
Intuitionistic Differential Nets

and Lambda-Calculus

Paolo Tranquilli 1

Dipartimento di Matematica – Università Roma Tre

Laboratoire Preuves Programmes et Systèmes – Université Denis Diderot - Paris 7

Abstract

We define pure intuitionistic differential proof nets, extending Ehrhard and Reg-
nier’s differential interaction nets with the exponential box of Linear Logic. Nor-
malization of the exponential reduction and confluence of the full one is proved.
These results are directed and adjusted to give a translation of Boudol’s un-
typed λ-calculus with resources extended with a linear-non linear reduction à
la Ehrhard and Regnier’s differential λ-calculus. Such reduction comes in two
flavours: baby-step and giant-step β-reduction. The translation, based on Girard’s
encoding A→ B ∼ !A⊸ B and as such extending the usual one for λ-calculus into
proof nets, enjoys bisimulation for giant-step β-reduction. From this result we also
derive confluence of both reductions.

Key words: Lambda-calculus, differential interaction nets,
linear logic, proof nets, exponential reduction, confluence, normalization

1 Introduction

Twenty years ago Jean-Yves Girard introduced Linear Logic (LL, [12]) start-
ing from a fine analysis of the coherent semantics he had introduced for
system F. This logical framework has provided a new looking glass for the
study of the essence of computation in general, and λ-calculus specifically.
Particularly important for the background of this paper is the translation of
pure and typed λ-calculus into Girard’s proof nets, as studied byDanos and
Regnier in their theses [3, 19]. It has proved to be a powerful tool to bring

Email address: tranquil@mat.uniroma3.it (Paolo Tranquilli).
1 Partly supported by Università Italo-Francese (Programma Vinci 2007).

Preprint submitted to Elsevier September 19, 2008

forth the study of both sides of the mapping, proof nets on one side and λ-
calculus on the other. This translation comes in two forms: one, denoted by
t◦, which gives bijectively proof nets without exponential cuts, and another,
t•, defined as the multiplicative normal form of t◦, which quotients terms
with an operational equivalence, the σ-equivalence, described in [20].

Recently Ehrhard has defined a semantics of topological vector spaces and
continuous linear maps [7, 8] which fully employs some intuitions from
linear algebra that may be already found in an “embryonic state” in co-
herent spaces 2 . Again from such semantical development the same author
and Regnier presented extensions with syntactic differential operators for
both Linear Logic [10] and λ-calculus [9]. One of the ideas supporting such
endeavours is that taking the derivative of a function f and applying it to
an argument (as derivatives give linear forms) can be seen from the com-
putational and logical point of view as providing f with a single-use occur-
rence of that argument. The treatment of the subject can therefore rely on a
line of research already present in λ-calculus. Starting from Boudol’s work
on λ-calculus with multiplicities [1], variants of λ-calculus where studied
where arguments could have a limited availability. In [10] Ehrhard and Reg-
nier introduce the link between the two approaches – a translation to their
promotion-free differential interaction nets from the fragment of Boudol’s
calculus without infinitely available resources, the resource calculus.

The following are the two main contributions of this paper.

• We prove that pure intuitionistic differential proof nets with promotion
are a “good” rewriting system – the exponential reduction is strongly
normalizing, and the whole one is confluent.

• We use such results to fully develop the link between differential proof
nets and a refined version of Boudol’s full λ-calculus with resources. We
establish between the two the same strong connection existing between
proof nets and λ-calculus. A similar pairing can be found between polar-
ized proof nets and λµ-calculus [15].

In the next section we will outline the story so far, pointing out the issues
and the starting points that have motivated our research, and setting the
goals for the following sections. Then, in Section 3, we define pure intuition-
istic differential proof nets and prove the results we stated above, and refine
them for the upcoming translation. In Section 4 we switch to λ-calculus, and
present full resource calculus, which is Boudol’s λ-calculus with resources en-
riched with the dynamics of Ehrhard and Regnier’s differential λ-calculus.

2 Namely, the operations onwebs underlying tensor, dual or (direct) sum of coher-
ent spaces are the sames done on bases in their counterparts of finite-dimensional
vector spaces. In the spaces of [7, 8] such correspondence is exact, without being
limited to finite dimension (a feature necessarily broken by exponentialmodalities).

2

Finally in Section 5 we define the translation from full resource calculus to
differential proof nets, and show sequentialization and bisimulation.

Notation. Wewill denote sets of reduction rules with letters such as m or e,
and by

r
→ (r-reduction) the relation corresponding to rules r, obtained by

context closure. The relations
r=
→,

r+
→,

r∗
→ and ≡r are respectively the reflexive,

transitive, reflexive-transitive and equivalence closures of
r
→. An element u

is r-normal if there is no v with u
r
→ v. We write u

r
։ v if u

r∗
→ v and v is

r-normal. Reduction
rs
→ is the union of reductions

r
→ and

s
→. R : u

r∗
→ v or

u
R
→ v denotes a given chainR of reduction steps from u to v, and |R| denotes

the length of R. The properties of confluence, its variants (local and strong)
and of strong normalization are defined as usual.

Mfin(X) is the set of finite multisets over X, i.e. functions A : X → N with
support |A| < ω finite. Depending on the context multisets will be presented
either in additive or in multiplicative notation. In any case

∑

a∈A Da stands
for a sum with multiplicities, i.e.

∑

a∈|A|A(a) · Da. For example cardinality is
#A =

∑

a∈A 1.

Rwill be a commutative semiring with unit, and R 〈S〉 is the R-module gen-
erated by S, i.e. the set of formal finite sums

∑

s∈S css over Swith coefficients
in R. We will usually have R = N, and in such a case N 〈S〉 =Mfin(S) and
each sum can be written without coefficients.

2 State of the art

Our starting point is the pairing between resource calculus and Ehrhard and
Regnier’s differential interaction nets (DINs) given in [10], and the attempt
at extending it to the same authors’ differential λ-calculus [9]. We will skip
over some definitions and technical points in this section. For a definition of
pure DINs 3 one may refer to the next section, and take the promotion-free
fragment of intuitionistic differential proof nets.

2.1 Resource calculus and differential interaction nets

Starting from different motivations various authors have studied resource
calculi [1, 2, 13]. Ehrhard and Regnier give a presentation of Boudol’s cal-
culus with resources with a reduction borrowed from their differential λ-
calculus, and a restriction to the linear fragment by ruling out infinitely

3 They are called DR typed nets in [10].

3

available arguments. We present it here.

Given a denumerable set of variablesV the set of simple terms ∆ is defined
by the following grammar:

∆ ::= V | λV.∆ | 〈∆〉∆!,

where∆! :=Mfin(∆), presented inmultiplicative notation, is the set of bags of
arguments 4 . This language is extended toR 〈∆〉, the set of terms, and the con-
structors of the grammar extended bymultilinearity. Wewrite x ∈ t to mean
“x free in t” as usual 5 . We define the 0-substitution by t [x := 0] := 0 if x ∈ t,
and t otherwise. This is clearly the usual substitution with 0 if we take into
account multilinearity. Moreover we have the linear substitution defined by

∂y

∂x
· u := δx,y · u,

∂λy.s

∂x
· u := λy.

∂s

∂x
· u with y < u,

∂〈r〉A

∂x
· u :=

〈

∂r

∂x
· u

〉

A + 〈r〉
∂A

∂x
· u,

∂A

∂x
· u :=

∑

v∈A

(

∂v

∂x
· u

)

A/v,

where δx,y = 1 if x = y, 0 otherwise. The notation reflects the fact that this sub-
stitution can be regarded as a partial derivative of a term in the direction of
u. Strengthening such idea is the validity of Schwartz’s lemma, in the sense

that if x < v and y < uwe have the commutation ∂
∂x

(

∂t
∂y
· v

)

· u = ∂
∂y

(

∂t
∂x
· u

)

· v.

Restricting to R =N, reduction is defined by

〈λx.s〉uA βbs

〈

λx.
∂s

∂x
· u

〉

A, 〈λx.s〉1 βbs s [x := 0] ,

first extended to simple terms and bags as a context closure and then on
terms by linearity. One should notice that there is a choice regarding the
term to be fetched from the bag, however Schwartz’s lemma and linearity
of substitution assure strong confluence, and even in this untyped setting
strong normalization holds. This approach differs from Boudol’s one, which
defines a completely non-deterministic (therefore non confluent) lazy reduc-
tion. Here one keeps track of choiceswith sums, andmoreover the reduction
does not only substitute head variables. The bs in βbs stands for baby-step
β-reduction, as we can regard it as opposed to the reduction βgs, giant-step
β-reduction, that completely exhausts the redex. In our setting the two re-
ductions are presented in Definition 19 6 .

The translation t◦ of this calculus can be regarded as a particular case of
the one given in detail in Section 5. For now we can say that variables and

4 They are called poly-terms in [10].
5 We skip the subtleties involved with sums. A fine syntactical treatment of them
can be found in [22].
6 In [11] the two reductions are called small-step and big-step.

4

1◦ := ! , ([u])◦ := !
S

u◦ , (AB)◦ := ? !
S

S

S
A◦

B◦

Figure 1: Rules to translate bags of arguments.

abstractions are treated in the sameway as for λ-calculus. However, asDINs
are defined with binary contractions and cocontractions, a bag is translated
by writing it down as an iterated application of the binary merge operation
onmultisets, starting from singletons. This is shown in Figure 1. Application
〈r〉A is translated by plugging A◦ on a tensor cut against the output port
of r◦, just like boxes are in the translation of the application of λ-calculus
into proof nets. One should note that the translation of a bag A is different
for each different way of writing A by means of binary merge operations.
In [10] the solution is stated but not discussed, as the different nets are said
to be equivalent modulo a notion left for future work, which is associativity
of (co)contraction and neutrality of (co)weakening with respect to (co)con-
traction. Here we settle such notion by means of a reduction, and moreover
we will also show we cannot really ignore the issue when boxes are around
(Remark 3).

