then it has no redexes and the chain of reductions ends
there, so we can suppose |Mi| ≥ 2. The whole length of the reduction is bounded by∑d

i=0 |Mi| by

130

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

lemma 4.2.51. Then by induction on d we get that∑d
i=0 |Mi| ≤ |M |2

d , using as base |M0| ≤ |M |2
0

and as step:
d∑

i=0

|Mi| =
d−1∑
i=0

|Mi|+ |Md| ≤
d−1∑
i=0

|Mi|+ |Md−1| (|Md−1| − 1) ≤

≤
d−1∑
i=0

|Mi|+
d−1∑
i=0

|Mi|

(
d−1∑
i=0

|Mi| − 1

)
=

(
d−1∑
i=0

|Mi|

)2

≤
(
|M |2

d−1
)2

= |M |2
d

.

Clearly |M |2d bounds every term appearing in the reduction, so that a Turing machine can
simulate each step in this reduction in a number of steps proportional to (|M |2d

)2, so that the
�nal bound is proportional to |M |2d

· |M |2
d+1

≤ |M |2
d+2 .

4.2.4 Representation theorem for LAL

We will prove the representation theorem for DLAL2 using the approach developed by Mu-
rawski and Ong in [MO04] for LAL2. Representation for DLAL2 then implies the same result for
LAL2, however this is an occasion to see the easier functioning of DLAL2 at work.
De�nition 4.2.53 (representation of functions). We say f : Nk → N is represented by a term
M typable in DLAL2 with (BInt)k (§q BInt if for any ~n ∈ Nk we have M ~n

β
� f(~n). We say

the representation has obliqueness q.
The aim of this section is to prove the following theorem.

Theorem 4.2.54. Any polytime function is representable by a pure term typable in DLAL2. On
the converse every closed term typable in DLAL2 with BIntk (§q BInt represents a polytime
function.
Remark 4.2.55. There is a little imprecision about the second claim. As for Int it is easy to
prove that every normal term of type BInt (and we can work in system F) is in one of the three
forms λf0λf1.f0, λf0λf1.f1 and w. The �rst is equivalent to 0 (seen as a sequence with only 0),
the second to 1. In any case another ambiguity is represented by the eventual presence of trailing
zeros: so in order for the second claim to have sense we must identify sequences that di�er in this
manner. However we will take the strict meaning when proving the other direction: we will be
able to have terms that represent functions that output binary integers in the correct form.

By the property of polynomiality of the reduction of a term typable in DLAL2 (we need just
the weak one), we know that M ~n reduces in polynomial time to a normal term typable with
§q BInt. By the above remark we know it must be (eventually equivalently) the representation of
a binary expansion.

131

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

For the other direction we will adapt to DLAL an approach used by Murawski and Ong
in [MO04] to partly represent safe recursion in LAL. We may say is is a semi-axiomatic approach:
we start from a proper subclass BC− of BC (see de�nition 4.2.25), and give a compositional
translation in DLAL as we did with elementary functions and EAL. So we will bring DLAL

closer to the polytime class, however the last steps will be done by completing BC− using low-
level functions that allow to complete the encoding of polytime Turing machines and that are
representable in DLAL. So in fact We will be halfway axiomatic and halfway oriented to Turing
machine encoding.
De�nition 4.2.56 (BC−). BC− is the least class of functions containing the base functions of
BC but closed to these restricted forms of safe composition and recursion:
• restricted safe composition, which given functions fi(~x;) and hi(~x; ~yi), and a function g(~s;~t) gives
a function

RS-COMP(~f,~g)(~x; ~y1, . . . , ~y`) := g(~f(~x;);h1(~x; ~y1), . . . , h`(~x; ~y`));

• restricted safe recursion, which given functions g(~y;~z) and two functions hi(x, ~y;w) gives a function
f = RS-REC(g, h0, h1) de�ned by

f(0, ~y;~z) := g(~y;~z),

f(xi, ~y;~z) := hi(x, ~y; f(x, ~y;~z)).

To di�erentiate these functions from the most general class BC we substitute the semicolon with
a colon, writing f(~x : ~y).
Remark 4.2.57. What we have done is that we have linearized the safe variables, in the sense
that they cannot be used more than once, i.e. they are not contractible. in fact in composition
we do not allow safe variables to be the argument of more than one function, and in recursion the
step functions have only the place for recursive call as safe variable, so that the safe variables ~y
are used only in the base function.

Now we will see how to translate safeness.
De�nition 4.2.58 (safeness in DLAL2). We will say that f(~x : ~y) is represented by the term
M with free variables ~x, ~y (we use the same names on purpose) if the following sequent is derivable

; ~x : BInt, ~y : §q BInt `M : §q BInt

and
M [
−−→
n/x,

−−→
m/y]

β
� f(~n : ~m).

132

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

We will denote the property by writing M = M [~x : ~y|q], and we will write M [~P : ~Q] for the
substitution M [

−−→
P/x,

−−→
Q/y]. q is called the obliqueness of M ; as with elementary representations

(though here we are avoiding the �nal abstraction in the programming of a function) we will say
that the term is �at if q = 0. Note that if M is �at all variables can be regarded as safe.

Before enquiring into the meaning of the de�nition let's introduce some tools, and begin to
bring down to representation the base functions. As usual 0(:) is easy, and so are projections, for
which we have representations πm,n

i [~x : ~y|0] using the usual projections. Note that because the
term is �at in fact we can regard any variable as safe or normal at will.
Lemma 4.2.59 (iteration). If ; zi : σi ` Mi : τ (τ with i = 0, 1 (eventually with empty
environment) and ;A1, A2 ` N : τ are derivable we have a typing that leads to

A1, z0 : σ0, z1 : σ1; §A2, n : BInt ` nM0M1N : §τ.

This term, if we plug n into n, represents applying repeatedly M0 and M1 to N in the order
determined by the binary digits of n.
Proof. First we derive

; n : BInt ` n : BInt
(var)

; n : BInt ` n : BIntτ
(gen)

; z0 : σ0 ` M0 : τ (τ

z0 : σ0; n : BInt ` n M0 : (τ (τ) → §(τ (τ)
(i-app)

; z1 : σ1 ` M1 : τ (τ

z0 : σ0, z1 : σ1; n : BInt ` n M0 M1 : §(τ (τ)
(i-app)

Then we plug it into a promotion

−−→z : σ;n : BInt ` nM0M1 : §(τ (τ)
; y : τ (τ ` y : τ (τ

(var)
;A1, A2 ` N : τ

;A1, A2, y : τ (τ ` y N : τ
(l-app)

A1, z0 : σ0, z1 : σ1; §A2, n : BInt ` nM0M1N : §τ (prom)

Lemma 4.2.60 (strip). There is a context strip[] such that n : BInt `DLAL2 strip[n] : BInt

and
strip[λf0λf1λx.fb0(. . . fbk−1(f1(f0(. . . (f0 x) . . .))) . . .)]

β
� λf0λf1λx.fb0(. . . fbk−1(f1 x) . . .),

and
strip[λf0λf1λx.(fk

0 x)]
β
� λf0λf1λx.x.

Practically strip[] erases trailing zeros.

133

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Proof. Consider the type τ = Bool⊗(α(α), where Bool = ∀β.β(β(β and as usual
σ1 ⊗ σ2 := ∀γ.(σ1 (σ2 (γ)(γ.

We will use the �rst component to mark as whether we are still erasing the trailing zeros or not,
distinguishing the two cases with true and false. Until we don't encounter f1 we do not save the
symbol we are passing, while from then on we have to. Consider the terms (recall x◦y := λz.x (y z)):

M1 := λp.〈false, f1 ◦ (p false)〉,

M0 := λp.p (λxλy.〈〈true, I〉, 〈false, f0 ◦ y〉〉x).

They both have the derivation ; fi : α (α ` Mi : τ (τ . The �rst one is straightforward In
the second one we have to assume x : Bool and then instantiate it with type τ (τ (τ . The
pair of pairs is built with type τ ⊗ τ = ∀α.(τ (τ (α) (τ which can be instantiated to
(τ (τ (τ) (τ and thus the pair can be applied to x yielding type τ . What do those terms
do?

M0 〈b, y〉
β
�

〈true, I〉 if b = true,
〈false, f0 ◦ y〉 otherwise.

M1 〈b, y〉
β
� 〈true, f1 ◦ y〉.

So applying the iteration scheme with base N := 〈true, I〉 typable with τ to a representation with
at least 1 we get a term 〈false, F 〉 where F is the chained composition of f0 and f1 in the same
order they appear in the iterator, apart from the initial f0 which get ignored. If there are no fis,
or there are only f0s, F will be the identity. The typing proceeds by

f0 : α(α, f1 : α(α;n : BInt ` nM0M1N : §τ.

Then we can plug it into z in the promotion of
z : τ ` λx.z falsex : α(α

which gives
f0 : α(α, f1 : α(α;n : BInt ` λx.nM0M1N truex : §(α(α)

which by two abstractions and a generalization becomes what we wanted
;n : BInt ` strip[n] : BInt,

with strip[] := λf0λf1λx.�M0M1N truex. In fact
strip[b0 . . . bk−110 . . . 0]

β
� λf0λf1λx.F x

where F is the term described above, so that F x β
� fb0(. . . (fbk−1(f1 x)) . . .).

134

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Now we are ready to handle the more delicate case of the successor succ0.
Lemma 4.2.61 (successors). The successors succi(: n) are representable in DLAL2.
Proof. succ1 is easy. We derive with the help of three axioms and two intuitionistic applications

f0 : α(α, f1 : α(α;n : BInt ` n f0 f1.

Then we prepare a term where to plug the above derivation by promotion:
; f ′1 : α(α, z : α(α ` λx.f1 (z x) : α(α.

During promotion we shift f ′1 to the intuitionistic side, and we get
f0 : α(α, f ′1 : α(α, f1 : α(α;n : BInt ` λx.f ′1 (n f0 f1 x) : §(α(α)

f0 : α(α, f1 : α(α;n : BInt ` λx.f1 (n f0 f1 x) : §(α(α)
(con)

after which two abstractions and a generalization give
;n : BInt ` succ1 : BInt .

with succ1 := λf0λf1λx.f1 (n f0 f1 x). So n is safe with respect to our de�nition, and it is trivial
to see succ1 does what it's designed for.

For succ0 we reason in the same way, but then we compose with strip[]:
succ0 := strip[λf0λf1λx.f0 (n f0 f1 x)],

so that in e�ect succ0[0/n]
β
� 0 as should be. Thus we have the two successors succi[: n|0].

Remark 4.2.62. The successors given above have the desired e�ect on integers to yield n 7→ 2n+i.
However we will need another kind of successors, such that they append at the most signi�cant
digits instead of the least signi�cant ones. We call them the same way because of syntactical
similarity, and the parallelism with the case for Church integers where the two versions of the
successor did the same thing because there was no order to be careful of.

These two successors are
succ′i := λf0λf1λx.n f0 f1 (fi x),

It is easy to see they still get the derivation ;n : BInt ` succ′i : BInt. We do not use strip because
we need them mostly for technical reasons, not to compute integer values. We need them to always
put the digit they have to put.

With them we can program two kinds of coercions.

135

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Lemma 4.2.63 (coercions). There is a context coerc[] such that
;n : BInt ` coerc[n] : § BInt

and such that coerc[n]
β
� n. We can chain this context to obtain in general

;n : §p BInt ` coercq[n] : §p+q BInt .

There is a context with two holes coerc′x[�1,�2] such that if n : BInt;A `M : τ then
;m : BInt, §A ` coerc′n[m,M] : §τ

and coerc′n[m,M]
β
�M [m/n].

Proof. We do the iteration
;n : BInt ` n (λx.succ0[: x]) (λxsucc1[: x]) 0.

The claim about chaining comes from use of multiple promotions.
For the second claim we de�ne for i = 0, 1:

Hi := λgλp.(g (succ′i[: p])),

with the following derivation:

; g : BInt→ τ ` g : BInt→ τ
(var) ` succi : BInt(BInt ; p : BInt ` p : BInt

(var)
; p : BInt ` succi p : BInt

(l-app)
p : BInt; g : BInt→ τ ` g (succi p) : τ

(i-app)
; g : BInt→ τ ` λp.g (succi p) : BInt→ τ

(i-abs)
;` Hi : (BInt→ τ)(BInt→ τ

(l-abs)

Then we instantiate m : BInt with BIntBInt→τ , and with two intuitionistic applications we get
;m : BInt ` mH0H1 : §((BInt→ τ)(BInt→ τ).

