Indexed Labels for
Loop lteration Dependent Costs

Paolo Tranquilli

DISI — Universita di Bologna Alma Mater

ETAPS '13, CerCo/QAPL Workshops
March 23, 2013

http://cs.unibo.ti/~tranquil

Limits of non-dependent labels
00000

The CerCo project in a nutshell

Cerco:
Certified Complexity

The aim:
A compiler that is able to lift sound and precise resource
consumption infos from object to source code, in a com-
positional and mechanically certified way

The technique:
The labeling approach (more on next slide)

The first target architecture:
The still widely used 8051 microcontroller (no cache, no
pipeline, predictable clock timings)

Limits of non-dependent labels
0e0000

The original labeling approach

@ Inject cost labels at key points in source
@ Propagate them during compilation

@ Assign costs to labels via static analysis of the compiled
code, lift them to source

@ Each label must thus correspond to a block with O(1) cost

@ Paramount conditions for the labeling approach:
in the compiled code labels occur
e in each loop (for correctness)
e at every branching (for preciseness)

Limits of non-dependent labels
[e]e] lele]e]

Running example — Labeling

p 1 a:pe1
2 2
while i<n do . while i<n do
p—p=i B:pe—pxi
jfe—i+1 fe—i+1
Y :skip

trace: IEREEE ﬁ ﬁ ‘B y
costs: 122 484 484 484 41

Statically computed costs: k(a) = 122, k(B) = 484, x(y) = 41

Limits of non-dependent labels
[e]e]e] le]e]

Limits of the original approach

@ Paramount conditions for the labeling approach:
in the compiled code labels occur

e in each loop (for correctness)
e at every branching (for preciseness)

@ If they are ensured in source code, the above can still fail if

@ a high level instruction is mapped to a non-sequential block
@ transformations rearrange the code (e.g. loop optimisations)
© the execution cost is context-dependent (e.g. cache,

pipeline)
@ Common problem: cost labels occurring with different costs
@ Our solution: dependent cost labels!

Limits of non-dependent labels
0000e0

What loop optimisations?

Loop peeling: (while b do S|+

Loop unrolling: (while b do S)—

if b then
S
while b do S

while b do
S

(if b thenf
S

(more specialized form of loop unrolling are the norm....)

Limits of non-dependent labels
00000e

Running example — peeling

a:p—1
a:p—1 2
[2 if i<n do
while i<n do . B:pe—pxi
B:pe—pxi while /i< n do
i(—i+1 ﬁp<—p>t-l
y 1 skip f—i+1
Y . skip

trace: IEREEE ﬁ ﬁ ﬁ y
costs: 42 41 246 246 31

Statically computed costs: k(a) = 42, x(B) =777, x(y) = 31

Variable costs occur also due to cache or pipeline

Dependent labels: peeling

a:pe«1

je—2
while i< n do
B pe—pi
[e—1i+1

Y :skip
trace: a------ ﬁ
costs 42 41
k(@) = 42, k(p) = 7?7

Indexed labels
000000000000

a:pe—1
2
if i<n do
B o ipe—pri
while i<n do
B pe—pxi
fe—i+1
Y :skip
B Bl Yerns
246 246 31
, k(y) =31

Indexed labels
000000000000

Dependent labels: peeling

a:pe—1
a:pe1 [« 2
2 if i<n do
p :while i< n do . BO) :pe—p=i
Blio) - p— p=i fo :while i<n do
Pt Blp+1):p e pxi
Y skip fe—i+1
Yy :skip
trace: q------ B(OY-- -+ -- B(1Y- e B(2)- - Yeonon
costs: 42 41 246 246 31

k(a) =42, x(B) = (lp == 0)741 : 246, x(y) = 31

Indexed labels
000000000000

Dependent labels: unrolling

a:pe1
2
a:p—1 . , .
i o lo:whlle.l<n do‘
ip:while i< n do f(ﬁ*ili>1:p<—p*l
Blio) : p = p=i -
P it 1fbthfen .
Corin B@xig+1):pepri
v i+ 1
Y :skip

trace: a--:--- ‘B<0> ﬁ<1> 5(2) 1 ARREEE
costs: 42 246 230 246 31

k(a) =42, x(B) = (h%2 == 0)7246 : 230, x(y) = 31

Indexed labels
00@000000000

The loop indexed labels approach in brief

@ Annotate loops with indexes, which parametrize labels
@ Loop optimisations transform these parameters