Given such an equivalence ≡a, the rigorous statement of the simulation
result is that

u βbs v =⇒ u◦ ≡a
m
→
e∗
→

m
←≡a v

◦,

where m is the multiplicative reduction `/⊗, and e is the exponential re-

duction ?/!. We also have to rebuild the multiplicative redex by
m
←. A better

statement may be achieved by either considering giant-step reduction, for
which the above result becomes

u βgs v =⇒ u◦
m
→

e
։≡a v

◦,

or by adopting the translation t• which normalizes multiplicative cuts, for
which we would have

u βbs v =⇒ u• ≡a
e∗
→

m
։≡a v

•.

Final a-conversion is needed to accommodate the arbitrary way in which
v◦/v• has been built. The initial one in βbs is needed instead to fetch the argu-
ment from the bag that contains it, otherwise it might be buried by several
cocontractions.

This problem with (co)contractions arises often in the translation of various
calculi into nets. The order in which variable occurrences are identified and
dummyvariables are introduced is usually abstracted away in calculi, while
respectively binary contractions and weakenings explicitly set it. Solutions
proposed in LL include

5

• adopting a syntax which identifies contractions made at several exponen-
tial depths, as in [19] – for now it seems hard to apply it in differential
nets with boxes, mainly because of the rule of codereliction against box;

• using such an identification as an equivalence relation, as hinted in [10]
for DINs and investigated in [5] for LL proof nets – an elegant solution,
though it is less so with respect to freely moving around weakenings, as
it may generate infinite trees with weakened leaves;

• using it as a set of reductions, as in [6] – which is the waywe are adopting
here (Section 3.4).

2.2 Differential λ-calculus and differential nets

A natural direction of investigation arising from [9, 10] is the question
whether differential λ-calculus can be translated into differential nets. The
first problem which arises is that DINs are promotion-free, and though it
is easy to define the extension, it has not yet been treated in the literature,
other than by replacing boxes with their Taylor expansion, i.e. an infinite
sum which therefore deprives the system of its finitary nature. In the next
section we will thus introduce differential nets or DNs, dropping the “inter-
action” wording as Lafont’s interaction net paradigm [14] is broken by the
promotion cell. We will call differential proof nets or DPNs the DNs that are
correct by the usual Danos-Regnier criterion 7 . As DPNs are not interaction
nets anymore, fundamental results like confluence or normalization are far
harder.

The second problem is related to the syntax of differential λ-calculus, which
we briefly sketch here. Terms are defined by the grammar

Λ ::= V | λV.Λ | (Λ)R 〈Λ〉 | DΛ ·Λ.

As application is linear in the function but not in the argument, sums must
be kept in argument position. The construct D u · v stands for taking the
derivative of u linearly applied to v. From the computational point of view,
it corresponds to providing uwith a single-use instance of v. So, apart from
the usual β-reduction, one defines the linear reduction Dλx.s · u→ λx. ∂s

∂x
· u.

The linear substitution ∂s
∂x · v is analogous to the one described for resource

calculus, with particular care in handling the application (by means of a
“linearization on the fly” similar to what we describe on page 25) 8 . Now if

7 So here the neutral word “net” replaces the concept of proof structure.
8 The syntax originally described in [9] has operators Di u · v, standing for the
derivative in the ith argument of u in the direction of v. It has already been re-
marked [21, Remark 1.4] that this conflicts with the intrinsic currying of λ-calculus.
This conflict is highlighted even more when trying to translate in differential nets.

6

we try to give a translation in DPNs extending the one for λ-calculus, we
wouldmap the redex Dλ to amultiplicative cut, so one chooses to represent
D with a tensor cut against the main conclusion of the differentiated term.
However in the reduct of linear reduction the λ is still present. One might
therefore represent such a situation with

(D1 u · v)
◦ :=

⊗ `

? !

!
S

S

S

u◦

v◦

,

where the rightmost ` corresponds to a potential abstraction that gets there
if D fires. This is disquieting: as opposed to λ-calculus’ translation, there
is not a “local” correspondence between the resulting net and the starting
term.Whether a` is an actual λ or a “phantom” one due to a differentiation
depends on what is around it. This could make a sequentialization proof
hard if not impossible.

We therefore chose to look in another direction. The usual translation of
λ-calculus into proof nets comes in two flavours t◦ and t•, both with strong
properties. In particular t◦ is bijective on proof nets without exponential
cuts (once one rules out exponential axioms) and enjoys bisimulation for
β-reduction. So we looked for a calculus that would have both the transla-
tions with the same properties, and we arrived at a version of full Boudol’s
λ-calculus with resources. In fact just like resource calculus described by
Ehrhard and Regnier in [10] is a an algebraic non-lazy version of the linear
fragment ofλ-calculuswith resources, the full resource calculuswedescribe in
Section 4 is the same for full Boudol’s calculus.Wemay say that it is Boudol’s
calculus enriched with the dynamics of Ehrhard and Regnier’s differential
λ-calculus, which explains why such a strong link with differential nets can
be found. After the next two sections, in Section 5, we will finally be able
to define the translation and show sequentialization (i.e. surjectivity) and
bisimulation of t◦. The next stage, the translation t•, is left for future work.

3 Intuitionistic differential proof nets

Intuitionistic differential proof nets (or intuitionistic DPNs) are an extension
of intuitionistic MELL proof nets with new rules (codereliction, cocontrac-
tion and coweakening). Due to our main interest here in λ-calculus, we will
deal with a pure version of intuitionistic DPN. Typed and non intuitionistic
versions are left for future work. Following the naming convention of [10]
(though, as already explained, dropping “interaction”), differential nets will
denote the nets freely built with the cells available, with no assumption
about correctness/sequentializability, i.e. they take the role played by proof
structures in MELL.

7

3.1 Statics: differential nets and correctness criterion

A net is given by the following data.

• A finite set P of free ports, also called conclusions.
• A finite set C of cells, to each of which is assigned a symbol, a principal

port and a finite ordered sequence of auxiliary ports. The number of all
these ports, which go by the collective name of connected ports, is called
arity of the cell.

• A finite set W of wires which is the union of a partition of the set of
ports into sets with 2 elements and some wires not related to any port
(deadlocks).

Cells are typically graphically depicted as triangles with the principal port
on a vertex and the auxiliary ones on the opposed side. A cell is said to
be commutative if its auxiliary ports are to be considered an unordered set
rather than a sequence 9 .

A typing is the assignment to all directed ports of a formula in a given
language with duals. A directed port is a couple of a port and a direction –
incoming or outgoing from the cell for connected ports, while on free ports
incoming is given the meaning of outgoing from the net and vice versa. One
imposes that if A is assigned to an outgoing port, then A⊥ is assigned to the
same incoming port and vice versa. Rules will be given for assigning types
to ports of cells with a given symbol.

A net is typable with a given typing if for each wire between ports the
outgoing type of one of its ports is equal to the incoming type of the other.
If we assign a direction to any non deadlock wire, turning it into an ordered
couple, its type is the outgoing type of its first port. We will call interface
of a typed net the multiset of the outgoing types of its conclusion. At times,
depending on the context, the same namewill be used for set of conclusions.
Deadlocks are voluntarily left out of the discussion.

Differential nets. The set DN0 of pure 0-depth simple intuitionistic differ-
ential net (or 0-depth simple DNs for short) is the set of nets typable with
formulas o, !o and respective duals ı, ?ıwith symbols, arities and typing rules
defined in Figure 2, excluding the promotion cell. Then by induction the set
DNk+1 of k + 1-depth simple DNs is the set of nets built with all cells in
Figure 2. To each promotion cell with n ports is associated an element π in
R 〈DNk〉where all addends have an interface of n − 1 ?ı and an o. This asso-
ciated sum is called the content of the box and has a fixed correspondence

9 One can give a more formal definition by defining an equivalence relation on
nets and taking the equivalence classes thereafter.

8

ı

ı o

o?ı!o

⊗ `

(or

Tensor and par

ı

?ı

?ı?ı

?ı

??
. . .

Dereliction and
contraction

o

!o

!o!o

!o

! !

. . .

Codereliction and
cocontraction

!o

!o!o

!

. . .

π

Promotion (box)

Figure 2: Cells for intuitionistic differential nets. Contractions and cocontrac-
tions are commutative and cannot have 2 ports.

between its ?ı-conclusions and the auxiliary ports of the box. The set of sim-
ple DNs is DN := ∪k∈NDNk. Intuitionistic differential nets are elements of
R 〈DN〉where all addends have the same interface. The (exponential) depth
of a net π is the minimal k such that π ∈ R 〈DNk〉. The exponential depth of
a cell in π is the number of boxes in which it is contained. From now on we
will not write “pure” and “intuitionistic” anymore and we will often drop
“differential”, as these nets are the only ones present in this paper.

In fact the typing rules of cells implement the isomorphisms usually em-
ployed to interpret untyped λ-calculus via Girard’s translation of the intu-
itionistic implication (o � o→ o = !o⊸ o = ?ı` o). We will often omit these
types in figures, as they can be easily derived. We will call n-contraction
(resp. n-cocontraction) one which has n+1 ports. 0-(co)contractions are also
called (co)weakenings. A wire is exponential if its type is ?ı/!o, and mul-
tiplicative otherwise. A cut is a wire which either connects two principal
ports or a principal port and the auxiliary port of a box. An axiom is a wire
which does not connect any principal or box auxiliary port.

Contexts. A simple context ω[] is a simple differential net built with an
additional special cell, the hole, which has an arbitrary arity and outgoing
types, the sequence of which is called the internal interface of ω[]. We im-
pose that the hole appears (syntactically) only once inω[]: formally itmeans
that either it appears once at exponential depth 0, or inductively there is one
box which contains aψ[] + σ with a , 0 and ψ[] simple context. Similarly,
a differential context is aω[] + π with π differential net and ω[] simple
context 10 . Given a simple DN π and a context ω[] such that the interface of
π is equal to the internal interface of ω[] we define ω[π] by substituting π
for the hole, i.e. identifying the free ports of π with corresponding ports of
the hole and then erasing them bymerging wires which share such ports. In
case π is a linear combination the sum is extended to the content of the box
containing the hole, or the whole context if there is none. Given a relation

10 It may be noted that for example 2[] = [] + [] is considered a one-hole context.
Doing differently when non-integer coefficients are around would be troublesome,
and moreover the reduction defined as a context closure with this definition
coincides with the one given in [10].