Apart we prepare

` 0 : BInt
; · · · ` z : (BInt→ τ)(BInt→ τ

(var) n : BInt;A `M : τ
;A ` λn.M : BInt→ τ

(i-abs)
;A, z : (BInt→ τ)(BInt→ τ ` z (λn.M) : BInt→ τ

(l-app)
;A, z : (BInt→ τ)(BInt→ τ ` z (λn.M) 0 : τ

(i-app)

We then promote and plug into z the derivation of mH0H1, obtaining at last
;m : BInt, §A ` coerc′n[m,M] : §τ

136

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

where
coerc′x[�1,�2] := (�1H0H1 λx.�2) 0.

Now suppose m = (bk . . . b0)2:

coerc′n[m,M]
β
� (Hb0(. . . (Hbk

λn.M) . . .)) 0
β→

β→ (Hb0(. . . (Hbk−1 λp.((λn.M) (succ′bk
[: p]))) . . .)) 0

β→
β→ (Hb0(. . . (Hbk−1 λp.(M [succ′bk

[: p]/n])) . . .)) 0
β
�

β
� (λp.M [succ′bk

[: . . . succ′b0 [: p] . . .]/n]) 0
β→

β→M [succ′bk
[: . . . succ′b0 [: 0] . . .]/n]

β
�M [m/n].

Note that the second coercion may be applied only if there is one variable to move from intuitionistic
to linear, and then again it applies paragraphs to all the rest of the environment and to the derived
type. Next we will see how to chain this kind of coercion to shift more than one variable.
Remark 4.2.64. There is a way to chain also the second coercion, letting us move multiple BInt
variables from intuitionistic to linear side.

Suppose we can derive ~nk : BInt;A ` M : τ . Let us denote by τh := BInth (τ , with τ0 = τ .
Now let us use coerc′ for k times applying it to the following sequents for 1 ≤ h ≤ k:

th : BInt; zh : τk−h+1 ` zh th : τk−h

getting
;mh : BInt, zh : §τk−h+1 ` coercth

[mh, zh th] : §τk−h.

Let us denote by Nh the term thus obtained. We can substitute each Nh into zh+1 in the derivation
of the following Nh+1: each derivation inherits all the preceding yhs and only z1. So in Nh we
obtain:

; ~mh : BInt, z1 : §τk ` Ph : §τk−h,

where P1 = N1 and Ph+1 = Nh+1[Ph/zh+1]. Now take the sequent we started with, and apply k
intuitionistic abstractions:

;A `
−→
λn.M : τk.

We promote it and substitute it into z1 in Ph and we get:
; ~mh : BInt, §A,` Ph[M/z1] : §τk−h.

Note now that we cannot recuperate the rest of the intuitionistic variables without raising the
level. In fact we should plug the derivation above in a promotion of a derivation for wnh+1 . . . nk,

137

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

but then the nis should be on the intuitionistic side, preventing the promotion from happening.
So we have to take Pk[M/z1] above shifting all the variables to the linear side, and in case we want
back in the intuitionistic side some variables we have to promote adding a paragraph to the other
variables.

Let us in future write coerc′~n[~m,M] for the construction of Pk as done above.
Remark 4.2.65. As we did for elementary functions, now we may strip of all paragraphs the
environment of a represented function, i.e. we can turn a safe variable into a normal one. Given

; ~x : BInt, y : §q BInt, z : §q BInt `M [~x : y, ~z|q] : BInt,

we can substitute into it
; y′ : BInt ` coercq[y′] : §q : BInt

and get
; ~x : BInt, y′ : BInt, z : §q BInt `M ′[~x, y′ : ~z|q] : BInt

where M ′ := M [coercq[y′]/y] and thus represents the same function.
We can also lift a representation: given M [~x : ~y|q] we can increase the obliqueness at will, just

by taking M ′ := coercp[M], so that M ′ = M ′[~x : ~y|p+ q].
Proposition 4.2.66. Normal variables are contractible, i.e. given M [~x, ~y : ~z|k] that represents
f(~x, ~y : ~z), we can give a term M ′[~x,w : ~z|q + 2] such that it represents f(~x,w, . . . , w : ~z).
Proof. We do a promotion turning normal variables needed to be contracted into intuitionistic and
then contract them:

; ~x : BInt, ~y : BInt, ~z : §q BInt `M : §q BInt
~y : BInt; ~x : § BInt, ~z : §q+1 BInt `M : §q+1 BInt

(prom)
y : BInt; ~x : § BInt, ~z : §q+1 BInt `M [y/~y] : §q+1 BInt

(con)

Now we use the second coercion and get
;w : BInt, ~x : §2 BInt, ~z : §q+2 BInt ` coerc′y[w,M [y~y]] : §q+2 BInt .

Finally if we precompose with the other coercion we return ~x to normal state:
;w : BInt, ~x : BInt, ~z : §q+2 BInt ` coerc′y[w,M [y/vecy,

−−−−−−−−→
coerc2[x]/x]] : §q+2 BInt .

We changed the term using only the coercions, so we have not changed its algorithmic content.
We will see that safe variables are not contractible, making clear the parallelism with safe

variables in BC−. Now we will go on completing the codi�cation of the base functions.

138

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Lemma 4.2.67 (predecessor). The predecessor pred(: x) is representable in DLAL2.
Proof. The idea is again that of using pairs. Let τ be (α(α) ⊗ (α(α). We will use the �rst
component to record the symbol we are passing at the moment, and the other one to chain the pre-
vious symbols. It is not distant from the representation of the predecessor on unary representations
given for EAL2. So let Mi be the following terms

Mi := λp.p (λxλy.〈fi, x ◦ y〉),

which is easily typable with τ (τ . Iteration with n = bk . . . b0 started on base 〈I, I〉 yields in the
end 〈fb0 , fb1 ◦ · · · ◦ fbk

〉 of type §τ . As usual we plug
f0 : α(α, f1α(α;n : BInt ` nM0M1 : §τ

into z in the following derivable sequent to be promoted
; z : τ ` λx.z false x : α(α,

giving after abstractions and generalizations
;n : BInt ` pred : BInt

where pred[: n|0] := λf0λf1λx.nM0M1 falsex.
Lemma 4.2.68 (conditional). The conditional clause if(; a, b, c) is representable in DLAL2.
Proof. We simply have to see only the least signi�cant digit. However the delicacy lies in wanting
a representation with all safe variables. We putM0 = λd.true andM1 = λd.false, but type them
with Bool{ α(α}(Boolα(α. Iterating on base value true gives the term

; a : BInt ` aM0M1 true : § Boolα(α .

Now we carefully prepare a term to plug it in. We use b to derive, using an instantiation of BInt
and two intuitionistic applications:

f b
0 : α(α, f b

1 : α(α; b : BInt ` b f b
0 f

b
1 : §(α(α),

and we do the same for c. Then we derive
;w1 : α(α,w2 : α(α, z : Boolα(α ` z w1 w2 : α(α.

Now we have all we need. We promote the last derivation and plug in it the other two:
fb
0 , fb

1 , fc
0 , fc

1 : α (α; a : BInt, b : BInt, c : BInt ` a M0 M1 true (b fb
0 fb

1) (c fc
0 fc

1) : §(α (α)

f0, f1 : α (α; a : BInt, b : BInt, c : BInt ` a M0 M1 true (b f0 f1) (c f0 f1) : §(α (α)
(con)

139

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

and then two abstractions and a generalization give the proper type. So in the end
if[: a, b, c|0] := λf0λf1.aM0M1 true (b f0 f1) (c f0 f1),

and in fact
if[: a, b, c]

β
� λf0λf1.d (b f0 f1) (c f0 f1)

where d = true if a0 = 0 and false otherwise.
Before going on we generalize to DLAL2 the usual product of types.

De�nition 4.2.69 (dual product). The dual product is de�ned by⊗
m,n

(~σm, ~τn) := ∀α.(σ1 → . . .→ σm → τ1 (. . .(τn (α)(α.

⊗
m,n(σ, τ) is short for ⊗m,n(σ, . . . , σ, τ, . . . , τ). It should be seen in LAL as the product of the

types in which the �rst m are being banged. A dual m,n-ple is de�ned on λ-terms as
〈~x, ~y〉 := λz.z ~x ~y.

Then by assuming
z : σ1 → . . .→ σm → τ1 (. . .(τn (α

and then doing m intuitionistic applications and n linear ones we get the typing:
−−→x : σ;−−→y : τ ` 〈~x, ~y〉 :

⊗
m,n

(~σm, ~τn).

Using substitution we therefore can have as derived rule:
−−−−−−−−−→
; z : ρ `M : σ

−−−−−−−−−→
A;B ` N : τ

−−→z : ρ, ~A; ~B ` 〈 ~M, ~N〉 :
⊗

m,n(~σ, ~τ)

As for extraction, we can easily extract the linear part of the m,n-uple, applying it to a projection
πm+n

i , which can be typed right by weakening. If we want to extract something in the linear
side however we have to put a promotion in the derivation of the projection, so that to the �nal
type a paragraph will be appended. This re�ects the fact that in LAL2 the product ⊗1,1(σ, τ)

is translated in !σ ⊗ τ . Extracting the �rst in LAL2 should give !σ. However we have made this
type illegal in DLAL2, so we must revert to the weaker §σ.
Lemma 4.2.70 (restricted safe composition and recursion). Restricted safe composition
and restricted safe recursion are representable in DLAL2.

140

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Proof. Suppose we have representations Fi[~xn : |pi] and Hj [~xn : ~yj |qj] and G[~s : ~t|r]. First we lift
all the Fis to the same obliqueness p = max(pi), and then plug them by substitution in the right
places of G promoted p times, renaming in each the free variables (or else we cannot put them
together). So if F ′

i are Fi lifted and with ~x rename to ~zi, we have:
;~z1, . . . , ~zk : BInt,~t : §r+p BInt ` G[

−−→
F ′/s] : §p+r BInt .

Now we lift the term given above and all the Hjs to a common obliqueness u = max(qj , p+ r): if
G′[~z1, . . . , ~zk : ~t|u] is the term so obtained, and H ′

j are the terms obtained by lifting and renaming
~x to ~wj , we �nally have

;~z1, . . . , ~zk, ~w1, . . . , ~w` : BInt, ~y1, . . . , ~y` : §u BInt ` G′[
−−→
H ′/t] : §u BInt .

Now we apply lemma 4.2.66 n times to identify the normal variables back to ~x, obtaining �nally
the term N [~x : ~y1, . . . , ~y`|u+ 2n] that is the safe composition of Fi and Hj with G.

For restricted safe recursion, we �rst lift all the representation we have to the same obliqueness.
So suppose we have

; ~ym : BInt, ~zn : §q BInt ` G : §q BInt, ;x : BInt, ~ym : BInt, w : §q ` Hi : §q BInt .

Now we promote the above to shift ~y and x to the intuitionistic side.
~y : BInt;~z : §q+1 BInt ` G : §q+1 BInt, x : BInt, ~y : BInt, w : §q+1 ` Hi : §q+1 BInt .

Now consider the types τ :=
⊗

1,1(BInt, §q+1 BInt) and σ := BIntm → (§q+1 BInt)n (τ . We will
do an iteration on type σ(σ, where the content of σ should denote the function −→λy−→λz.〈z, Hi[z, ~y :

F [z, ~y : ~z]]〉, where F is the term we are building. Clearly we will extract all we need from the
previous iteration.

For the base value N we derive
;` 0 : BInt ~y : BInt;~z : §q+1 BInt ` G : §q+1 BInt

~y : BInt;~z : §q+1 BInt ` 〈0, G〉 : τ

;`
−→
λy
−→
λz.〈0, G〉 : σ

(abs)

The step functions, are derived:
....