@ Semantics keeps track of indexes, and compilation
propagates them
(no added difficulty to proofs of compilation passes)

@ Dependent costs for labels are given with conditional
expressions

Indexed labels
00@000000000

The loop indexed labels approach in brief

@ Annotate loops with indexes, which parametrize labels

Indexed labels
000000000000

Indexed labeling

@ Labeling function £ maps to labeled code
@ |t is parametrized with fresh indexes, initially unmodified:

ix: while b do
L{l)(while b do S):= all iy L ik)(S)
B(ly: skip
where
e the loop is single-entry
(important in the presence of gotos)
e iy is different from indexes of containing loops

(in fact, ix can be sequence of fresh identifiers, k loop
nesting)

Indexed labels
0000@0000000

The loop indexed labels approach in brief

@ Loop optimisations transform these parameters

Indexed labels
00000e000000

Loop transformations

Loop peeling
[if bthen
. : Slix — 0
[/k :while b do S] g ik[:kWhil]e b do
Slik > i + 1]

Loop unrolling

rI'k :while b do
Slix - 2 ig]
if bthen
S[ikl—>2*ik+1]

(i :while b do S|

Simple expressions generated by these transformations:

s:=ax*i+b

Indexed labels
000000@e00000

The loop indexed labels approach in brief

@ Semantics keeps track of indexes, and compilation
propagates them
(no added difficulty to proofs of compilation passes)

Indexed labels
0000000 e0000

Indexes in source semantics

@ Separate store for indexes: constant indexings C

@ Needed operations:
@ Lo Cevaluates alabel (e.9. a(2 iy + 1) o (ip = 2) = a(5))
e Clix | 0] denotes setting ik as 0in C
e Clix 7] denotes increment of ix in C

@ Unexciting management of indexes with active loops etc.

eL:S Le@ S: labels are emitted relative to C

Indexed labels
00000000e000

Intermediate and target languages

@ As loop structure is lost along compilation, indexes need to
be managed elsewhere

@ In each language down the compilation chain, add explicit
pseudo-instructions:

emit cost label: emit L & LoC
index reset: reset ik < Clix | 0]
index increment: inc ik & Clik 1]

Indexed labels
000000000800

Semantics preservation

o PSS PSS it T(P),T(S) > T(P)T(S)
Optimisations are particular kinds of transformations

@ Only loop optimisations and the first pass use indexedness
of labels
All other passes are parametric in the type of cost labels:
no added difficulty

Indexed labels
000000000080

The loop indexed labels approach in brief

@ Dependent costs for labels are given with conditional
expressions

Indexed labels
00000000000 e

Loop indexed costs

@ All a(/) in compiled code get a cost t(a(/)) € N

@ Costs lifted to a giving expression t(«).
That depends on the set of transformations

@ E.g. a(2 =iy + 1) contributes when jy%2 == 1

[Simple expressions: s ;= a*ix + b]

l

ik==>5b (@a=0)
ik >=b (a=1)
ik%a == b && ik >=b

(a>1,b" = bmod a)

Simple conditions:

Conclusion
[le]

Towards cache analysis

@ To exploit cache analysis in loops virtual loop peeling is
performed

@ Indexed labels allow to handle such virtual loop peeling

@ Global abstract interpretation yields a cost per instruction
@ Analysis categorizes variables in:
e Always hit
e Persistent: every access but the first is a hit
o Other
@ We can implement cache analysis for 8051 extensions by
applying dependent costs.

Conclusion
oe

Conclusions

Not shown here: instrumentation, dependent cost
simplifications, implementation details

Perspectives:

@ Abstract algebra for simple expressions/conditions?

@ Loop optimisation is interesting in this framework, as it can
be driven by cost annotations

@ Dependency could be extended to variables. For example:
loop reversing (ix — n— ix) or simple instructions compiled
with branching code (e.g. shift in 8051)

@ Accomodating pipeline (more in Gabriele Pulcini’s talk,
16:00 in room E)

	Limits of non-dependent labels
	Indexed labels
	Conclusion