9

ρ on DNs its context closure is π ρ̃ σ iff there is a context ω[] and two nets
π′ ρ σ′ such that π = ω[π′] and σ = ω[σ′].

Correct nets. ThoughDNs already have computationalmeaning,wedefine
the correctness criterion following the Danos-Regnier one for LL proof nets
[4]. Given a simple deadlock-free DN λ a switching of λ is an unoriented
graph Gwith cells as nodes, obtained by deleting for every par and contrac-
tion the wires on all its auxiliary ports but one and converting all remaining
wires as edges between the cells they connect. A principal switching is one
that on `s always erases the exponential wire. A simple DN λ is said to be
correct, or a simple differential proof net, or simple DPN for short, if it is
deadlock-free, every switching G of λ is acyclic and with a number of con-
nected components equal to the number of weakenings at depth 0 in λ plus
one, and moreover if inductively every content of its boxes is correct. A DN
is correct if it is a sum of simple DPNs. We speak of differential modules if
we have only the acyclicity condition, and every box content is correct. This
is theminimal correctness we need to be able to plug themodule in a context
and hope the result is correct: a cyclic net, or one which has incorrect box
contents, gives incorrect nets no matter the context in which it is plugged.

Lemma 1 A DPN net has exactly one o or !o conclusion.

PROOF (sketch). This proof is no different from what is done for LL in-
tuitionistic proof nets. See for example [19]. The idea is to use paths in a
principal switching, first to end up on a o/!o conclusion, then to arrive at a
contradiction if two such conclusions are supposed.

3.2 Dynamics: multiplicative, exponential, associative reductions

From now on we will assume R = N. Though greatly interesting, other
cases such as Q+ pose problems for normalization issues, not to speak of
cases where R has an opposite −1 to the unit, where every term reduces
to any other [21, 22]. In this setting sums may always be written without
coefficients. We may also redefine contexts, ruling out the multiplication of
the hole by a coefficient, and making the upcoming definition of reduction
more atomic. This is left to personal taste, as the results do not change.

Figure 3 presents various sets of reduction rules on modules, which as al-
ready explained in Section 2 are to be extended by context closure to obtain
the reduction relation. Note that the rules cover also the cases for (co)weak-
ening. The m-reduction is the multiplicative one, e is the exponential one,
and a is the associative one, implementing associativity of (co)contraction
and neutrality to it of (co)weakening. Remark 3 shows why we are dealing
with a-reduction together with the other more classical ones: e-reduction

10

o

?ı

?ı

⊗`

?

?

?

??
?

?

?

?

?

?

?

?

?

?

?

?

?

!

!

!

!!
!

!

!

!
!

!

!

!
!

!
!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

... ...
...

...
......

...
...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

∑

i

∑

i

∑

i

∑

i

∑

i

∑

j ∑

i

λi

∑

i

λi

∑

i

λi

∑

i

λi

∑

i λi

∑

i λi

∑

i λi

∑

i λi

λi

λi

λi

λ j

∑

j µ j

∑

j µ j

1
1

1
1

i

i

nn

nn

m

e

e

e

e

e

e

e

e

e

a

a

Figure 3: Reduction rules for differential nets. In a-reduction rules contractions
or cocontractions in the reducts which come out to have 2 ports are a
convention to denote a single connecting wire.

(and me-reduction) is not confluentwithout it. Reductions can be seen to pre-
serve both typing and correctness. From now on all nets are to be considered
correct.

Lemma 2 The reduction ea is locally confluent.

PROOF. As usual one checks the critical pairs. The ones that have not been
covered in the literature about LL proof nets are easy, if somewhat long, to
verify. We will show here one of the most interesting cases, codereliction vs
box vs contraction, making the simplification that the box has two auxiliary
ports and that the contraction is a 2-contraction. The two reductions are
shown in Figure 4. In the end we arrive to two a-equivalent nets, which
a-normalize to the same one. �

Remark 3 The confluence diagram shown in Figure 4 proves also that e alone
is not confluent, contrary to what happens in LL proof nets, where confluence of
exponential (and general) reduction is independent of associativity.

11

?
?

?
?

?

?
?

?

?

?

?

?

?

!

!

!

!

! !

!

!

!

! !

!

!

!

!

! !

!

!

! !

!

!

!

!

!!

!
!

!
!

!

!

!

!

!

!

!

+++
∑

j

∑

j

∑

j

∑

j

λ jλ j

λ jλ je

e

e

e∗

e∗

e∗

≡a

∑

i λi

∑

i λi

∑

i λi

∑

i λi

∑

i λi

∑

i λi
∑

i λi

∑

i λi

∑

i λi

∑

i λi

∑

i λi

∑

i λi

Figure 4: Confluence diagram for codereliction vs box vs contraction critical
pair. The + . . . parts are the other addends in the sums which are symmetric.

3.3 Strong normalization of exponential reduction

Wewill now begin themost technical part of the paper: wewill prove strong
normalization of efirst, and ea after that. It is crucial here thatwedonot have
double exponential types: once an exponential is deleted, say for example
by a dereliction against codereliction reduction, no new cut is exponential.

Sketch of the proof technique. We want to define a decreasing measure
on the net. We start by assigning to each cut a natural number. After a cut
is fired, the cuts created by the reduction have a lesser weight, though there
may be many of them. Thus we employ the multiset of the weights of the
cuts withmultiset order. Another problem arises: sumsmake it so thatwhen
a reduction creates addends, there is a sort of global duplication of the net.
This can be settled with multisets again: one takes the multiset of the mul-
tisets of weights given by the various addends, so that if all addends of the
reduct have a multiset lower than the one of the redex we are done. This
almost settles the issue, were not for promotion. Boxes can be duplicated,
but fortunately there is a way to foresee how many copies of the boxes
may be created. So we count the weights inside boxes as many times as
these potential copies. Last problem: boxes contain sums, and when a box
is duplicated and opened every copy may spawn a different addend. What
we need is a way to combine every multiset in the multiset associated to a
box with both everything that lies outside (including all the combinations
of other boxes) and also a certain number of multisets of the same box de-
pending on how many potential copies may be done. This “combinatorial
monster” can be fortunately described by an operation on multisets that is
in fact a multiplication with respect to multiset sum: the convolution product
(Definition 4). So let us first introduce this abstract machinery on multisets.

12

Multisets. Let X me a well-ordered monoid (X, <, 0,+) with < compatible
with the sum, and consider Mfin(X) with additive notation. For each A ∈
Mfin(X)we definemaxA := max |A|,with the convention thatmax ∅ = 0, and
A[a 7→ 0] = A−A(a)[a]. OnMfin(X) we can define an order in one of this two
equivalent forms (inductive on # |A|, and as a transitive-reflexive closure).

• A ≤ B iff maxA ≤ maxB, and if maxA = maxB then A(maxA) ≤
B(maxA), and if moreover A(maxA) = B(maxA) then A[maxA 7→ 0] ≤
B[maxA 7→ 0];

• ≤ is the transitive-reflexive closure of <1, where A <1 B iff there is b ∈ B
such that A = B − [b] + K where maxK < b.

This is a well ordering onMfin(X), a proof of which can be found in [16].
Moreover it is compatible with multiset sum, turning (Mfin(X), <, [],+) into
a well-ordered monoid itself.

Definition 4 The convolution product of two finite multisets A and B is

(A ∗ B)(z) :=
∑

x+y=z

A(x)B(y).

The support of A ∗ B is |A| + |B| = { x + y | x ∈ |A| , y ∈ |B| } (and is therefore
finite), and in fact we can see the product as a generalization of the sum
on sets, i.e. we could write A ∗ B = [x + y | x ∈ A, y ∈ B] where we count
multiplicities. This operation is commutative, associative, has [0] as unit and
[] as absorbing element, and distributes over multiset sum. A less trivial
property is compatibility with multiset order.

Proposition 5 If U ≤ V then U ∗W ≤ V ∗W.

PROOF. Excluding the trivial case W = [], we show that if U <1 V then
U ∗W < V ∗W, which easily gives the result. We have

U∗W = (V0+K)∗W = V0 ∗W+K∗W, V ∗W = (V0+[a])∗W = V0 ∗W+[a]∗W,

with maxK < a. It is easy to see that

max(K ∗W) = max(|K|+ |W|) = maxK+maxW < a+maxW = max([a] ∗W),

which together with compatibility with the sum suffices to give what was
looked for. �

Wedefine the power of amultisetVk by iterated convolution product. Com-
patibility assures us this power is monotone increasing with respect to both
V and k. We will use

�
for finite convolution products. As hinted above, we

will apply this machinery to finite multisets of finite multisets.

13

Measures on wires. We define four measures on exponential wires. Two
of them will depend on exponential paths going against ? ports, the other
two on paths going in the other direction. Let us fix for the subsequent
definitions a module π. These measures are a generalization of a technique
already employed in [17] for proving strong normalization in LL proof nets.

Definition 6 (exponential path) An exponential path is a finite sequence (ei)
of exponential wires at the same exponential depth such that every ei and ei+1 are
on the ports of a same cell C, and if ei is on an auxiliary port of C then ei+1 is on the
principal one and viceversa.

Because of typing all the cells in-between wires of such a path can only
be (co)contractions or boxes, and if we orient all wires in the path in the
direction of the path itself, all of them have he same type, whether !o or ?ı.
We thus distinguish accordingly between !-paths and ?-paths respectively.
Because of acyclicity exponential paths are non repeating (so no loops are
possible and the length of paths is bounded). Fixing the starting wire e0,
maximal exponential paths can only end on conclusions of the whole mod-
ule, (co)weakenings, (co)derelictions, andmoreover ⊗s for !-paths, and pars
or boxes without auxiliary ports for ?-paths.