~y;~z, f : σ ` f ~y ~z : τ
~y;~z, f : σ ` f ~y ~z : (BInt→ §q+1 BInt(τ)(τ

(ins) D....
~y, ~y′ : BInt;~z : §q+1 BInt, f : σ ` f ~y ~z (λxλw.〈succi x, Hi[succi x, ~y′ : w]〉) : τ

(l-app)
~y : BInt;~z : §q+1 BInt, f : σ ` f ~y ~z (λxλw.〈succi x, Hi[succi x, ~y : w]〉) : τ

(con)
;` λf

−→
λy
−→
λz.f ~y ~z (λxλw.〈succi x, Hi[succi x, ~y : w]〉) : σ(σ

(abs)

141

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

where D is the derivation
....

;x1 : BInt ` succi x1 : BInt

....
~y′ : BInt, x2 : BInt;w : §q+1 BInt ` Hi[succi x2, ~y′ : w] : §q+1 BInt

~y′, x1 : BInt, x2 BInt ` 〈succi x1, Hi[succi x2, ~y′ : w]〉 : τ
~y′ : BInt, x : BInt;w : §q+1 ` 〈succi x, Hi[succi x, ~y′ : w]〉 : τ

(con)
~y′ : BInt ` λxλw.〈succi x, Hi[succi x, ~y′ : w]〉 : BInt→ §q+1 BInt(τ

(abs)

The two step functions Mi take a function f of type σ, and return a function that given ~y and
~z returns 〈succi x, Hi[succi x, ~y : w]〉, where here x and w represent the result of f ~y ~z. Now we
apply the iteration, obtaining

;x : BInt ` xM0M1N : §(τ).

Now let us derive apart
~y′;~z : §q+1 BInt, f : τ ` f ~y′ ~z false : §q+1 BInt .

To this we apply the chained second coercion (see remark 4.2.64), and we get
; ~y : BInt, ~z : §q+2 BInt, f : §τ ` coerc~y′ [~y, f ~y

′ ~z false] : §q+2 BInt .

In f we substitute the iteration and �nally get
; ~x : BInt, ~y : BInt, ~z : §q+2 BInt ` coerc~y′ [~y, xM0M1N ~y′ ~z false] : §q+2 BInt

which represents the restricted safe recursion.
So the �nal result (at least for now) is ready.

Theorem 4.2.71. BC− is representable in DLAL2.
We can also see now how the parallelism between the notion of safeness in BC− and in DLAL2

works out. safe variables in BC− are non contractible ones. The same holds for safe variables in
DLAL2.
Proposition 4.2.72. Safe variables in DLAL2 are not contractible, i.e. it is not true that for
any representation M [~x : ~y, ~z] we can have a representation M ′[~x : w,~z] with the same algorithmic
content of M [~x : w, . . . , w, ~z].
Proof. We will build a �at term with two variables which if contracted would bring outside polytime
functions.

142

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

This term represents concat(x, y) := xy in binary notation, that is concat(m,n) = 2kn ·m+n

where kn = blog2 nc+1 is the number of binary digits of n. In fact this is much like add for Church
integers. We plug the following two derivations
f0, f1 : α(α;m : BInt ` mf0 f1 : §(α(α), f ′0, f

′
1 : α(α;n : BInt ` n f ′0 f ′1 : §(α(α)

into the promotion of
; z : α(α, z′ : α(α ` λx.z (z′ x) : α(α

getting by contraction
f0, f1 : BInt;m : BInt, n : BInt ` λx.(mf0 f1 (n f0 f1)) : §(α(α).

With two abstractions we get concat[: m,n|0] of the right type.
Now, if we could have M [: x|q] with M [: n] ≡β concat[: n, n] we would have represented the

function f(n) = 2kn · n + n with a safe argument. So we could apply restricted safe recursion
with step functions Hi[x : w] := M [: w] (possible with safe composition) and base value N [:] := 1

and then we would have a term P [x :] which would compute fkx(1) = 22kn − 1 which requires
exponential space just to write the result.

In fact this proves also that safeness in BC is more strict than in DLAL2: the same argument
above applies to proving that concat(;x, y) with both variables safe is not in BC, as here we
can contract safe variables by using the more relaxed safe composition. Moreover saying that safe
variables are not contractible, means that the unrestricted safe composition is not representable in
DLAL2 with respect to this notion of safeness.

Remark 4.2.73. concat is de�nable in BC−, but with only one safe variable, because the normal
one is needed for recursion. The normal variable is the one being appended at the least signi�cant
digits.

concat(0 : x) := π0,1
1 (: x), concat(yi : x) := succi(: π

1,1
2 (y : concat(y : x))),

so that concat(y : x) = xy in binary notation.
Now we must �ll up the distance from polytime Turing machines. This is done by augmenting

BC− with low-level functions that are interpretable in DLAL2 with the right safe variables (so
that they also do not break polytime soundness), and such that BC− with these new functions
can simulate polytime Turing machines.

The two functions we will add o the algebra are case and e-shift.

143

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

De�nition 4.2.74 (case and e-shift). The case function is de�ned with the use of m + 1

functions fi(: x) of a �xed form and m binary strings ui with |ui| < K, by which we de�ne

caseK{u1 : f1 | · · · | um : fm | else fm+1}(: x) :=

fi(: x) if x0 . . . xK = ui,
fm+1(: x) otherwise.

So the case construct should return fi applied on the argument if the K + 1 least signi�cant digits
of the argument match ui. Clearly we require the ui to be di�erent. We require that if |ui| < K

then he most signi�cant digit of ui must be 1 or else ui = 0, and in such cases x matches ui only
if x = ui. Also We require that fi are of the form

fi(: x) := concat(succsj (: pred
kj (: x)) : pj)

where succs with s binary string is de�ned inductively by succε(: x) := x and succia(: x) :=

succi(succa(: x)). So practically fi can only truncate some least signi�cant bits (as resulting from
the multiple application of pred) and then add some bits to the head (successors) and to the tail
(concat).

The even shift function e-shift shifts all even bits of one place towards the most signi�cant
bits putting a 0 in the place left empty:

e-shift(: b2k+1 . . . b2b1b0) := b2kb2k+1 . . . b2b3b0b10,

e-shift(: b2k . . . b2b1b0) := b2k0b2k−2b2k−1 . . . b2b3b0b10,

with the convention in the �rst case to strip the string of the eventual zero brought by b2k.
Lemma 4.2.75 (case). The case function is representable in DLAL2.
Proof. Recall we have to give a representation such that the depth is preserved. Let k be max(ki).
We will �rst do an iteration on type

τ :=

 ⊗
0,K+1

(∀β.β3 (β)

⊗
⊗

0,k+1

(α(α)

 .

The division between the two products is just for simplicity. The intended value at a given step of
an iteration is that the �rst K + 1 projections should keep track of the digits being visited so that
at the end they should contain πi :=

−→
λy2

0.yi with i being the digit or π2 for the absence of any digit,
all this regarding the least signi�cant digits. Recall that ~Xn

0 means by notation a sequence starting
with index 0 and ending with index N . The next k spots will be occupied by an fi corresponding

144

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

again to the digits being visited: we will need them to add them to the last variable destined to
hold the value in fis of predk(x). So as base value we will take

;` N :=
〈
〈π2, . . . , π2〉, 〈I, . . . I〉

〉
: τ

and the step functions will just add a proper term at the beginning of the two lists, and shift all
the rest, and the kth term of the second list instead of being discarded will be composed with the
last one.

; fi : α(α `Mi := λp.p (λ`1λ`2.
〈
`1 (
−→
λyK

0 .〈πi, ~y
K−1
0 〉), `2 (

−→
λzk

0 .〈fi, ~z
k−2
0 , zk−1 ◦ zk〉)

〉
: τ (τ.

So when we iterate we get
f0, f1 : α(α;n : BInt ` nM0M1N : §τ.

Now we will use the information in the �rst K-uple to choose what function to apply, and then
sewhat we gathered in the second one to apply the functions without needing the argument anymore
(so we will keep it linear).

First create a ternary complete tree with depth K+1: it will be the decision tree leading to the
right function. So label the three branches of every node with 0, 1 and �. Now starting from the
root, for every i we have to follow the path corresponding to ui read from least signi�cant digit,
where � corresponds to empty digit (we �ll up ui with boxes up to digit number K). When we
get to the end of the branch we label the leave with the corresponding i. All the leaves that do
not get labeled in this way get label m+ 1.

Now inductively build the term selection from the tree: for every leave labeled with i the
corresponding term is πm

i :=
−→
λym+1.yi, while for every node the corresponding term is the 3-uple

built with the three terms corresponding to the three subtrees originating from that node. So for
example if K = 1 and we have the four cases 11, 0 (meaning the empty string), 00 , and 1, then
the corresponding tree is

•
0

1
�

•
0

1
�

•
0

1
�

•
0

1
�

3 5 5 5 1 4 5 5 2

and the corresponding term is
selection = 〈〈π3, π5, π5〉, 〈π5, π1, π4〉, 〈π5, π5, π2〉〉.

145

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

This term is typable with type ρ(K), where ρ(0) =
⊗

0,3(∀β.βm+1 (β) and ρ(h+1) =
⊗

0,3(ρ(k)).
In particular we can apply it repeatedly to terms of type ∀β.β3 (β to access its subtrees and in
the end the leaves.

So given something of type ⊗0,K+1(∀β.β3 (β), we may design a term that selects the right
selector to pick the right function.

;` λs.s (
−→
~y .selection ~y) :

⊗
0,K+1

(∀β.β3 (β)(∀β.βK+1 (β.

Let's call this term select. Note that in the derivation every yi gets typed a di�erent way by
instantiation.

Now we will design the terms Fi that represent the actions of the functions fi, which work
on the second product. Practically we take the last component (which represents the predecessor
applied k times), recuperate from the other bits what is needed (if ki < k), and then manually put
in front and in the end the other bits. So if we must represent succs concat(predh(: x)) : p) we
just use

; f0, f1 : α(α, q :
⊗

0,k+1
(α(α) ` q (

−→
λz.λw.

fs0 (fs1 . . . (fs|s|−1 (zh (. . . zk−1 (zk (fp0 (. . . (fp|p|−1 w) . . .))) . . .))) . . .) : α(α.

Let's call this term Fs,h,p, and consider in particular Fi := λq.Fsi,ki,pi
, typable with ⊗0,k+1(α(

α) (α (α. Note that while all the other symbols are meant to hold only one bit each, zk

instead holds everything that's not erased by the predecessor. Now combine all the functions to
get

; ~f0, ~f1 : α(α ` 〈~F 〉 :
⊗

0,m+1(
⊗

0,k+1(α(α)(α(α).

Note the multiple fis. Now we put together he last term and the select term, making it all
dependant on a variable of type τ :

; ~f0, ~f1 : α(α, r : τ ` r (λ`1λ`2.〈~F 〉 (select `1) `2) : α(α.

Finally we promote, plugging the iteration in r and shifting the various fis on the linear side, and
then contracting them together with the two already present for the iteration, and we get:

f0, f1 : α(α;n : BInt ` nM0M1N (λ`1λ`2.〈~F 〉 (select `1) `2) : §(α(α)

which by two abstractions and a generalization becomes the term caseK [. . .].
Lemma 4.2.76 (e-shift). e-shift is representable in DLAL2.

146

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Proof. First let us give a �at term that almost does the operation required, as it shift the even
bits, but counting from the most signi�cant one. As usual we do an iteration on a list where one
of the components is α(α that contains the composition of the bits of the result.

The type on which we do the iteration is⊗0,3(ρ, α(α, α(α), where ρ := ∀β.(β2 (β). The
intended meaning of a value of this type is that the �rst component is πi := λx0λx1.xi where i tells
us whether we are passing an even (i = 0) or odd bit (i = 1), the second is the bit we eventually
put apart for use two digits later, and the third holds the result so far. The step functions will
therefore be:

; fi : α(α `Mi := λp.p (λxλyλz.x 〈π1, fi, y ◦ z〉 〈π0, y, fi ◦ z〉) : τ (τ.