We define the !-measures cd (codereliction count) and ℓ!(e) (!-length) by
induction on the exponential depth of e and the maximum length of max-
imal ?-paths starting from e. We will also use #!(e) (!-count) for 1 + cd(e).
The definition is given by cases depending on the second port of the wire,
directedwith ?ı type. For every incoming ?ı-typed conclusion x of the whole
module (not of the content of a box) let us declare variables onNnamed cd(x)
and ℓ!(x). Such variables, called !-variables, are introduced so that we may
regard all these measures as depending on the context in which the module
is plugged, which will supply values for them.

• If e is on a codereliction, cd(e) := 1 and ℓ!(e) := 1.
• If e is on a tensor, cd(e) := 0 and ℓ!(e) := 0.
• If e is on a conclusion x of the whole module, then cd(e) := cd(x) and
ℓ(e) := ℓ!(x).

• If e is on a coweakening, cd(e) := 0 and ℓ!(e) := 1.
• If e is on a contraction with principal port f (resp. if it is the conclusion

of a simple net inside a box with corresponding auxiliary port f outside),
cd(e) := cd(f) and ℓ!(e) := ℓ!(f).

• If e is on a cocontraction with auxiliary ports fi, then

cd(e) :=
∑

i cd(fi) and ℓ!(e) := 1 +maxi
(

ℓ!(ei)
)

.

• If e is on a box with auxiliary ports fi, then

cd(e) :=
∑

i cd(fi) and ℓ!(e) := 1 + cd(e) = 1 +
∑

i cd(fi).

14

We define the ?-measures #?(e) (?-count) and ℓ?(e) (?-length) by induction
on the exponential codepth of e (the depth of the module minus the depth
of the wire) and the maximum length of maximal !-paths starting from e.
Symmetrically to the ! case, the definition is given by cases depending on
the second port of the !-oriented wire, and there are variables onN named
#?(x) and ℓ?(x) (?-variables) for every incoming !o-typed conclusion x. These
are the measures also appearing in [17].

• If e is on a dereliction or a weakening then #?(e) := 1 and ℓ?(e) := 1.
• If e is on a par, #?(e) := 1 and ℓ?(e) := 0.
• If e is on a conclusion x, #?(e) := #?(x) and ℓ?(e) := ℓ?(x).
• If e is on a cocontraction with principal port f , #?(e) := #?(f) and ℓ?(e) :=
ℓ?(f).

• If e is on a contraction with auxiliary ports fi, then

#?(e) :=
∑

i #?(fi) and ℓ?(e) := 1 +maxi
(

ℓ?(fi)
)

.

• If e is on a box with principal port is p and content
∑

i λi, then

#?(e) := #?(p) #!(p)maxi
(

#?(e
λi)

)

, ℓ?(e) := 1 + ℓ?(p) + cd(p) +maxi
(

ℓ?(e
λi)

)

.

where eλi is the conclusion of λi corresponding to e.

We finally define ℓ(e) := ℓ?(e) + ℓ!(e) (length) and #(e) := #?(e) #!(e) (count).
Whenever we want to specify in which module or net the measure is taken,
we put it as a superscript, as in ℓπ

?
(e). We also naturally extend the measure

on every port, as there is a unique wire connecting it. If we plug the mod-
ule in a context, and the result is a module, we can calculate the missing
measures and use them in place of the variables of the plugged module.

Measures on nets. Wefinally define themeasure |π| of amodule, whichwill
be a finite multiset of finite multisets of natural numbers. We will usually
regard such measures as relative, i.e. dependent on the variables assigned
on its conclusions. When finally measuring a net to be reduced, we will use
the absolutemeasure, i.e. the relative one evaluated on the values 1 for ℓ!, ℓ?
and #? and 0 for cd on all its conclusions. However we will not distinguish
such measures with a different notation. The measure will be defined by
induction on the exponential depth of the net. Given σ the content of a box
in π, |σ|π denotes the relative measure |σ| evaluated on the !-measures of
the auxiliary ports of the box (there are no !o conclusions). Given a set of
wires W, let ℓ(W) be [ℓ(e) | e ∈ W], i.e. the multiset of lengths over W. For
a simple module λ let C0(λ) (resp. B0(λ)) be the set of cuts (resp. boxes) at
exponential depth 0 in λ. Given a box B, we denote by σ(B) its content and
by #(B) the count #(p) = #?(p) #!(p) on its principal port p.

Definition 7 (measure of a module) In case π =
∑

i λi is a sum of simple mod-

15

ules then |π| :=
∑

i |λi|. The measure of a simple module λ is defined as

|λ| :=
[

ℓ(C0(λ))
]

∗
�

B∈B0(λ)

|σ(B)|#(B)
λ

.

Notice that the first factor can be furthermore factorized in
�

c∈C0(λ)

[

[ℓ(c)]
]

, and

that the measure is monotone in all the measures on wires defined above.

Intuitive idea of the measures. ℓmeasures the maximum number of steps
before a single cut arrives to a stop if we follow just one of the possibly
many children of the reduction, and this is done symmetrically in the two
directions. #? counts the maximum number of contraction branchings that
can arrive on the wire, giving the number of box copies that can be created
in the reduction. cd counts the coderelictions, and appears in all the other
measures because they create contractions and cocontractions on their way.
Also this count gives us #! which is the number of linear copies of a box
that can be made in the worst case. The elements of |π|, which are multisets
as well, measure the net as if it was unfolded and boxes were opened, and
from each one a single net was chosen. Box contents are however expanded
with a power operation which makes potentially coexist together a number
(given by the count # on the box) of nets fetched from the box.

In the following, given a simple module λ, let C?(λ) and C!(λ) be the set of
the (incoming) ?ı and !o typed conclusions of λ respectively. Analogously,
for a context ω[] let D?(ω) andD!(ω) be the (outgoing) ?ı and !o typed ports
of its hole. Note that !-measures ofC! depend only on !-variables declared on
C?, while ?-measures of C? depend (monotonously) on both ?-variables of
C! and !-variables of C? (more precisely the codereliction count). For simple
modules λ, µ with the same interface we say that λ can replace µ (written
λ 4 µ) if for f !-measure (resp. ?-measure) and c ∈ C!(λ) = C!(µ) (resp.
c ∈ C?(λ) = C?(µ)) we have f λ(c) ≤ f µ(c) pointwise (they are functions in
the variables declared on conclusions). Finally, a context ω[] is said to be
admissible if there is no exponential path connecting D?(ω) to D!(ω). The
contexts in which the reduction rules of Figure 3 are plugged have to be
admissible, otherwise a cycle would be formed.

Lemma 8 (replacement) Ifω[] is admissible,λ 4 µ,ω[λ] andω[µ] aremodules,
then for each f ∈ {cd, ℓ!, #?, ℓ?} and e wire of ω[], fω[λ](e) ≤ fω[µ](e) pointwise.

PROOF. Let Cε := Dε(ω) = Cε(λ) = Cε(µ) for ε = !, ? (after the modules are
plugged in the hole Dε and Cε get identified). First note that !-measures on
C? do not depend on the content of the hole. The only way to have a de-
pendency, would be for it to depend on an !-measure on C!, but that would

break admissibility. So for f! ∈ {cd, ℓ!}, and for c? ∈ C?, f
ω[λ]
!

(c?) = f
ω[µ]

!
(c?).

Having this values we can calculate f! on c! ∈ C!, and by hypothesis we

get fω[λ]
!

(c!) ≤ f
ω[µ]

!
(c!). Now this values can be used to calculate inside ω[]

16

the ?-measures f? on C!, as values f?(c?) do not appear in them because of

admissibility. By monotonicity of such dependency, fω[λ]
?

(c!) ≤ f
ω[µ]

?
(c!). We

can then have themissing f?(c?) by calculating themback inside themodules

λ and µ, and again by monotonicity fω[λ]
?

(c?) ≤ f
ω[µ]

?
(c?). We can conclude

by applying one last time the argument of monotonicity: for all measures
f and all wires e in ω[], f (e) depends (apart from the conclusion variables)
monotonously on the values obtained above. �

We are now ready to prove the main lemma of this long proof, after which
the strong normalization theorem will be within reach. A terminal wire
is one between a conclusion and a non-auxiliary port. When plugging a
module in a context, terminal wires are the only ones that can become cuts.

Lemma 9 (modularity) Let π = ω[λ] and σ = ω
[∑

µi

]

be DPNs, where ω is a
context, µi 4 λ for i = 1, . . . , n are simple modules. Let Ti be the set of terminal
exponential wires of µi which were not terminal in λ. Suppose moreover that

• n = 1 and [ℓµ1(T1)] ∗ |µ1| < |λ| pointwise,
• or we can write |λ| = [u] ∗X and |µi| = [vi] ∗Xi with Xi ≤ X and ℓµi(Ti)+ vi < u

pointwise for every i,

Then |σ| < |π|.

PROOF. Let ϕ[] be the simple context with its hole at depth 0, ψ[] the
context, a , 0 the coefficient and χ the net such that ω[] = ψ[aϕ[] + χ] and
aϕ[] + χ is either the content of the smallest box containing the hole or the

whole ω[] if none exists. We first prove that
∣

∣

∣ϕ[
∑

i µi]
∣

∣

∣ =
∑

i

∣

∣

∣ϕ[µi]
∣

∣

∣ <
∣

∣

∣ϕ[λ]
∣

∣

∣.
If n = 0 (a case always covered by the second possibility in the hypotheses)
this result is trivial, so take n > 0 in the following.

We can write
∣

∣

∣ϕ[λ]
∣

∣

∣ = |λ| ∗Y ∗Z (resp.
∣

∣

∣ϕ[µi]
∣

∣

∣ = |µi| ∗Yi ∗Zi) where Y (resp. Yi)
is the part (in fact a multiset singleton) due to cuts on the interface between
module and context, and Z (resp. Zi) is the part due to the context ϕ[] itself.
By the replacement lemma and monotonicity, Zi ≤ Z and Yi ≤ [ℓµi(Ti)] ∗ Y
pointwise for all i (all cuts counting for Yi, if they are not cuts adding to
Y, have become terminal during the replacement). The replacement lemma
also assures that all pointwise inequalities listed in the hypotheses survive
when the modules are plugged in the context ϕ. In case n = 1 we therefore
have (by hypothesis)

∣

∣

∣ϕ[µ1]
∣

∣

∣ ≤ |µ1| ∗ [ℓ(T1)] ∗ Y ∗ Z < |λ| ∗ Y ∗ Z = ϕ[λ].

Otherwise, if n > 1, putting it together:

∣

∣

∣

∣

∣

∑

i

ϕ[µi]

∣

∣

∣

∣

∣

≤
∑

i

(

|µi| ∗ [ℓ(Ti)] ∗ Y ∗ Z
)

=
∑

i

([vi] ∗ Xi ∗ [ℓ(Ti)] ∗ Y ∗ Z) ≤

17

≤
∑

i

([ℓ(Ti) + vi] ∗ X ∗ Y ∗ Z) =
(

∑

i

[ℓ(Ti) + vi]
)

∗ X ∗ Y ∗ Z =

= [ℓ(T1) + v1, . . . , ℓ(Tn) + vn] ∗ X ∗ Y ∗ Z < [u] ∗ X ∗ Y ∗ Z =
∣

∣

∣ϕ[λ]
∣

∣

∣ .

Let’s return toω[] = ψ[aϕ[]+χ]. Ifψ[] = [], that isω’s hole is not contained
in a box, we have nothing else to add, as the order is compatible with sum. If
otherwise β[] is the smallest box containing aϕ[]+χ seen as a (simple)mod-
ule with the hole being its content and ψ′[] is such that ψ[] = ψ′[β[]], we

may note that ψ′[] is admissible and that β
[

a
∑

i ϕ[µi]+χ
]

4 β[aϕ[λ]+χ]. So

∣

∣

∣

∣

ψ
[

a
∑

i ϕ[µi] + χ
]

∣

∣

∣

∣

=W′ ∗
(

a
∑

i

∣

∣

∣ϕ[µi]
∣

∣

∣ + |χ|
)k
,

∣

∣

∣

∣

ψ
[

aϕ[λ] + χ
]

∣

∣

∣

∣

=W ∗
(

a
∣

∣

∣ϕ[λ]
∣

∣

∣ + |χ|
)k

with k given by the product of the count # on all the boxes containing
aϕ[] + χ (which does not depend on the content of the box), and W′ ≤ W
(the measures due to ψ′[]) because of the replacement lemma. The same
lemma assures us we can apply the strict pointwise comparison previously

established on the measures
∑

i

∣

∣

∣ϕ[µi]
∣

∣

∣ and
∣

∣

∣ϕ[λ]
∣

∣

∣, getting the final result. �

Theorem 10 The reduction
e
→ is strongly normalizing.

PROOF. For each couple redex-reduct of
e
→ as presented in Figure 3 we

have to verify the hypotheses of themodularity lemma. In factπ
e
→ σmeans

π = ω[λ] and σ = ω[
∑

i µi] with λ,
∑

i µi a couple given by one of those rules
and ω[] an admissible context. If the modularity lemma applies, we get for
absolute measures |σ| < |π|. Bywell-ordering we then have that there cannot
be any infinite reduction. Wewill not show all of the cases, just the twomost
interesting (and hardest) cases.

Codereliction vs box.

?

?
!

!

!
!

!

! !...
...

π
∑

j

σ j

∑

j

∑

i

λi

∑

i

λi

λ j
c

c1

c2p p

p1

p2

e1
e1

e1
1

e2
1

en
en

e1n

e2n

In this case there is no new terminal wire. First we check the replacement
hypothesis.

cdσ j(p) = 1 + cdσ j(p2) = 1 +
∑

h cd
σ j(e2

h
) = cdπ(c) +

∑

h cd(eh) = cdπ(p),

ℓ
σ j
!
(p) = 1 +max

(

1, 1 +
∑

h cd(eh)
)

= 1 + cdπ(c) +
∑

h cd(eh) = ℓ
π
!
(p),

#
σ j
?
(eh) = #

σ j
?
(e1

h
) + #

σ j
?
(p2)

(

1 +
∑

k cd(ek)
)

maxi
(

#
σ j
?
(e2λi

h
)
)

≤

18

≤ #?(p)maxi
(

#π? (e
λi
h
)
)

+ #?(p)
(

1 +
∑

k cd(ek)
)

maxi
(

#π? (e
λi
h
)
)

=

= #?(p)
(

2 + cd(ek)
)

maxi
(

#π? (e
λi
h
)
)

= #π? (eh),

ℓ
σ j
?
(eh) = 1 +max

(

ℓ
σ j
?
(e1

h
), 1 +maxi(ℓ

σ j
?
(e2λi

h
)) + ℓ?(p) +

∑

k cd(ek)
)

≤

≤ 1 +max
(

ℓπ
?
(e
λ j

h
), 1 +maxi(ℓπ? (e

λi
h
))
)

+ℓ?(p) +
∑

k cd(ek) ≤

≤ 2 +maxi
(

ℓπ
?
(eλi

h
)
)

+ ℓ?(p) +
∑

k cd(ek) = ℓ
π
?
(eh).

We take the measures of the modules:

|π| = [[ℓπ(c)]] ∗
(

∑

i |λi|π
)#?(p) #!(p)

, |σ j| = [δ j] ∗ |λ j|σ j ∗
(

∑

i |λi|σ j

)#
σ j

?
(p2) #

σ j

!
(p2)
,

where δ j = [ℓσ j(c1), ℓσ j(c2)] if c1 is a cut, [ℓσ j(c2)] otherwise. In any case,
δ j ≤ [ℓσ j(c1), ℓ

σ j(c1)]. First observe that the measure of the content inside the
box is less in σ j than in π as all measures on its border are the same apart

from cd which is 1 less in σ j (so #
σ j
!
≤ cd(p)), while the measure remains the

same on the linear part λ j. So:

|λ j|σ j ∗
(

∑

i |λi|σ j

)#
σ j
?
(p2) #

σ j
!
(p2)
≤

(

∑

i |λi|π
)#?(p)
∗
(

∑

i |λi|π
)#?(p) cd(p)

=
(

∑

i |λi|π
)#?(p) #!(p)

.

This settles the part Xi ≤ X in the hypotheses of the modularity lemma.
Moreover:

ℓσ j(c1) = 1 + ℓ
σ j
?
(c1) = 1 + ℓπ? (c

λ j) ≤ 1 +max
i

(

ℓπ? (c
λi)

)

< ℓπ? (c) < ℓ
π(c),

ℓσ j(c2) = 1 + ℓ
σ j
?
(c2) = 1 +maxi

(

ℓ
σ j
?
(cλi

2
)
)

+ ℓ
σ j
?
(p2) +

∑

k cd(ek) <

< 1 +maxi
(

ℓπ
?
(cλi)

)

+ ℓπ
?
(p) + 1 +

∑

k cd(ek) = ℓ
π(c),

So δ j ≤ [ℓσ j(c1), ℓ
σ j(c2)] < [ℓπ(c)], which settles the |Ci|σi + vi < u part of the

hypotheses.

Box vs box.
!

!
!

!
...

...

...
...

π σ

∑

i

∑

i

λi λi

λ′
i∑

j µ j

∑

j µ j
c cλi

p p

e1e1

enen

f1f1

fmfm

Again there are no new terminal wires. Replacement hypothesis is satisfied:

cdσ(p) =
∑

k cd(ek) +
∑

h cd(fh) = cdπ(p),

ℓσ
!
(p) = 1 + cdσ(p) = 1 + cdπ(p) = ℓσ

!
,

#σ? (ek) = #?(p) #
σ
! (p)maxi

(

#σ? (e
λ′
i

k
)
)

= #?(p) #
π
! (p)maxi

(

#π? (e
λi
k
)
)

= #π? (ek),

#σ? (fh) = #σ(p)maxi
(

#σ? (f
λ′
i

h
)
)

= #π(p)maxi
(

#σ? (c
λ′
i) #σ! (c

λ′
i)max j

(

#σ? (f
µ j

h
)
))

=

= #π(p)maxi
(

#π? (c
λi) #π! (c)

)

max j

(

#π? (f
µ j

h
)
)

= #π(c)max j

(

#π? (f
µ j

h
)
)

= #π? (fh),

19

ℓσ
?
(ek) = 1 +maxi

(

ℓσ
?
(e
λ′
i

k
)
)

+ ℓ?(p) + cdσ(p) =

= 1 +maxi
(

ℓπ
?
(eλi

k
)
)

+ ℓ?(p) + cdπ(p) = ℓπ
?
(ek),

ℓσ? (fh) = 1 +maxi
(

ℓσ
?
(f
λ′
i

h
)
)

+ ℓ?(p) + cdσ(p) =

= 1 +maxi
(

1 +max j

(

ℓσ
?
(f
µ j

h
)
)

+ ℓσ
?
(cλi) + cdσ(cλi)

)

+ ℓ?(p) + cdπ(p) =

= 1 +max j

(

ℓπ
?
(f
µ j

h
)
)

+ 1 +maxi
(

ℓπ
?
(cλi)

)

+ ℓ?(p) + cdπ(p) + cdπ(c) =

= ℓπ
?
(fh).

Let us show ℓσ(cλ
′
i) < ℓπ(c), knowing that ℓσ

!
(cλ

′
i) = ℓπ

!
(p):

ℓσ
?
(cλ

′
i) = ℓπ

?
(cλi) < 1 +max j

(

ℓπ
?
(cλ j)

)

+ ℓ?(p) + cdπ(p) = ℓπ
?
(c).