So the current scanned bit gets directly appended when passing odd digits, while if we are passing
an even one we put the bit aside and use the saved one instead. The base value is

; f0 ` N := 〈π0, f0, I〉 : τ,

as the �rst bit must be changed to 0. Note how we are on purpose forgetting about trailing zeros.
The iteration gives (we shift the f0 of the base value to intuitionistic side and then contract it with
the one from M0):

f0, f1 : α(α;n : BInt ` nM0M1N : §τ.

The result of the iteration, apart from being extracted, must be then corrected to add the saved
bit at the right position. If we arrive at the end when we expected an even digit we just add the
saved bit, while otherwise we have to add 0 and the saved bit. This operation is carried out by the
following term:

; p : τ, f ′0 : α(α ` p (λxλyλz.x (y ◦ z) (y ◦ (f ′0 ◦ z))) : α(α.

Note that here x gets instantiated with type (α (α)2 (α (α. Then we promote this last
derivation, plugging in p the result of the iteration, and shifting f ′0 to the linear side to contract it
with the f0 already present:

f0, f1 : α(α;n : BInt ` nM0M1N (λxλyλz.x (y ◦ z) (y ◦ (f ′0 ◦ z))) : §(α(α).

Finally we abstract the two fis and generalize to get a term we will call rev− shift[: n|0] (reversed
shift).

Now we will program a term that reverses the order of bits of a term of type BInt, as if it was
just a list of bits. We do it by just composing the bits in reversed order.The type on which we
iterate is α(α, the step functions are

; fi : α(α ` λx.x ◦ fi : (α(α)(α(α

147

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

and the base value is I, so that iteration, two abstractions and generalization give
;n : BInt ` rev : BInt

where rev[: n|0] := λf0λf1.n (λx.x ◦ f0) (λx.x ◦ f1) I.
Now we can obtain e-shift just by �rst reversing the bits, then applying rev− shift, then

reversing again and �nally applying strip to cut o� the eventual 0 at the beginning:
;n : BInt ` e-shift : BInt

with e-shift[: n|0] := strip[: rev[: rev− shift[: rev[: n]]]].
Let us call BC± the class BC− augmented with the case constructs and e-shift.

Corollary 4.2.77. All functions in BC± are polytime.
Proof. We have just seen that the case constructs and e-shift are encodable with DLAL2 terms.
Together with the compositional representation of BC in DLAL2 it ensures us that we remain in
the polytime functions.
Theorem 4.2.78 (polytime completeness of BC±). Every polytime function f can be written
as f(~n :) in BC±

Proof. (sketch) First of all we see that the function
fp(x :) := 11 . . . 1︸ ︷︷ ︸

p(|x|)

is representable in BC−, where p is a polynomial and |x| is the length of the binary expansion of
x. We de�ne it by induction on the construction of the polynomial:

f1(x :) := π1,0
1 (succ1(: 0) :),

fp1+p2(x :) := concat(fp1(x :) : fp2(x :)),

fX·p(x :) := gp(π
1,0
1 (x :), π1,0

1 (x :) :),

where gp(x1, x2 :) is de�ned to give |x1| · p(|x2|) 1s,using the de�nition by restricted safe recursion
that uses fp:

gp(0, x2) := 0; gp(xi, x2) := concat(fp(x2) : gp(x, x2 :)).

The function fp is needed as a clock for the polytime computation.
Suppose now we have a polytime Turing machine that computes a function, with a polynomial

p(X) tat bounds he time needed for any computations. For simplicity we can suppose the function

148

4.2. Light logics
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

being computed is in only one argument. We suppose that the machine has a single tape, and
that at the end the output is written in binary starting where the head of the machine stands, and
all the rest of the tape is empty. We encode all the states with numbers with binary expansion
of length K with K even, all with least signi�cant digit 1, and all symbols with binary strings of
length L, with a 1 at the beginning an at the end (so that in fact L ≥ 3), apart from the blank
symbol that is encoded by L zeros. For commodity we require that the encoding of 1 and 0 begin
with 11 and 10 respectively.

The con�guration of a machine is then coded by a binary string such that the �rst K less
signi�cant digits are the code of the current state, and then the codes of the left and right parts of
the tape are written with alternating bits starting from he position of the head, i.e. if concatenating
the chosen code for symbols of the whole tape (apart from the in�nite blank symbols) gives

. . . s−4s−3s−2s−1s0s1s2s3s4 . . .

and the current state is coded by q0 . . . qK−1 then the corresponding code for our purposes is
q0 . . . qK−1s0s−1s1s−2s2s−3s3s−4s4 . . . ,

starting from the least signi�cants bits. Note that if the left and right part are di�erent in length
as to the written part, then the distance is �lled up with zeros which is the right encoding of
the blank symbol. Also the fact of having required that the encodings of non-blank symbols are
delimited by ones makes so that no information is lost if we regard the string as an integer and
delete trailing zeros.

Now the encoding of the initial con�guration is easily carried out by safe recursion and compo-
sition of concatenations. For the transition we use caseK+2L−2: we have to look only at the bits
corresponding to the state and the symbol under the head of the machine. Note that each case
given by the Turing machine must be repeated here for all the possible combinations of the bits
regarding the left part of the tape. In any case the e�ect of case must be to truncate all the bits
of the state, put back the ones of the new state, and eventually put an additional 0 if the head
must move to the right.

The movement of the tape is simulated using e-shift: in fact take the encoding of the tape
after a change of state and a movement to the left by one bit has been done (we will have to repeat
it L times):

q′0 . . . q
′
K−1s−1s−2s0s−3s1s−4s2s−5s3 . . . ,

while the result of applying e-shift two times is (recall K is even):
0q′10q

′
3q0 . . . q

′
K−1q

′
K−4s−1q

′
K−2s−2s0s−3s1s−4s2s−5s3 . . .

149

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Also when moving to the right e-shift works in a similar manner because we have put an additional
0 at the beginning. Moreover we can distinguish between the two cases by just watching the 5th
bit: it is zero only if we have added it, otherwise it is q0 which we have chosen to be 1. Correcting
what's wrong with the result of e-shift2 (the mixed up state) requires dealing only with the �rst
K +5 bits, and that can be accomplished by a convenient case construct with �nite though many
patterns. Then we can repeat the bit shifting L times and in the end with a case1 remove the
eventual zero appended for movemet to the right. What we get is a function transition(: n) with
a safe variable, so that it can be iterated by the following function:

iteration(0 : m) := m,

iteration(xi : m) := transition(: iteration(x : m)).

The extraction of the result is then done by �rst deleting the bits of the state with the predecessor,
then extracting the right part of the tape using the following function

aux(0 :) := 1,

aux(xi) := case1[

1 : succ0(: succi(: pred(: u))) |

0 : succ1(pred(: u))

] (: aux(: x)),

which practically uses the least signi�cant digit as a �ag. The extraction of the content of the
left tape is then done by erasing with pred this �ag. Similarly we can then extract the value by
looking at the second bit of every codi�cation (because alone it can already tell us if the symbol is
0 or 1) and then jumping the next L bits with the use of several �ags.

So in the end the whole computation of the Turing machine is represented by the function
extraction(iteration(fp(x :) : init(x :)) :)

where extraction is the extraction of the output, and init is the injection of the input.
Corollary 4.2.79. A function is representable in DLAL2 if and only if it is polytime.

4.3 TC, TYP and type inference
When dealing with light logics type checking and typability assume new importance. They do

not only provide a way to check the correctness as to termination, but even give complexity bounds

150

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

on the computation. Again the best thing would be to leave to a machine the part consinsting in
deriving the type, while the programmer just writes the pure term.

In fact type checking and type inference have been proved decidable for both the propositional
fragments of EAL and LAL, and also an adaptation of the algorithm for EAL has been proposed
for DLAL.

4.3.1 Type inference for EAL

Typing for the �rst order simple fragment of EAL has been solved by Coppola and Martini
in [CM01], and then re�ned in a stronger way by Coppola and Ronchi Della Rocca in [CRDR03].
By simple it is meant that a restriction on contractions is in place: contractions are made only on
variables, without plugging in more complex terms3.
De�nition 4.3.1 (simple terms). Let # be the following measure on ΛEA terms (it consists of
a length function in which variables are considered of length 0):

#(x) := 0,

#(M1M2) := 1 + #(M1) + #(M2),

#(λx.M) := 1 + #(M),

#((!M){
−−→
P/x) := #(M) +

∑−−−→
#(P),

#({M}N→~x) := #(M) + #(N).

Recall that (.)+ : ΛEA → Λ is the function resolving the substitutions meant by the two
additional constructs in ΛEA. Clearly #(M) ≤ #((M)+).

We say a ΛEA-term M is simple if it contains no subterm {M}N→~x such that N is not a
variable, and moreover #(M) = #((M)+). The second condition is required so that not even
deferred contractions of non-variable terms happens, in the sense of a contraction of a variable into
which we plug a complex term afterwards using a box. In fact it implies that in a boxed term
(!M){

−−→
P/x} if Pi is not a variable then xi occurs only once in (M)+, i.e. it is not contracted by a

previous contraction.
We say a pure term M is simply typable in EAL if there is a typable simple ΛEA-term N such

that (N)+ = M .
We further say that a typing of a term is simple if the corresponding ΛEA term is simple.
The idea is �rst of all to adapt ΛEA to a grammar that merges multiple promotions and

contractions.
3this has a justi�cation in the fact that EAL typing is related to the application of optimal reduction by the

Lamping algorithm, which requires the initial translation into sharing graphs to have only variables being shared.

151

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

De�nition 4.3.2 (AbsEA). The set of abstract elementary a�ne terms is built from V with the
following grammar:

AbsEA ::= V | (AbsEAAbsEA) | λV.AbsEA | {AbsEA}−−−−−−−→
AbsEA→~V

| (∇AbsEA){
−−−−−−→
AbsEA/V}.

The last rules introduce respectively contracted and boxed terms as in ΛEA (see de�nition 4.2.6):
they undergo the same conditions and for them we adopt the same conventions. Free variables are
also de�ned like for ΛEA:

FV({M}−−−→
N→~x

) := FV(M) \ {
−→
~x } ∪ FV(~N),

FV((∇M){
−−→
N/x} := FV(M) \ {~x} ∪ FV(~N),

BV({M}−−−→
N→~x

) := BV(M) ∪ BV(~N),

BV((!M){
−−→
N/x} := BV(M) ∪ BV(~N).

We will call sharing list the list −−−−→N → ~x in {M}−−−→
N→~x

, and we will range over them with letters
such as `. We will allow such a list to be empty, in which case {M}∅ denotes just M . The set of
contracted variables is de�ned on sharing lists as

CV(
−−−−→
N → ~x) := {

−→
~x },

while we extend the notion of free variables by
FV(
−−−−→
N → ~x) := FV(~N).

One should interpret abstract terms as sets of ΛEA-terms, so that contracted abstract terms
stand for the terms that contract the same variables in di�erent order, and (∇M){

−−→
N/x} stands

for terms of the form (!mM){
−−→
N/x}.

Together with the new grammar for terms comes a new type assignment system we will call
Abs. The rules are the ones for ΛEA, in which the only di�erences regard (prom) and (con), which
take the form:

−−−−−−−→
A ` N : !σ −−−→

~x : !σ,B `M : τ
~A,B ` {M}−−−→

N→~x
: τ

(con)
−−−−−−−−→
B ` N : !mσ −−→x : σ `M : τ
~A ` (∇M){

−−→
N/x} : !mτ (prom)

Again for ease of notation we may write the promotion as
−−−−−−−−→
B ` N : !mσ −−→x : σ,B `M : τ
~A, !B ` (∇M){

−−→
N/x} : !mτ (prom)

152

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

There is a function that easily injects ΛEA terms into AbsEA-terms. We will here denote it by
emb, and it is easily de�ned by:

emb(x) := x,

emb(λx.M) := λx. emb(M),

emb(M1M2) := emb(M1) emb(M2),

emb({M}N→~x := {emb(M)}emb(N)→~x,

emb((!M){
−−→
N/x}) := (∇ emb(M)){

−−−−−−−→
emb(N)/x}.

It is easy then to see that
A `EALs

M : τ =⇒ A `Abs emb(M) : τ.