So if we let δi = [ℓσ(cλ
′
i)] if cλ

′
i is a cut, [] otherwise, and ε be [ℓπ

!
(c) +

max j(ℓπ? (c
λ j))] we have δi ≤ ε < [ℓπ(c)]. Moreover #σ(cλ

′
i) ≤ maxi(#

π
? (c

λi)) #π! (c),
#σ(p) = #π(p), |λi|σ = |λi|π and |µ j|σ = |µ j|π, so we get

|σ| =
(

∑

i |λ
′
i
|σ
)#σ(p)

=
(

∑

i

(

[δi] ∗ |λi|σ ∗
(

∑

j |µ j|σ
)#σ(c

λ′
i)))#σ(p)

≤

≤
(

∑

i

(

[ε] ∗ |λi|π ∗
(

∑

j |µ j|π
)maxi(#

π
? (c

λi)) #π! (c)
))#π(p)

=

= [ε]#
π(p) ∗

(

∑

i |λi|π
)#π(p)

∗
(

∑

j |µ j|π
)#π(p)maxi(#

π
? (c

λi)) #π! (c)
=

= [#π(p) · ε] ∗
(

∑

i |λi|π
)#π(p)

∗
(

∑

j |µ j|π
)#π? (c) #

π
! (c)

<

<
[

[ℓπ(c)]
]

∗
(

∑

i |λi|π
)#π(p)

∗
(

∑

j |µ j|π
)#π(c)

= |π| �

Theorem 11 The reduction
ea
→ is strongly normalizing and confluent.

PROOF. One has to check that
a
→ does not increase the measure defined

above, which is easy. Then one can take as measure (|π| , k(π)) where k(π)
simply counts all contractions and cocontractions in π. Newman’s Lemma
and Lemma 2 give confluence. �

We can now deal also with the m reduction, though working in the pure
setting we clearly do not have normalization. An essay on the lemmas we
use to prove confluence can be found in the introduction of [18].

Lemma 12 If π
ea
→ σ and π

m
→ τ there is υ such that σ

m∗
→ υ and τ

ea
→ υ.

PROOF. m-reductions leave ea-redexes alone,while ea-reductions can erase
or duplicate an m-redex, but cannot change it. So we can still perform the
ea-reduction in τ and close the diagram by performing m-reductions on the
copies of the m-redex in σ. �

Theorem 13 The reduction
mea
→ is confluent.

20

?

?

?

!!

..
.

..
.

......

... ∑

i

∑

i

λi λi

k

k ≥ 2 peliction

Push

??
!!

..
.

..
.

∑

i

∑

i

λiλi

p

Pull

Figure 5: The push and pull rules. In the push rule k ≥ 2 is required.

PROOF. By Huet’s Lemma and the above one we get commutation of
ea∗
→

and
m∗
→. By confluence of ea and of m we finally employ Hindley-Rosen’s

Lemma and get the result.

3.4 Contractions, weakening and boxes: push and pull reductions

We will now fully tackle the problem with the order of identification of
variables we discussed in Section 2. Already by means of a-reduction con-
tractions made at the same exponential depth are merged and their order
is forgotten. There remains to settle the order in which contractions (and
weakenings) are made with respect to box borders. In an approach similar
to [6], wewill show that we can add twomore reductions which do not ruin
the properties proved in the previous section. These are the p-reductions
(push and pull) presented in Figure 5. Similarly to a-reductions, if the outer
contraction in the reduct of the push rule has one auxiliary port it must
be considered a wire. Note how the two reductions work in opposite ways,
thoughwe cannot take any of them in the opposite direction. Pushingweak-
enings in boxes would be non deterministic and break confluence, pulling
contractions from boxes would break strong normalization as boxes con-
taining 0 could infinitely spawn contractions. From now on we will denote
by c (for canonical) the combination of the a- and p-reductions. We will
prove that c in itself is strongly normalizing and confluent, so we can speak
of the unique canonical formNFc(π) of π.

Lemma 14 Reductions
c
→ and

ec
→ are locally confluent.

PROOF. Straightforward, though long check of the new critical pairs. �

To prove strong normalization the approach used with a-reduction would
fail, as the push reduction may increase the measure. We instead slightly
complicate the definition of the measure in order to have one which does
not increase on c, and then define another one strictly decreasing on c.

The push count. Let generalized ?-paths be the concatenations of ?-paths
such that if φ and ψ get concatenated, the last wire of φ is the conclusion of
a simple net inside a box and the first one of ψ is the wire on the correspond-
ing auxiliary port of the box. In short words, we let generalized ?-paths “go

21

out” of boxes. For every wire e on an auxiliary port of a box B, consider all
the generalized ?-paths starting from e. For each such path E let push(E) be
the number of contractions C along its way that have another generalized
?-path from an auxiliary port of B to an auxiliary port of C different from
the one traversed by E. Write push(E) for such number, and define

push(e) := max{push(E) | E maximal gen. ?-path starting from e }.

Now redefine the ?-length by substituting the case for the auxiliary port of
a box with

ℓ?(e) := 1 + push(e) + ℓ?(p) + cd(p) +max
i

(

ℓ?(e
λi)

)

,

where p is the principal port of the box.

The rest of the definitions remains the same.We need to check that the push
count does not increase in all e-reductions. This can be done by inspect-
ing the reduction rules and noting how relevant generalized ?-paths persist
from redexes to reducts with a lower or equal push count. Thus themeasure
|π| still strictly decreases on e-reductions, aswe have added a non increasing
weight. Moreover we have the following result.

Lemma 15 If π
a
→ σ or π

p
→ σ then |σ| ≤ |π|.

PROOF. After noticing that all a-reductions do not increase push counts,
the only interesting case is the push reduction.

?
?

?

......

π σ

∑

i

∑

i λi

ee e1

ek

ei
1
ei
k

g
gi

f jf j
p

We have pushπ(eh) = 1 + pushσ(g). Furtherly ℓσ
?
(ei

h
) = ℓπ

?
(eλi

h
) and, in case

there is at least an f j, by making maxima commute,

ℓσ? (e) = 1 +max
(

max
j

(

ℓ?(f j)
)

, 1 + pushσ(p) +max
i

(

1 +max
h

(ℓσ? (e
i
h))

)

+ . . .
)

=

= 1 +max
(

max
j

(

ℓ?(f j)
)

,max
h

(

1 + pushπ(eh) +max
i

(ℓπ? (e
λi
h
)) + . . .

))

= ℓπ? (e),

where the dots indicate the part about the omitted principal port. If there is
no f j then g = e in σ, and ℓ?(e) decreases by one. All other measures remain
the same, and by monotonicity we get the result. �

Theorem 16 The reductions
c
→ and

ec
→ are strongly normalizing and confluent.

PROOF. Let d(π) be the depth of a net π, and con0(π) and coc0(π) be the
sets of respectively contractions and cocontractions at exponential depth 0
in π. Moreover given a contraction cell C let n(C) := k if C is a k-contraction.

22

Define the multiset of natural numbers p(π) by induction on the depth of π.
If π is a sum let p(

∑

i λi) :=
∑

i p(λi), if it is a simple net λ let

p(λ) :=
[

coc(λ) +
∑

C∈con0(λ)

n(C)3d(λ)
]

∗
�

B∈B0(λ)

p
(

σ(B)
)

.

Note that here the convolution product sums overN. Finally let aux(π) be
the total number of auxiliary ports of boxes in π. We now assign to each net
π the measure (|π| ,p(π), aux(π)), and show it decreases strictly for all reduc-

tionsπ
ec
→ σ. Confluencewill follow fromNewman’s LemmaandLemma14.

For p to decrease, it suffices that there is some simple net µ in the structure
of π, in the sense that either µ is an addend of π or an addend of some box
content, such that p decreases for µ, while the rest of π remains unchanged.

• If we e-reduce, then |σ| < |π|.
• If we a-reduce two cocontractions, then |σ| ≤ |π|, and there is λ in π (con-

taining the cocontractions at depth 0) and µ the corresponding simple net
in σ, for which # coc0(µ) < # coc0(λ) and the rest is unchanged.

• If we a-reduce two contractions, then |σ| ≤ |π|. If λ and µ are as above,
d = d(λ) = d(µ) and the two contractions in λ are resp. n and k ones then
the reduct is an n + k − 1-contraction (if any), and we have

∑

C∈con0(µ)

n(C)3d = (n + k − 1)3d + . . . < n3d + k3d + . . . =
∑

C∈con0(λ)

n(C)3d

while the rest is unchanged. The degenerate case n + k − 1 = 1 is trivial.
• If we p-reduce a push redex, then |σ| ≤ |π|. If λ and µ are as above, D is

the box of the redex,
∑

i λi (resp.
∑

i µi) is the content of D in λ (resp. in µ),
d + 1 is the depth of λ and µ (all addends of D have ≤ d), the contraction
is an n + k one with k ≥ 2, then in µ the contraction left out (if any) is an
n + 1-one and all addends in D get a pushed k-contraction. Summing up:

p(µ) = [. . . + (n + 1)3d+1] ∗
(

∑

i p(µi)
)

∗ . . . =

= [. . .] ∗
(

∑

i

(

[(n + 1)n3d+1] ∗ [k3d(µi) + . . .] ∗ . . .
))

∗ . . . ≤

≤ [. . .] ∗
(

∑

i

(

[(n + 1)3d+1 + k3d] ∗ . . .
))

∗ . . .

As k ≥ 2 > 2
3
, (n + 1)3d+1 + k3d = (3n + 3 + k)3d < (3n + 3k)3d = (n + k)3d+1,

we can continue the above chain of inequalities by

p(µ) < [. . .] ∗
(

∑

i

(

[(n + k)3d+1] ∗ . . .
))

∗ . . . =

= [. . . + (n + k)3d+1] ∗
(

∑

i p(λi)
)

∗ . . . = p(λ)

• If we p-reduce a pull redex, then |σ| ≤ |π|, and also p(σ) = p(π), but
aux(σ) < aux(π). �

23

We can finally infer confluence of mec in the same way as we have done for
mea (Theorem 13).

Theorem 17 The reduction
mec
→ is confluent.

4 Full resource calculus

In this section we will redefine Boudol’s λ-calculus with resources [1] ex-
tending it with sums and two kinds of non lazy reduction. As nets presented
in the previous section added promotion to DINs of [10], this will add in-
finitely available resources to the resource calculus described in the same
paper and presented in Section 2, thus we call it the full resource calculus.

4.1 Statics: λ-calculus with resources

Let V be a countable set of variables, and let ∆k be the increasing sequence
of sets given by induction as ∆0 := V, and ∆k+1 generated by the following
grammar:

∆k+1 ::= ∆k | λV.∆k | 〈∆k〉∆
!
k.

∆!
k
, the kth set of bags of arguments, isMfin(Ak), where furthermoreAk, the

kth set of arguments, is generated by

Ak ::= ∆k | (R 〈∆k〉)
∞.

Finally, the set ∆ of simple terms and the set ∆! of bags are ∆ :=
⋃

k∈N ∆k

and ∆! :=
⋃

k∈N ∆
!
k
. A differential term, or simply term, is an element of

R 〈∆〉. Wewill also deal with R〈∆!〉, called differential bags. An argument of
the form (

∑

t∈∆ ct · t)
∞ is called boxed or exponential, otherwise it is linear.

Bags are multisets presented in multiplicative notation, and the above con-
structors are extended bymultilinearity, all but the one for boxed argument.
Given a bag A, its linear partL(A) (resp. boxed or exponential part E(A)) is
the multiset of its linear (resp. exponential) arguments. As usual terms are
identical up to α-conversion. We write x ∈ t to mean “x appearing free in t”
for t term 11 . A context is a differential term or bag that uses a distinguished
variable called its hole exactly once, similarly to what was done for nets
on page 9 12 . Classical terms of λ-calculus can be embedded in this calcu-

11 With sums one should be more accurate with the definition, however with
R =Nmany difficulties are set aside. Readers may refer to [22] for a more in-depth
treatment of the subject.
12 Again for example [] + [] = 2[] is considered a one-hole context, though again
if R =N we can safely rule out such possibilities and retain all the results.

24

lus by mapping arguments to a singleton bag with a corresponding boxed
argument.

4.2 Dynamics: giant-step and baby-step β-reduction

Substitution s [x := t] with s, t ∈ R 〈∆〉 is defined as usual, possibly applying
the generalizations of constructors by multilinearity. Linear substitution ∂

∂x
generalizes the one given in Section 2. Inductive rules are:

∂y

∂x
· t := δx,y · t,

∂λy.u

∂x
· t := λy.

∂u

∂x
· t with y < t,

∂〈r〉A

∂x
· t :=

〈

∂r

∂x
· t
〉

A + 〈r〉
∂A

∂x
· t,

∂A

∂x
· t :=

∑

a∈A

(

∂a

∂x
· t
)

A/a,
∂u∞

∂x
· t :=

(

∂u

∂x
· t

)

u∞.

The definition for applications and bags can be compacted into

∂〈r〉A

∂x
· t =

〈

∂r

∂x
· t
〉

A +
∑

u∈L(A)

〈r〉
(

∂u

∂x
· t
)

A/u +
∑

v∞∈E(A)

〈r〉
(

∂v

∂x
· t
)

A.

Note how the linear substitution operator distributes among linear terms,
and extracts a linear copy from a boxed argument if needed 13 . This substi-
tution is linear in both u and t, and if x < u then ∂u

∂x · t = 0.

Non linear and linear substitutions enjoy the same properties found in [9].
In order to generalize them and define reduction, we employ one more
substitution directly based on the regular one: the partial substitution of u
for x in t is simply t [x := x + u]. Finally, in order to unify the notation, let the
generalized substitution of a for x in t, with a = u or a = u∞ an argument, be

Sx t · u :=
∂t

∂x
· u, Sx t · u

∞ := t [x := x + u] .

Using partial substitution instead of the regular one allows us to state the
following generalized Schwartz’s lemma.

Lemma 18 For t ∈ R 〈∆〉, a, b arguments and x, y such that y < a and x < b, we
have Sx(Sy t · b) · a = Sy(Sx t · a) · b.

PROOF. There are three combinations to check (partial-partial, linear-linear
and linear-partial). The first one is trivial. As opposed to regular substitu-

13 This reflects the derivation property of the exponential in calculus. Given

y = y(x) we have ∂ey

∂x =
∂y
∂x · e

y.

25

tion, we can also have x = y (a = u∞, b = v∞):

t [x := x + v] [x := x + u] = t [x := x + u + v] = t [x := x + u] [x := x + v] .

The second is not much different from the proof of Schwartz’s lemma in
differential λ-calculus [9]. The third is by induction, where the inductive
steps are trivial while the base case for variables is (a = u, b = v∞):

∂(z
[

y := y + v
]

)

∂x
· u =

∂(z + δy,z · v)

∂x
· u =

∂z

∂x
· u = δx,z · u =

(

∂z

∂x
· u

)

[

y := y + v
]

where from x < v, y < uwe infer ∂v
∂x · u = 0 and u = u

[

y := y + v
]

. �

If A = [u1, . . . , un] is a bag of linear arguments such that x < ui we write

∂nt

∂xn
· A :=

∂

∂x

(

· · ·

(

∂t

∂x
· u1

)

· · ·

)

· un

which by the above lemma is well defined. More generally, given any bag
A = [a1 · · · a#A] and a variable x < ai, we can define

S#Ax t · A := Sx (· · · (Sx t · a1) · · ·) · a#A =

(

∂#L(A)t

∂x#L(A)
· L(A)

)

[

x := x +
∑

u∞∈E(A)

u
]

.

We are ready to define the reductions, which as foretold in Section 2 come
in baby-step and giant-step form. Baby-step is more local and natural, and
more close to the reduction defined for Boudol’s calculus. However giant-
step, which empties a bag altogether, is the reduction whose bisimulation
result reflects the one for λ-calculus and proof nets.

Definition 19 (βgs and βbs) Giant-step β-reduction (βgs or
g
→) is generated by

〈λx.s〉A
g
→ S#Ax s · A [x := 0] =

(

∂#L(A)s

∂x#L(A)
· L(A)

)

[

x :=
∑

u∞∈E(A)

u
]

.

Baby-step β-reduction (βbs or
b
→) is generated by

〈λx.s〉 aA
b
→ 〈λx. Sx s · a〉A, 〈λx.s〉1

b
→ s [x := 0] .

Partial substitutions break strong confluence, so we needmore care in prov-
ing confluence. Later we will infer it for βgs (Corollary 28). We here derive
from it confluence of βbs.

Lemma 20 If u β∗
bs
v then there exist a term w such that u, v β∗gs w.

PROOF. By induction on the length of the reduction u β∗
bs

v. If it is zero,
then take w = u = v and we are done. Otherwise we have the following

26

confluence diagram

u
v′

v

w′′

w′

w

b∗

b

g∗

g∗g∗

g∗ g

g∗

(I)

(II)

(III)

We have (I) by inductive hypothesis, (II) is clear from the definition, as βgs-
reducing a redex before or after a single step of βbs on the same redex is the
same (we may have to βgs-reduce in all addends possibly arisen), and (III)
is confluence of βgs. �

Theorem 21 The baby-step β-reduction is confluent.

PROOF. Suppose u β∗
bs
v1, v2. We get the following confluence diagram:

u

v1 w1

s

v2 w2

b∗

b∗

g∗

g∗

g∗

g∗

g∗

g∗

The left triangles are from the above lemma, while the right square is simply
confluence of βgs. As β∗gs is contained in β∗

bs
, we get the result. �

5 Translation

We will now define the translation from terms and bags of full resource
calculus to differential proof nets. In order to do so, we use labelled nets,
i.e. correct nets with labels inV on the ?ı conclusions. We draw all nets with
the o/!o conclusion right and the rest left, so types will be omitted. A wire
with a bar on it stands for multiple wires (possibly none), and its label is
the corresponding set of labels. In order to be able to erase or add dummy
variables at will, nets are considered equal if they differ only for conclusions
introduced by weakenings.

5.1 Statics: definition and sequentialization

Using the rules in Figure 6 for each t term (resp. bag or argument) we define
t◦, a labelled net with conclusions ?ı, . . . , ?ı, o (resp. !o) where labels contain
the free variables in t. The fact that t◦ is indeed correct is straightforward.
Adding freelyweakened conclusions is used in the definition. It is important
to note that the translation is well defined with respect to equality modulo
weakened conclusions because of pull reductions performed on boxes.

27

Terms: (

∑

u∈∆

cu · u
)◦

:=
∑

u∈∆

cu · u
◦ x◦ := ?

x

(λx.s)◦ :=
`x

S
s◦ (〈r〉A)◦ := NFc

(

⊗?
S

S

S

r◦

A◦
)

Arguments:

(a1 · · · an)
◦ := NFc

(

? !
...

S

S

S a◦
1

a◦n

) ([u])◦ := !
S

u◦

(v∞)◦ := NFc

(

!
S

v◦

)

Figure 6: Inductive rules for the definition of t◦. To remedy the lack of an
explicit constructor, [u] denotes a linear argument.

Remark 22 For every term t its translation t◦ is ec-normal. Moreover each redex
in t corresponds exactly to an m-redex in t◦. So in fact t is normal iff t◦ is normal.

Theorem 23 (sequentialization of ec-normal nets) For every ec-normal and
labelled net π with no exponential axiom 14 and no ı conclusion there is uniquely
either a term t or a bag A such that t◦ = π (resp. A◦ = π), modulo weakened
conclusions.