In the other direction we can de�ne a function bme that brings AbsEA to sets of terms in ΛEA,
by expanding the possibilities ∇ represents.

bme(x) := {x},

bme(λx.M) := {λx.M ′ |M ′ ∈ bme(M) },

bme(M1M2) := { (M ′
1M

′
2) |M ′

1 ∈ bme(M1), M ′
2 ∈ bme(M2) },

bme({M}`,N→~x :=
{
{M ′}N ′→~x |M ′ ∈ bme({M}`), N ′ ∈ bme(N) },

bme((∇M){
−−→
N/x}) := { (!mM ′){

−−−→
N ′/x |M ′ ∈ bme(M), N ′

i ∈ bme(Ni), m > 0 }.

This de�nition makes sense once we �x a particular way in which the sharing lists are ordered.
Now in this opposite way we can show that

A `Abs M : τ =⇒ ∃M ′ : A `EALs M
′ : τ ;

the particular M ′ is practically chosen by the actual number of bangs involved in the rules used
to derive ∇s in M .

In a way similar to how we de�ned canonical derivations in DLAL we here de�ne canonical
terms by means of a special reduction, designed to reduce to the minimum nesting of contracted
and boxed terms.
De�nition 4.3.3 (canonical reduction). The canonical one step reduction is denoted by →C

153

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

and is the least relation that passes to context for which
(∇(∇M)){

−−→
N/x} →C (∇M){

−−→
N/x},

{{M}`1,y→~x}`2,N→(~z,y) →C {{M}`1}`2,N→(~z,~x),

{{M}`1,N→~x}`2 →C {{M}`1}`2,N→~x if FV(N) ∩ CV(`2) = ∅,
(∇M)

{−−→
N/x, (∇P){

−−→
Q/y}/z

}
→C (∇M [P/z]){

−−→
N/x,

−−→
Q/y},

(∇M){
−−→
N/x, {P}`/y} →C

{
(∇M){

−−→
N/x, P/y}

}
`
,

(∇{M}`,x→~y){
−−→
N/z,w/x} →C

{
(∇{M}`){

−−→
N/z,

−→
t/y}

}
w→~t

,

{M}`1,{N}`2→~x →C

{
{M}`1,N→~x

}
`2
,

({M}`N)→C {(M N)}`,

(M {N}`)→C {(M N)}`,

λx.{M}` →C {λx.M}` if x /∈ FV(`),
(∇M){

−−→
N/x,

−−→
P/y} →C (∇M){

−−→
N/x} if ~y ∩ FV(M) = ∅,

(∇x){M/x} →C M,

{M}`,N→(~x,~y) →C {M}`,N→~x if ~y ∩ FV(M) = ∅,

{M}`,N→~x →C {M}` if ~x ∩ FV(M) = ∅,

{M}N→x →C M [N/x],

Note we make extensive use of the convention that no variables are repeated twice, so that there
is no clash when moving around shared lists.

As usual the re�exive and transitive closure is denoted by �C.
Aided by the fact that the system is syntax directed apart from the term-invariant (ins) and

(gen) it is easy to see that�C enjoys subject reduction. Moreover by inspection of all the possible
cases it is also Church-Rosser. So for M a ΛEA we may de�ne C(M) as the unique normal form.
We only prove an important property that is not stated in [CRDR03], which allow us to de�ne
C(M).
Proposition 4.3.4. �C is strongly normalizing.
Proof. We de�ne some measures of terms. We �rst de�ne a subterm in the usual way, using a
notion that does not take into account the substitutions implied by the construction rules, i.e. for
example (x y) is considered a subterm of {x y}I→(x,y).

The relative depth d(N,M) of a subterm N in a term M is de�ned inductively so that

154

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

d(M,M) = 0 and in the other cases (which excludes M = x):
d(N,λx.M) := 1 + d(N,M),

d(N,M1M2) := 1 + d(N,Mi) where N is a subterm of Mi,

d(N, {M}−−−→
P→~x

) :=

1 + d(N,M) if N is a subterm of M ,
1 + d(N,Pi) if N is a subterm of Pi,

d(N, (∇M){
−−→
P/x}) :=

1 + d(N,M) if N is a subterm of M ,
1 + d(N,Pi) if N is a subterm of Pi.

We denote by #1(M) the number of ∇ in the term plus the total number of auxiliary variables
appearing in sharing lists.

Then de�ne recursively the following measure we will here denote by #2(N,M) where N is a
subterm of M :

#2(x,M) := 0,

#2(λx.N,M) := #2(N,M),

#2(N1N2,M) := #2(N1,M) + #2(N2,M),

#2({N}−−−→P→~xn ,M) := n · d(N,M) + #2(N,M) +
∑

#2(P,M),

#2((∇N){
−−→
P/xn},M) := n+ #2(N,M) +

∑
#2(P,M).

With respect to lexicographic order →C strictly reduces the measure (#1(M),#2(M,M)). This
is based on the fact that most of the rules bring the contractions down while leaving the rest as
it is. Of the only two cases that may increase #2 by doing actual substitutions (which may bring
contractions deeper in the term), one erases a ∇ and the other erases an auxiliary variable in a
sharing list, and the substitution cannot be a duplicating one, so that #1 decreases strictly.
Lemma 4.3.5. The canonical forms of simple typable ΛEA terms respect the following properties:

1. Every contracted subterm apperas either in the form λx.{M}x→~yn where ~y ⊆ FV(M) and n ≥ 2,
or else the term itself is in the form {M}` with CV(`) ⊆ FV(M) and ` contracting only variables
and always to at least two variables. Basically contractions are either �nal or just before they are
needed by an abstraction, and they are always on a variable.

2. There is no subterm of the form (∇(∇M){
−−→
x/y){

−−→
P/x}, i.e. a boxed term that plugs in only variables

cannot be boxed again, so it can only terminate a chain of boxings.
3. No variable is ever boxed or contracted, i.e. there are no subterms of the form {x}N→~y or

(∇x){
−−→
P/y}.

155

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

4. The only terms that can be plugged in a boxed term are variables and applications. The boxed
and contracted terms are excluded because of the rules of canonical reduction, and moreover no
abstraction can have as type one with the bang necessary to be plugged in.

5. No boxed term appears at the left of an application, as it would not get a suitable type.
On the converse if a term respects these properties it is the canonical form of a simple term, though
it can be untypable.

Next we will show in what sense Abs admits principal pairs. To do so we need types that do
not only have type variables, but also variables on the number of modalities.
De�nition 4.3.6 (EAL type schemes). The set of type schemes TAbs, ranged over again by
Greek letters such as σ, τ , is de�ned from the set of type variables by the grammar

TAbs ::= V | TAbs (TAbs | !ΛN(TAbs),

where ΛN is the set of exponent schemes ranged over by letters such as p, q and built from a
countable set of natural literals VN by the grammar

ΛN := VN | ΛN + ΛN.

The set of exponent schemes is considered quotiented with respect to commutativity and asso-
ciativity of +. We denote by ∑~n the exponent scheme n1 + · · · + nk where ni are variables in
VN rather than actual integers. The set of type schemes is quotiented with respect to the least
equivalence relation ∼ that passes to context such that

!p(!q(τ)) ∼ !p+q(τ).

We will always take as representant the one without subtypes of the form !p(!q(σ)).
A scheme substitution is a function T with DOM(T) = V ∪ VN and �nite support such that

T (V) ⊆ TAL and T (VN) ⊆ N \ {0}. T is extended to T : ΛN → N linearly by T (
∑
~n) :=

∑−−→
T (n),

and then to T : TAbs → TAL by the relations:
T (σ(τ) := T (σ)(T (τ),

T (!p(σ)) := !T (p)T (σ).

Note that on the left the exponent is an actual number, which means a certain number of expo-
nential prepended to the type.

We will use a notion of syntactical equivalence that ignores only the exponent scheme. It is the
least equivalence relation that passes to context such that

σ1 (σ2 =e τ ⇐⇒ τ = τ1 (τ2, σi =e σi,

!pσ′ =e τ ⇐⇒ τ = !qτ ′, σ′ =e τ
′.

156

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

The �rst part is to design a uni�cation function U : its job is to unify the implicational structure
of the type schemes as the uni�er seen for system S did (see subsection 2.2.5), and in the same
time design a system of linear equations on the literals involved.
De�nition 4.3.7 (uni�ers and most general uni�ers). We say a scheme substitution T is a
solution to a set C of linear constraints if for every p = q ∈ C we have that T (p) = T (q). It is
trivial that asking whether there exist a solution of C is decidable.

We will call uni�er for σ and τ a pair (C,S) where C is a set of linear constraints on literals
in ΛN and S a substitution based on S : V → TAbs, if S(σ) =e S(τ) and for every T such that T
is a solution of C we have that T (S(σ)) = T (S(τ))4. We say it is a most general one if for every
T such that T (σ) = T (τ) then T is a solution of C and there exist a scheme substitution T ′ such
that T |TAbs

= T ′ ◦ S.
Proposition 4.3.8. There is an algorithm that taken in input two type schemes gives as output
fail of there is no uni�er, otherwise (C,S) where C is a set of linear constraints on VN in the
form p = q with p and q exponent schemes, and S is a substitution on types.
Proof. U can be given by the following algorithm:
Require: σ and τ type schemes;
1: if σ = α then
2: if τ = α then return (∅, []);
3: else
4: if α /∈ FTV(τ) then return (∅, [τ/α]);
5: elsereturn fail;
6: else
7: if τ = α then return U(α, σ);
8: else
9: if σ = !pσ′ then

10: if τ = !qτ ′ then
11: (C ′, S′)← U(σ′, τ ′);
12: if (C ′, S′) = fail then return fail;
13: else return (C ′ ∪ {p = q}, S′);
14: else
15: we have σ = σ1 (σ2;

4in fact we can require this property only for T that is the identity on type variables, as the syntactical identity
is already required. The previous condition is needed so that we cannot build a uni�er by just using an unsolvable
linear system.

157

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

16: if τ = τ1 (τ2 then
17: S1 ← U(σ1, τ1);
18: if (C1, S1) = fail then return fail;
19: else
20: (C2, S2)← U(S1(σ2), S1(τ2));
21: if (C2, S2 = fail then return fail;
22: else return (C1 ∪ C2, S2 ◦ S1);
23: elsereturn fail;
Then by induction:
σ = α: the case in which the result is fail is when no possible substitution compatible with =e.
On the other hand a positive result is easily seen to be a uni�er. Moreover if T is such that
T (α) = T (τ), we have that T is automatically a solution of ∅, and on the other hand we may see
that T |TAbs

= T ◦ S:

(T ◦ [τ/α])(β) =

T (τ) if β = α,

T (β) otherwise.
and, as [τ/α] does not instantiate any exponent schemes, all is set up right by T . Clearly the case
τ = α is identical.
σ = !p(σ′): if τ is not a banged type clearly no uni�er is possible, as =e ignores the exponents but
not their presence. Then if τ = !q(τ ′) an eventual uni�er uni�es also σ′ and τ ′. On the converse
for a uni�er of σ′ and τ ′ the only thing lacking from being a uni�er for σ and τ is satisfying the
equality between the number of bangs, i.e. it must satisfy also p = q. The result is then a most
general one because if T (σ) = T (τ) then also T (σ′) = T (τ ′) and necessarily T (p) = T (q), so that
by induction hypothesis we get what we desired.
σ = σ1 (σ2: again if τ is neither an implication nor a variable no substitution can satisfy =e, so
fail is a correct answear. It is easy to see that also in the other cases fail is correct or else the
answear is indeed a uni�er. If on the other hand T is such that T (σ) = T (τ), then we have T (σ1) =

T (τ1), so that necessarily T is a solution of C1 and T |TAbs
= T ′1◦S1, so that T ′1(S1(σ2)) = T ′1(S1(τ2)).

Therefore by induction hypothesis T ′1 (and thus T , as S1 has no information on exponents) solves
C2, and T ′1 = T ′ ◦ S2, so that T = T ′ ◦ (S2 ◦ S1).

We extend the above algorithm so that it may unify more variables. In order to compute U(~σ)

158

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

we de�ne recursively
(C1, S1) := U(σ1, σ2),

(Ci+1, Si+1) := U(S1 ◦ · · · ◦ Si(σi+1), S1 ◦ · · · ◦ Si(σi+2),

and then we de�ne U(~σn) := (C1 ∪ · · · ∪ Cn, S1 ◦ · · · ◦ Sn). We extend further U to multiple
equations. Given sequences ~σj we de�ne in a similar manner as before:

(C1, S1) := U(~σ1),

(Ci+1, Si+1) := U(
−−−−−−−−−−−−−→
S1 ◦ · · · ◦ Si(σi+1)),

and then we denote by U(~σ1 | · · · | ~σm), which uni�es all the sequences separately.
Now we can design a function that assigns the equivalent of principal pairs to terms in Abs.

De�nition 4.3.9 (principal triples). Given a term M we call a principal triple the object
(C,A, τ) where C is a set of linear constraints on literals A a type scheme environment, i.e. a
function A : V→ TAbs with �nite domain, and τ ∈ TAbs, if the two following properties hold:
• for every T that solves C, we have T (A) `Abs M : T (τ), where T (A) is de�ned by T (A)(x) :=

T (A(x));
• if B `Abs M : σ, then there exist T scheme substitution such that T solves C, T (A) ⊆ B and
σ = T (τ).
Proposition 4.3.10. There is an algorithm ptr that taken as input an abstract term M outputs
fail if M is not typable in Abs, otherwise it gives a principal triple for M .
Proof. The algorithm is an extension for the last one given for S in subsection 2.2.5, based on the
fact that Abs is syntax directed. Let ptr be the following algorithm, where for the sake of brevity
we adopt the convention that each time one of the functions called returns fail then the whole
algorithm returns fail (as if by an exception call):
Require: a term M in AbsEA;
1: if M = x then return (∅, {x : α}, α);
2: else
3: if M = λx.M ′ then
4: (C ′, A′, τ ′)← ptr(M ′);
5: if x ∈ DOM(A′) then return (C ′, A′ \ {x : A′(x)}, A′(x)(τ ′);
6: else
7: choose α fresh;
8: return (C ′, A′, α(τ ′);

159

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

9: else
10: if M = M1M2 then
11: (C1, A1, τ1)← pp′(M1);
12: (C2, A2, τ2)← pp′(M2);
13: in (C1, A1, τ1) rename variables so that type variables and literals do not appear also

in (C2, A2, τ2);
14: choose α fresh;
15: (C3, S)← U(τ1, τ2 (α); return (C1 ∪ C2 ∪ C3, S(A1 ∪A2), S(α));
16: else
17: if M = {N}−−−→

P→~xn then
18: for 1 ≤ i ≤ n do
19: (Ci, Ai, τi)← ptr(Pi);
20: in (Ci, Ai, τi) rename variables so that type variables and literals do not ap-

pear also in (Cj , Aj , τj) for all j < i;
21: (C ′, A′, τ ′)← ptr(N);
22: in (C ′, A′, τ ′) rename variables so that type variables and literals do not appear

also in (Ci, Ai, τi) for all i;
23: choose ~αn and ~mn fresh;
24: (C ′′, S)← U(

−−−−→
A′(x1), τ1, !m1α1 | · · · |

−−−−→
A′(xn), τn, !m1αn);

25: return (C ′ ∪ C ′′ ∪
⋃

i Ci, S(A′ \ {
−−−−−−→−−−−−−→
x : A′(x)} ∪

⋃
iAi), S(τ ′));

26: else
27: necessarily M = (∇N){

−−→
P/xn};

28: for 1 ≤ i ≤ n do
29: (Ci, Ai, τi)← ptr(Pi);
30: in (Ci, Ai, τi) rename variables so that type variables and literals do not ap-

pear also in (Cj , Aj , τj) for all j < i;
31: (C ′, A′, τ ′)← ptr(N);
32: in (C ′, A′, τ ′) rename variables so that type variables and literals do not appear

also in (Ci, Ai, τi) for all i;
33: choose m fresh;
34: (C ′′, S)← U(!mA′(x1), τ1 | · · · | !mA′(xn), τn);
35: return (C ′ ∪ C ′′ ∪

⋃
i Ci, S(

⋃
iAi), !mS(τ ′));

Let's see the two points of the de�nition of principal triple by induction. Suppose ptr(M) =

(C,A, τ). In the �rst point we will always suppose T is such that T solves C, and we will need to
show that T (A) `Abs M : T (τ). In the second one we will suppose B `Abs M : σ and we will have

160

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

to show that there exist T solution to C and such that T (A) ⊆ B and T (τ) = σ. Also the case in
which fail is given will be discussed.
M = x: The �rst point is given by a simple (var); the other point is shown by stripping the
derivation from all weakenings down to a single (var) yielding x : σ ` x : σ, and then choosing
T = [σ/α].
M = λx.M ′: Untypability of M ′ implies untypability of M . By induction hypothesis (as C = C ′)
T (A′) `Abs M

′ : T (τ ′). Now if x ∈ DOM(A′) we derive with an (abs) T (A) ` λx.M ′ : T (A′(x))(

T (τ ′), and in fact T (A′(x))(T (τ ′) = T (τ). Otherwise we introduce x : α by weakening and then
abstract it away to get the same result.
For the second point if we go up the derivation we necessarily have σ = σ1 (σ2 and x : σ1, B `Abs

M ′ : σ2. So by induction hypothesis there is T that solves C ′ = C and such that T (A′) ⊆ B ∪ {x :

σ1} and T (τ ′) = T (σ2). If x ∈ DOM(A′) then T (τ) = T (A′(x))(T (τ ′) = σ1 (σ2, and clearly
T (A) ⊆ B. Otherwise take T ′ such that T ′(α) = σ1 and such that it is equal to T on all other
variables. As A = A′, x /∈ DOM(A) and α /∈ FTV(A) we automatically have T ′(A) ⊆ B. Clearly
also T ′(τ) = σ holds.
M = M1M2: Untypability of any of the two implies untypability of the whole term. The other
case in which fail is given is when the types τ1 and τ2 (α are not unifyable: the correctness of
this comes from the second point of the induction hypothesis.
Let's get back to the �rst one. By induction hypothesis (as T solves both C1 and C2, and so also
T ◦S does) we have that T (S(Ai)) `Abs M1 : T (S(τi)) for i = 1, 2. As T solves C3 by de�nition of
uni�er we have that

T (S(τ1)) = T (S(τ2 (α)) = T (S(τ2))(T (S(α))

so that we can combine the two by (app), and obtain a derivation of T (A) `Abs M : T (τ).
For the other point we climb the derivation to the two subderivations giving

B1 `Abs M1 : σ′(σ, B2 `Abs M2 : σ′.

By induction hypothesis we have Ti such that Ti(Ai) ⊆ Bi, with T1(τ1) = σ′(σ and T2(τ2) = σ′.
De�ne T to be equal to Ti when dealing with variables (both type variables and literals) appearing
in (Ci, Ai, τi), equal to σ on α and the identity on all the other ones. As the two sets of variables
have been made disjoint and α is fresh such de�nition is possible. So T solves both C1 and C2,
and as T (τ2 (α) = σ′ (σ = T (τ1) by de�nition of most general uni�er T solves also C3 and
there is T ′ such that T |TAbs

= T ′ ◦ S. So
T ′(A) = T ′(S(A1 ∪A2)) = T (A1 ∪A2) = T1(A1) ∪ T2(A2) ⊆ B1 ∪B2

161

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

and T ′(τ) = T ′(S(α)) = T (α) = σ.
M = {N}P→~x: It is necessary that all the subterms involved are typable for the term to be in turn
typable. And again applying the second point of induction hypothesis yields that it is right for the
algorithm to output fail when the unifying function fails.
If T is as in the hypothesis then T ◦S solves C ′ and Ci for every i, so that T (S(A′)) `Abs N : T (S(τ))

and T (S(Ai)) `Abs Pi : T (S(τi)). T also solves C ′′: if we �x i, and say ~xi = x1
i , . . . , x

ki
i by

de�nition of uni�er we have that T (S(A′(xj
i))) is constantly equal to T (S(σi)) which in turn is

equal to T (S(!mi(αi))) = !T (Mi)(T (S(α))). So for a �xed i there is a certain �xed number of bangs
(namely T (mi)) in front of the types T (S(A′(xj

i))) which are all equal, so we can contract these
variables and plug into them the derivation for Pi getting what we needed.
The last rule of the derivation must be a (con), so that we have subderivations for

−−−−−−−−→
B ` P : !nρ, −−−−→

~x : !nρ,B′ ` N : σ,

where we are supposing ρ is not a bang-type, and ni < 0 for all i, and we have B = B′ \{
−−−−→
~x : !nρ}∪⋃

iBi. By induction hypothesis we have Ti such that Ti solves Ci, Ti(Ai) ⊆ Bi and Ti(τi) = !niρi,
and T ′ such that T ′ solves C ′, T ′(A′) ⊆ B′ and T ′(τ ′) = σ. Now de�ne T so that it has the values
of Ti and of T ′ when dealing with the respective variables in the principal triple, and has values ρi

and ni on αi and mi respectively. Again it is possible because the variables are rendered disjoint.
Now for each �xed i we have

T (A′(xj
i)) = T ′(A′(xj

i)) = !niρ for all j,
T (τi) = Ti(τi) = !niρ,

T (!miαi) = !T (mi)T (αi) = !niρ.

So by de�nition of most general uni�er T solves C ′′ and there is T ′′ such that T |TAbs
= T ′′ ◦S. T ′′

solves the same linear constraints as T , so that it solves C, and moreover

T ′′(S(A′ \ {
−−−−−−→−−−−−−→
x : A′(x)} ∪

⋃
i

Ai)) = T ′(A′) \ {
−−−−→
~x : !nρ} ∪⋃

i

Ti(Ai) ⊆ B′ \ {
−−−−→
~x : !nρ} ∪⋃

i

Bi = B,

and T ′′(S(τ ′)) = T ′(τ ′) = σ.
M = (∇N){

−−→
P/x}: This case is handled basically in the same way as the preceding one.

Now we have to relate this typing to the pure terms.

162

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Proposition 4.3.11. Given a pure term M let C(M) be the following set:
C(M) = {N ∈ ΛAbs | N = C(R), R simple, (R)+ = M }.

There is an algorithm ct (which stands for �canonical typable�) that given a pure term M gives
as output a set such that
• ct(M) ⊆ C(M);
• if N ∈ C(M) and N is typable in Abs then N ∈ ct(M).
Proof. Let L be the (computable) function that linearizes the free variables of a term, in the
sense that it replaces each occurrence of a variable occurring more than once with a di�erent fresh
variable. Let Lx(M) be the set of variables substituted for x in its linearization. So for example
if M = (x (y (x (y z)))) then L(M) = (x1 (y1 (x2 (y2 z)))), and Lx(M) = {x1, x2 }. Let's denote
by x ∈>1 FV(M) the property of occurring free more than once in M , and if X and Y are set of
terms let's denote

λx.(X) := {λx.M |M ∈ X }, X @ Y := { (M N) |M ∈ X, N ∈ Y }.