PROOF (sketch). One first takes a principal switching (see page 10) of
every simple net in the net. We can erase all weakenings, which because of
p-normality form each a connected component by themselves. The remain-
ing connected component is a tree (it is acyclic) for which we choose the
unique (Lemma 1) o/!o conclusion as root. It is then easy to convert it to the
syntactical tree of a term if the root is o, or of a bag if it is !o, by inductively
doing the same for each box. The condition on exponential axioms assures
that wires above the exponential port of a tensor, eventually forked by a
single cocontraction, must end in coderelictions or boxes, i.e. linear or expo-
nential arguments. Injectivity also depends on Lemma 1: we may compare
two translations going up from the unique o/!o conclusion. �

5.2 Dynamics: bisimulation

We want to show that reductions in the two systems are strongly linked by
this translation. This is done in two steps, showing the two directions of
bisimulation. First we have to state a substitution lemma.

Lemma 24 (argument and 0 substitution) Given an argument a, a simple term

14 Though this property is not stable under reduction (contraction vs cocontraction
creates exponential axioms), one can prove all e-normal mec-reducts enjoy it.

28

or bag u and a variable x < a, we have that

?

! x
x

S

S
S

u◦a◦

omotion

ec
։ (Sx(u) · a)

◦ and
! x

S
u◦

ec
։ (u [x := 0])◦ .

PROOF (sketch). It is an easy induction on u, which generalizes what can
be already found in the literature. As in [6] the p-reduction is fundamental
in the inductive step of boxed terms, to make trailing contractions enter the
box. It can be noticed that this lemma implements the intuitions about the
cells of differential nets as given in [10].

Lemma 25 (substitution) If A is a bag of arguments and u is a simple term, then

?
x

S

S
S

u◦
A◦

ec
։

(

S#Ax u · A
)

[x := 0] .

PROOF. If A = a1 · · · an then, by expanding the cocontraction at the base of
A◦ and the contractions on its variables, we have that

?
x

S

S
S

u◦
A◦

≡a

?

?
?

!
!

!
!

. . . x

S

S
S

S

S

S

u◦a◦
1

a◦2
a◦n

.

By a repeated application of Lemma 24 the above net gives as an ec-normal

form
(

S#A
x s · A [x := 0]

)◦

. Having used a-equivalence does not change the

ec-normal form because of confluence. �

Note how the reduction on nets involved in the next theorem has a partic-
ular shape, so that even if the result is a logical equivalence it is not yet full
bisimulation, which is truly achieved by the one after it.

Theorem 26 (giant-step simulation) s βgs t iff s◦
m
→
ec
։ t◦.

PROOF. First the only if part. Given a redex 〈λx.s〉A, we have

(〈λx.s〉A)◦ =
⊗`

?

x

S

S

S

u◦
A◦ m

→ ?
x

S

S
S

u◦
A◦

that because of the substitution lemma gives (S#A
x s · A [x := 0])◦. Vice versa

take any reduction R : s◦
m
→ π

ec
։ t◦, then let s βgs r be the result of firing

the redex corresponding to the multiplicative cut fired at the beginning of

R. Because of the only if part, s◦
m
→ π

ec
։ r◦ (note π is the same as before).

By uniqueness of normal form and injectivity of the translation we have
t = r. �

29

Theorem 27 (giant-step bisimulation) If s◦
mec∗
−→ t◦, then s β∗gs t.

PROOF. Let us first restrict the hypothesis and prove that if u◦
m∗
→
ec
։ v◦

then u β∗gs v. Let M be the sequence of multiplicative reductions in the re-

duction u◦
m∗
→ π

ec
։ v◦, and let us reason by structural induction on u. If u is

a variable there is no redex and the result is trivial. Also the abstraction case
is easy, as all reductions in the net cannot touch the terminal `-cell. Take
therefore the case of an application u = 〈r〉 a1 · · · an. If there is a reduction
µ in M erasing the external tensor then it cannot create new m-redexes and
we can safely shift it at the end of M. Let M′ be M without µ if it exists,
M itself otherwise. All reductions in M′ happen either in r◦ or in either of
the a◦

i
s (we need an a-conversion to really speak of such subnets, which

however commutes with M′). We can therefore partition M′ into L : r◦
m∗
→ σ

and Ni : a
◦
i

m∗
→ τi, and we can freely commute reductions which happen in

different subnets. By ec-normalizing the results of all but µ, we get (via the

sequentialization theorem) r◦
L
→

e
։ q◦ and a◦

i

Ni
→

e
։ b◦

i
, where by inductive

hypothesis r β∗gs q and ai β∗gs bi. If µ is present then q = λx.w and we get by

simulation (
〈

q
〉

B)◦
µ
→
ec
։ (Snx w ·B [x := 0])◦, where B = b1 · · · bn. Summing up,

by applying N and Li on the whole (〈r〉 a1 · · · an)
◦ and commuting them and

(possibly) µ back into their place in M, we get the same reduction chain we
have started with. By uniqueness of ec-normal form and injectivity of trans-
lation, we get that either v =

〈

q
〉

B (if µ is not present) or v = Snx w · B [x := 0]
otherwise, and in both cases u reduces to it.

Let us proceed with the complete theorem. If s◦ = π0
mec
→ π1

mec
→ . . .

mec
→ πn = t◦

is the reduction taken into account, let s◦
i
:= NFec(πi) (existing by sequential-

ization), with s0 = s and sn = t. Proving that s◦
i

m∗
→
ec
։ s◦

i+1
implies si β∗gs si+1 (as

seen above), which ends the proof. If πi
ec
→ πi+1, then NFec(πi) = NFec(πi+1)

and thus si = si+1. Ifπi
m
→ πi+1 we compose the following reduction diagram:

πi πi+1

s◦
i+1

σis◦
i

m

ec
ec

m∗

ec∗

ec

The left square is Lemma 12 for ec-reduction, while the right triangle is
confluence to the ec-normal form. �

Corollary 28 The reduction βgs on terms is confluent.

PROOF. Take s β∗gs u, v. By simulation s◦
mec∗
−→ u◦, v◦, so that by confluence

of the mec reduction we further get u◦, v◦
mec∗
−→ π. If we take t◦ = NFec(π), we

have u◦, v◦
mec∗
−→ t◦ which by bisimulation gives u, v β∗gs t. �

30

Acknowledgements

The author would like to thank the Roman “lambdadiff” group, and above
all its promoter Stefano Guerrini for his insight and motivation.

References

[1] G. Boudol. The lambda-calculus with multiplicities. Preliminary report,
INRIA-Sophia Antipolis, 1993.

[2] G. Boudol, P.-L. Curien, and C. Lavatelli. A semantics for lambda calculi with
resources. Math. Structures Comput. Sci., 9(4):437–482, 1999.

[3] V.Danos. La Logique Linéaire appliquée à l’étude de divers processus de normalisation
(principalement du λ-calcul). Thèse de doctorat, Univ. Paris VII, 1990.

[4] V. Danos and L. Regnier. The structure of multiplicatives. Archive for
Mathematical Logic, 28:181–203, 1989.

[5] R.Di Cosmo and S.Guerrini. Strong normalization of proof netsmodulo struc-
tural congruences. In Rewriting Techniques and Applications, pages 75–89, 1999.

[6] R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions
via cut elimination in proof nets. In Logic In Comp. Science, pages 35–46, 1997.

[7] T. Ehrhard. On köthe sequence spaces and linear logic. Math. Structures
Comput. Sci., 12:579–623, 2002.

[8] T. Ehrhard. Finiteness spaces. Math. Structures Comput. Sci., 15(4):615–646,
2005.

[9] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput.
Sci., 309(1):1–41, 2003.

[10] T. Ehrhard and L. Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006.

[11] T. Ehrhard and L. Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. To appear on Theor. Comput. Sci., 2006.

[12] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[13] A. J. Kfoury. A linearization of the lambda-calculus and consequences. Journal

of Logic and Computation, 10(3):411–436, 2000.
[14] Y. Lafont. From proof nets to interaction nets. In Advances in Linear Logic,

volume 222 of London Math. Soc. Lecture Note Ser., pages 225–247, 1995.
[15] O. Laurent. Polarized proof-nets and λµ-calculus. Theor. Comput. Sci.,

290(1):161–188, Jan. 2003.
[16] T. Nipkow. An inductive proof of the wellfoundedness of the multiset order,

1998. Available at http://www4.informatik.tu-muenchen.de/˜nipkow.
[17] M. Pagani and L. Tortora de Falco. Strong normalization property for second

order linear logic. Submitted to Theor. Comput. Sci., 2008.
[18] W. Py. Confluence en λµ-calcul. PhD thesis, Université de Savoie, July 1998.

Available at http://www.lama.univ-savoie.fr/˜david/ftp/py.pdf.
[19] L. Regnier. Lambda-Calcul et Réseaux. Thèse de doctorat, Univ. Paris VII, 1992.
[20] L. Regnier. Une équivalence sur les lambda-termes. Theor. Comput. Sci.,

126:281–292, 1994.

31

http://www4.informatik.tu-muenchen.de/~nipkow
http://www.lama.univ-savoie.fr/~david/ftp/py.pdf

[21] L. Vaux. The differential λµ-calculus. Theor. Comput. Sci., 379(1-2):166–209,
2007.

[22] L. Vaux. On linear combinations of λ-terms. In Rewriting Techniques and
Applications, pages 374–388, 2007.

32

	Introduction
	State of the art
	Resource calculus and differential interaction nets
	Differential lambda-calculus and differential nets

	Intuitionistic differential proof nets
	Statics: differential nets and correctness criterion
	Dynamics: multiplicative, exponential, associative reductions
	Strong normalization of exponential reduction
	Contractions, weakening and boxes: push and pull reductions

	Full resource calculus
	Statics: lambda-calculus with resources
	Dynamics: giant-step and baby-step beta-reduction

	Translation
	Statics: definition and sequentialization
	Dynamics: bisimulation

	Acknowledgements