Similarly we de�ne {X}x→~y and (∇X){
−−→
Y/x}. Note that all this operations, though they can

greatly increase the size of the sets, still preserve their �niteness.
First we de�ne this supporting procedures: bl, which stands for �build linear�, and bb, for �build

boxes�. bb has an auxiliary variant bb′, used to distinguish between the building of boxes that plug
in only variables from the ones that plugs in non trivial terms. bl is the following algorithm:
Require: M pure linearized term;
1: if M = x then return {x};
2: else
3: if M = λx.M ′ then
4: if x ∈>1 FV(M ′) then return λx.{bl(L(M ′)) ∪ bb(L(M ′))}x→Lx(M ′);
5: else return λx.(bl(M ′) ∪ bb(M ′));
6: else
7: necessarily M = M1M2; return bl(M1) @ (bl(M1) ∪ bb(M2));
bb instead is

Require: M pure linearized term;
1: if M = x then return ∅;
2: else
3: ~xn ← FV(M);
4: choose ~yn fresh; return bb′(M) ∪

(
∇
(
bl(M [

−−→
y/x]) ∪ bb′(M [

−−→
y/x])

))
{
−−→
x/y};

163

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

By free subterm we intend a subterm whose free variables are not later bounded. Basically
N is a free subterm of M if we can write M = P [N/x] for some P and x occurring only once in
P , without the need of a context. Let fs be an algorithm that accepts as input a pure term M

and by each subsequent call it returns M written in the form P [
−−→
Q/y], de�ned by all the possible

non-empty sequences of free disjoint subterms ~Q such that every Qi is an application, P is not a
variable and yi occurs only once in P . When all such possibilities are depleted it returns fail.
Clearly the possibilities are �nite. Finally bb′, the more complex of the three auxiliary algorithms,
is the following one. Note that it cannot be called on a variable.
Require: M pure linearized term;
1: X ← ∅;
2: while P [

−−→
Q/yn]← fs(M) is not fail do

3: ~xm ← FV(P) \ ~y;
4: choose ~zn and ~wm fresh;
5: X ← X ∪

(
∇
(
bl(P [

−→
z/y,
−−→
w/x]) ∪ bb′(P [

−→
z/y,
−−→
w/x])

))
{
−−−−−→
bl(Q)/y,

−−→
x/w};

All these algorithms make heavy use of the restrictions we have on canonical forms of simple
terms as they are described in lemma 4.3.5. The last thing to do is design all the possible contrac-
tions when �rst evaluating a term. In the end the main algorithm C(M) is simply de�ned by the
following pseudo-code.
Require: M pure term;
1: ~x← {x ∈ FV(M) | x ∈>1 FV(M) };
2: if ~x = ∅ then return bl(M) ∪ bb(M);
3: else return {bl(L(M)) ∪ bb(L(M))}x1→Lx1 (M),...,xn→Lxn (M);
So by inspection of the algorithms, confronting with the properties listed in 4.3.5, we get the

two properties.
Finally we can say how we can have all and only the simple typings for a pure term.

Proposition 4.3.12. Fix a pure term M .
If N ∈ ct(M) and ptr(N) = (C,A, τ) then for every T scheme substitution that solves C we

have T (A) `EAL M : T (τ).
If on the converse B ` M : σ is derivable with a simple typing then there exists a term N in

ct(M) such that if we denote (C,A, τ) = ptr(N) there exists a scheme substitution T that solves
C, such that T (A) ⊆ B and T (τ) = σ.

In particular M is simply typable if and only if there exists N ∈ ct(M) for which there exists a
principal triple with a solvable system.

164

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

4.3.2 Type inference for DLAL

A type inference algorithm has been developed for propositional LAL in [Bai04], using ideas
similar to the ones described for EAL. However the constraints one has to solve are not linear
equalities, but equations on words which are hard to solve.

This is based on the fact that ! and § can occur mixed up in the types. This problem is
overcome with DLAL: if we read this system as a restriction of LAL, we see that practically !
is used exclusively for handling eventual duplications, while § is kept to ensure strati�cation. The
two processes can be separated: the proposal of algorithm in [BT04] works by two stages. The
�rst one scans a simple type derivation to put eventual !, i.e. to see were (i-app) and (i-abs) are
needed. The second one uses the type inference algorithm designed for EAL to extract the typings
compatible with DLAL, using the fact that all DLAL typings can be translated in EAL ones.
Note that DLAL has built in the system the condition of contracting only variables. We brie�y
expose this algorithm.

Let's see one step at a time.
De�nition 4.3.13. Basic abstract type schemes TB will here denote are built from V by the
grammar

TB ::= V | T! → TB ,

where in turn T! are the bang abstract type schemes built by the grammar
T! ::= ΛBTB .

ΛB is the set of disjunctions of boolean parameters
ΛB := { a1 ∨ · · · ∨ an | n ≥ 0, ai ∈ VB },

where VB is a countable set of literals intended to represent boolean values.
We can abbreviate a1∨· · ·∨an by ~a. We call an interpretation a function Φ : VB → B extended

to encompass all ΛB by Φ(~a) = (∃i : Φ(ai)) seen as boolean values.
Abstract environments will here mean A : V → T!, and abstract sequents are A ` M : τ

where A is an abstract environment and τ belongs to the basic abstract types. aA denotes the
environment de�ned by (aA)(x) := a(A(x)).

Now the basic idea is to decorate each application and abstraction with a parameter that when
instantiated will tell whether it is linear or intuitionistic. So given a pure term M take the typing
D resulting from applying pp described in subsection 2.2.5. We place in this derivation (weak) and
(con) rules: due to our knowledge of canonical derivations in DLAL (see proposition 4.2.43), we
can automatically place them before the abstraction that needs them or at the end of the whole

165

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

derivation. In fact no (weak) is placed at the end as pp does not give super�uous variables. Now
from a D such treated we build a sort of abstract derivation where (app) and (abs) are decorated
with a parameter in VB.
De�nition 4.3.14 (maximal decoration). We decorate simple types turning them into basic
abstract ones by

α̂ := ασ̂ → τ := aσ̂ → τ̂ ,

where a is each time a fresh parameter.
We design a special uni�er for abstract types. As we will work on derivations already obtained

in the simple case no unifying of the implicational structure of the types will be needed. So only
a set C of constraints of the form ~a = ~b with ~a,~b ∈ ΛB is given as output.

So let U be the following algorithm.
Require: σ and τ two bang abstract types with the same implicational structure;
1: if σ = ~aα and τ = ~bα then return {~a = ~b};
2: else
3: necessarily σ = ~a(σ1 → σ2) and τ = ~b(τ1 → τ2); return {~a = ~b} ∪ U(σ1, τ1) ∪ U(σ2, τ2);
We turn D into an abstract derivation D̂ where in the �nal sequent all types are obtained by

some decoration of the simple ones. We proceed by induction on the last rule of D, building in the
meanwhile a set C(D) of equations on ΛB.
(var): x : σ ` x : σ becomes x : σ̂ ` x : σ̂, and C(D) = ∅.
(abs): We have M = λx.M ′ and the subderivation D′ that types M ′. By induction we get a

derivation D̂′ x : σ,A ` M ′ : τ with A, τ and σ abstract, and we also have C(D′). We
choose a fresh parameter a: if x ∈ > 1 FV(M ′) then we de�ne C(D) := C(D′)∪ {a = true},
otherwise we leave C(D) := C(D′). In any case D̂ ends with

D̂′....
A, x : σ `M ′ : τ
A `M ′ : aσ → τ

(a-abs)

(app): We have M = M1M2 and the corresponding two subderivations D1 and D2. So by
induction hypothesis we have D̂1 A1 ` M1 : σ1 → τ and D̂2 A2 ` M2 : σ2, and
the constraints C(D1) and C(D2). σ1 and σ2 have the same implicational structure but are
not necessarily equal in the boolean parameters. First we rename all parameters so that

166

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

they are disjoint in the two derivations. Then we choose a fresh parameter a, and de�ne
C(D) := C(D1) ∪ C(D2) ∪ U(σ1, aσ2), and D̂ is

D̂1....
A1 `M1 : σ1 → τ

D̂2....
A2 `M2 : σ2

A1, aA2 `M1M2 : τ
(a-app)

(con): We have M = M ′[x/~y], and a subderivation D′, which by induction hypothesis yields
D̂′ −−→y : σ,A ` M ′ : τ . The σis have all the same structure but di�erent parameters. We
leave C(D) := C(D′) and the derivation D̂ is

D̂′....−−→y : σ,A `M ′ : τ
x : m(~σ), A `M ′[x/~y] : τ

(con)

where m (�merge�) is de�ned by
m(~aα,~bα) := ~a~bα,

m(~a(σ1 → σ2),~b(τ1 → τ2)) := ~a~b(m(σ1, τ1)→ m(σ2, τ2)),

m(−→σ , τ) := m(m(−→σ), τ).

Note that the case of contraction does not pose any additional conditions. In fact this phase
is interested in just distinguishing intuitionistic and linear applications and abstractions in a
plausible way. All the rest is left to phase two.

(weak): The set of constraints is directly inherited and the weakening is turned into one on the
maximal decoration of the type.

We then can �nd all the possible solutions of C(D), i.e. interpretations Φ such that Φ(~a) = Φ(~b)

for every ~a = ~b ∈ C: this is possible as the number of parameters is �nite. At least one exists: for
example Φ ≡ true. For each of this solutions Φ (which are �nite) we get a so called !-derivation DΦ

where in D̂ we have labeled as (i-abs) and (i-app) the (a-abs) and (a-app) with Φ(a) = true and
(l-abs) and (l-app) otherwise. We now have that each DLAL derivation D is such that applying
to it the forgetful function we get a derivation D′ such that there exists Φ that solves C(D′) and
D = D′

Φ up to the structure of the rules.
Another �lter is now given by checking on each of these derivations if the following two condi-

tions hold:
1. in DΦ the right premise of each (i-app) has an environment of at most one assumption;

167

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

2. the eventual only variable in the environment of a right premise appears only once in the
term on the right of `.

Clearly these conditions are necessary for the derivation to be turned into a DLAL one.
The next phase is to apply to the term the algorithm ct(M) described in the previous section for

EAL. With two further steps we can �lter out from ct(M) the canonical terms not corresponding
to a possible DLAL derivation. We are comparing the two on the base of the translation of DLAL

to LAL, which in turn can be injected in EAL. We work separately with each DΦ obtained in
the previous stage.

Using DΦ we draw a syntactic tree with boxes drawn around each right premise of (i − app).
This means a !-promotion is needed there if we look at the derivation in LAL. Similarly we draw a
syntactical tree with boxes for each term in ct(M): a box is put around each of the boxed subterms.
Let T be the tree obtained from DΦ and Ti the trees obtained from ct(M). We confront each Ti

with T and we leave it out if it does not satisfy the following conditions:
• each box of T has a corresponding one in Ti, and in particular (as boxes in T are all with
at most a single variable in the environment) the corresponding box cannot have a complex
term plugged in it;
• for each box B of T that has a variable x in the environment (and we know it must be the
only one) there is no box in Ti that contains B and not an abstraction on x.

The second condition is due to the fact that in a DLAL derivation such an x shifts automatically
to the intuitionistic side. So no further boxes (be they ! ones that prelude to an (i-app) or S ones
given by a promotion) can be drawn until x disappears form the environment, which can happen
only when it is abstracted away.

Thus we obtain ĉt(M), a subset of ct(M). To each ΛAbs-term N in it we apply the algorithm
ptr that �nds a triple (C,A, τ) as described in the previous section. Let B1, . . . Bk be all the
boxes in the syntactical tree of N that corresponds to boxes in DΦ. Suppose now that the scheme
substitution T is a solution of C: then there is a valid EAL derivation D′ typing N . In it each
of the boxes Bi corresponds to ni nested promotions, with ni > 0. These consecutive promotions
(which are made on a term with just one variable occurring only once) are translated into ni − 1

(possibly none) DLAL promotions. The last one is implicit in (i-app). All the other promotions are
turned into DLAL ones. The fact that they can be applied is seen by shifting to the intuitionistic
side the least as possible. So given n nested promotions, n− 1 of them are done without shifting
any variable. In the last one for each assumption we check down the derivation if it is needed
intuitionistic in a contraction or an (i-abs) before another promotion is encountered: if it is the
case we shift it to the intuitionistic side. However such a case means that the assumption will

168

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

disappear before any other promotion is needed: in the �rst case because a contraction is either
followed immediately by an abstraction or else it is the last part of the derivation, in the second
one because it is directly abstracted away. So promotions are always possible, i.e. there are never
assumptions in the intuitionistic side that prevent them from happening. So each term in ĉt(M)

together with a solution to the corresponding set of linear constraints induces a DLAL typing for
M .

On the converse we have already said that each DLAL typing D is of the form D′
Φ for some

abstract derivation D′ and some solution Φ to the set of boolean constraints induced by D′. On
the other hand by injection in EAL we see that D is also a valid EAL simple typing. It is simple
because DLAL permits contraction only on variables, and does not allow plugging into contracted
assumptions. So by the results on ct there must be N ∈ ct(M) with (N)+ = M and N typable
in Abs. This N however comes from a DLAL derivation, so it must respect the properties set for
ĉt(M).

So the algorithm we have outlined gives a way to �nd all the possible typings for M in propo-
sitional DLAL.

4.3.3 Typing in polymorphic light logic

As we have seen in the representation theorem we have used polymorphism heavily. We cannot
expect much expressiveness from a system without second order quantifying. However it poses a
drawback: we have already seen as the problem of type checking and typability is undecidable in
system F.

Regarding type checking, we can easily adapt the proof of undecidability for F (see 3.4.1) to
EAL2 and LAL2.
Theorem 4.3.15 (SUP ≤ TCDLAL2,SUP ≤ TCLAL2,SUP ≤ TCEAL2,SUP ≤ TCAL2). SUP

with two pairs is reducible to TC in all of the four systems AL2, EAL2, LAL2, DLAL2.
Proof. Basically we follow the same thread of the proof of the analogous proposition 3.4.3. Let
Γ = (σ1, τ1), (σ2, τ2) be any instance of SUP with two pairs. We will build a unique instance
for TCDLAL2. Then we will inject it in LAL2, then into EAL2, and from there into AL and
�nally with the forgetful function we will return to the same instance we have used for system F.
We can assume without problems that the arrows in the SUP instance are linear ones instead of
intuitionistic.

We take the same term M = b (λx.c x x). Take the DLAL2 environment
A1 := ; b : ∀γ.(γ → §γ)(β, c : §∀.(τ1 (δ1)((δ2 (τ2)((σ1 (σ2),

169

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

and de�ne A2 as the above environment injected in LAL2, and A3 as the environment obtained
injecting A2 in EAL2 (and AL2), and �nally by A the environment obtained with the forgetful
function, which is the same environment used in the proof of proposition 3.4.3. We will show that

Γ has a solution =⇒ A1 `DLAL2 M : β.

Then we will have what is needed, as we can complete the chain: the last statement implies that
A2 `M : β is derivable in LAL2, and A3 `M : β is then derivable both in EAL2 and AL2, and
then A `F M : β, which in turn as showed in the proof of proposition 3.4.3 implies that SUP has
a solution. So the six statements involved are equivalent.

Suppose we have a solution S of Γ, together with S1 and S2 such that Si(S(σi)) = S(τi).
Now we will basically take the derivation already depicted for system F and decorate it with the
necessary modalities. For brevity denote by

ρ := ∀.(τ1 (δ1)((δ2 (τ2)((σ1 (σ2),

the type of c in A1 without the leading modality. ϕ is the type S(σ1)(S(σ2), so that
S1(ϕ) = S(τ1)(S1(S(σ2)), S2(ϕ) = S2(S(σ1))(S(τ2).

Then we have the following derivation:

; b : A(b)(β ` b : ∀γ.(!γ(§γ)(β
(var)

; b : A(b) ` ((∀.ϕ)→ §∀.ϕ)(β
(ins)

D....
; c : A(c) ` λx.c x x : (∀.ϕ)→ §∀.ϕ

A ` b (λx.c x x) : β
(l-app)

where D is the derivation

; c : ρ ` c : ρ
(var)

; c : ρ ` c : S1(ϕ) (S2(ϕ) (ϕ
(ins)

; x1 : ∀.ϕ ` x1 : ∀.ϕ
(var)

; x1 : ∀.ϕ ` x1 : S1(ϕ)
(ins)

; c : ρ, x1 : ∀.ϕ ` c x1 : S2(ϕ) (ϕ
(l-app)

; x2 : ∀.ϕ ` x2 : ∀.ϕ
(var)

; x2 : ∀.ϕ ` x2 : S2(ϕ)
(ins)

; c : ρ, x1, x2 : ∀.ϕ ` c x1 x2 : ϕ
(l-app)

; c : ρ, x1, x2 : ∀.ϕ ` c x1 x2 : ∀.ϕ
(gen)

x1, x2 : ∀.ϕ; c : §ρ ` c x1 x2 : §∀.ϕ
(prom)

x : ∀.ϕ; c : §ρ ` c x x : §∀.ϕ
(con)

; c : §ρ ` λx.c x x : (∀.ϕ) → §∀.ϕ
(i-abs)

So TCDLAL2, and type checking for all type assignment systems with unrestricted instantiation
which �nd themselves between DLAL and F, is undecidable.

170

4.3. TC, TYP and type inference
CHAPTER 4

LIGHT LOGICS AND λ-CALCULUS

Moreover we may see that the proof is again based on the possibility of simply instantiating
arrow types, and on the fact that a term like M above is typable without many problems. If we
want to circumvent this problem we cannot expect to design a system where M is not typable,
because it would signify a heavy loss of expressiveness. Neither su�ces one in which some kind of
discipline over modalities and quanti�ers permitted to be instantiated is set up, because the proof
uses just arrow types.

Decidability of typability in these system is up to today an open question. An adaptation of
the proof given for system F seems out of reach.

A possible breakthrough could follow from the fact that system F restricted to rank 2 is
decidable. We recall that rank is de�ned inductively: if we denote with Tk the set of types of rank
k then in system F we de�ne

T0 ::= V | T0 → T0, (the open types),
Tk+1 ::= Tk | ∀V.Tk+1 | Tk → Tk+1,

so basically the rank one less than the maximal depth permitted for quanti�ers on a left-going
path in the syntactical tree of a type. The types used in the proof of undecidability of TC are of
rank 3: more precisely the �nal type assigned to c is (of the form) (∀.ϕ → ∀.ϕ) → β which puts
quanti�ers at left depth 2. In fact as we already mentioned Wells has proved that both typability
and type checking for rank 2 are decidable, while they are both undecidable for every rank greater
than 2.

Clearly the de�nition of rank is extendable to linear logics. The types would include Int and
functions on integers. However we would have a restriction on the instantiable types that would
lessen, but not cancel completely, the power of iteration (based on instantiation of the quanti�er
in Int). The corresponding loss of expressiveness has yet to be investigated. The advantage would
be decidability of type checking and typability. Baillot and Terui have proved (though they have
yet to publish the result) that the problem of decorating a system F derivation into a valid LAL

one, or else give negative answear is decidable. So in an eventual rank 2 fragment of LAL we could
search for system F derivations and then decorate them to eventually obtain LAL ones.

171

Bibliography

[AC98] Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi. Cambridge
University Press, New York, NY, USA, 1998.

[ACM04] Andrea Asperti, Paolo Coppola, and Simone Martini. (Optimal) duplication is not
elementary recursive. Inform. and Comput., 193(1):21�56, 2004.

[AM01] Andrea Asperti and Harry G. Mairson. Parallel beta reduction is not elementary
recursive. Inform. and Comput., 170(1):49�80, 2001.

[AR02] Andrea Asperti and Luca Roversi. Intuitionistic light a�ne logic (proof-nets, normal-
ization complexity, expressive power). ACM Trans. Comput. Log., 3(1):1�38 (elec-
tronic), 2002.

[Bai04] Patrick Baillot. Type inference for light a�ne logic via constraints on words. Theo-
retical Computer Science, 2004. 35 pages, to appear.

[Bar92] H. P. Barendregt. Lambda calculi with types. pages 117�309. Oxford University Press,
Inc., New York, NY, USA, 1992.

[BC92] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of
the polytime functions (extended abstract). In STOC '92: Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 283�293, New York,
NY, USA, 1992. ACM Press.

[BT04] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in
lambda-calculus. CoRR, cs.LO/0402059, 2004.

[Chu36] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. Amer. J.
Math., 58:345�363, 1936.

172

BIBLIOGRAPHY BIBLIOGRAPHY

[CLRDR04] Paolo Coppola, Ugo Dal Lago, and Simona Ronchi Della Rocca. Elementary a�ne
logic and the call by value lambda calculus. Accepted for presentation at TLCA'05,
2004.

[CM01] Paolo Coppola and Simone Martini. Typing lambda terms in elementary logic with
linear constraints. In TLCA, pages 76�90, 2001.

[CRDR03] Paolo Coppola and Simona Ronchi Della Rocca. Principal typing for elementary
a�ne logic. In Hofmann M., editor, Typed Lambda Calculi and Applications: 6th In-
ternational Conference (TLCA 2003), volume 2701 of LNCS, pages 90�104. Springer-
Verlag, 2003. A preliminary version has been presented at the workshop �LL�Linear
Logic�, a�liated to FLoC'02, Copenhagen.

[DJ03] Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf.
Comput., 183(1):123�137, 2003.

[FLO83] Steven Fortune, Daniel Leivant, and Michael O'Donnell. The expressiveness of simple
and second-order type structures. Journal of the ACM, 30(1):151�185, 1983.

[Gan80] Robin O. Gandy. Proof of strong normalization. In J. P. Seldin and J. R. Hind-
ley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 479�490. Academic Press, 1980.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1�102, 1987.
[Gir98] Jean-Yves Girard. Light linear logic. Inf. Comput., 143(2):175�204, 1998.
[GTL89] Jean Y. Girard, Paul Taylor, and Yves Lafont. Proofs and types. CUP, Cambridge,

1989.
[Hoo66] Philip K. Hooper. The undecidability of the turing machine immortality problem. J.

Symb. Log., 31(2):219�234, 1966.
[Kri90] Jean-Louis Krivine. Lambda-calcul: types et modèles. Masson, 1990.
[KTU93] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the presence of

polymorphic recursion. ACM Trans. Program. Lang. Syst., 15(2):290�311, 1993.
[KW94] Assaf J. Kfoury and Joe B. Wells. A direct algorithm for type inference in the rank-2

fragment of the second-order λ-calculus. In LFP '94: Proceedings of the 1994 ACM
conference on LISP and functional programming, pages 196�207, New York, NY, USA,
1994. ACM Press.

173

BIBLIOGRAPHY BIBLIOGRAPHY

[Loa98] Ralph Loader. Notes on simply typed lambda calculus. Technical Report 381, Labo-
ratory for Foundations of Computer Science, 1998.

[MO04] A. S. Murawski and C.-H. L. Ong. On an interpretation of safe recursion in light
a�ne logic. Theor. Comput. Sci., 318(1-2):197�223, 2004.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5:223�255, 1977.

[Sch76] Helmut Schwichtenberg. De�nierbare funktionen im λ-kalkül mit typen. Archiv für
Mathematische Logik und Grundlagenforschung, 17:113�114, 1976.

[Sco93] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor.
Comput. Sci., 121(1-2):411�440, 1993.

[Ter01] Kazushige Terui. Light a�ne calculus and polytime strong normalization. In LICS,
2001.

[Ter02] Kazushige Terui. Light logic and polynomial time computation. PhD thesis, Keio
University, 2002.

[Wel99] Joe B. Wells. Typability and type checking in system F are equivalent and undecid-
able. Annals of Pure and Applied Logic, 98(1-3):111�156, 1999.

174

	Introduction
	Outline of the thesis
	Notations and conventions

	1 Pure lambda-calculus
	1.1 Definition and alpha-equivalence
	1.2 Reduction
	1.3 Representation of recursive functions

	2 Typed lambda-calculus
	2.1 An introduction to type systems
	2.2 System S: simple types
	2.2.1 Definition
	2.2.2 First properties
	2.2.3 What do we get from S?
	2.2.4 What do we lose with S?
	2.2.5 Type checking, typability and type inference

	2.3 System PCF: easier programming
	2.3.1 Definition and first properties
	2.3.2 What do we get from PCF?
	2.3.3 TC, TYP and type inference

	3 Polymorphic lambda-calculus
	3.1 Definition and first properties
	3.2 What do we get from F?
	3.2.1 Representation of free structures
	3.2.2 Strong normalization

	3.3 Functions representable in F
	3.3.1 HA2
	3.3.2 Translation into F
	3.3.3 Removing the junk term
	3.3.4 An example of an unrepresented function

	3.4 What do we loose with F?
	3.4.1 Undecidability of TC
	3.4.2 Undecidability of TYP

	4 Light logics and lambda-calculus
	4.1 An introduction to LL
	4.1.1 AL as a type system

	4.2 Light logics
	4.2.1 EAL
	4.2.2 Representation theorem for EAL
	4.2.3 LAL
	4.2.4 Representation theorem for LAL

	4.3 TC, TYP and type inference
	4.3.1 Type inference for EAL
	4.3.2 Type inference for DLAL
	4.3.3 Typing in polymorphic light logic

	Bibliography

