
Submitted to:
HOR 2010

c© G. Manzonetto & P. Tranquilli

A Calculus of Coercions Proving the Strong

Normalization of MLF

Giulio Manzonetto∗

LIPN, CNRS UMR 7030

Université Paris Nord, France

Giulio.Manzonetto@lipn.univ-paris13.fr

Paolo Tranquilli†

LIP, CNRS UMR 5668, INRIA

ENS de Lyon, Université Claude Bernard Lyon 1, France

Paolo.Tranquilli@ens-lyon.fr

We provide a strong normalization result for MLF, a type system generalizing ML with first-
class polymorphism as in system F. The proof is achieved by translating MLF into a calculus
of coercions, and showing that this calculus is a decorated version of system F. Simulation
results then entail strong normalization from the same property of system F.

Introduction. MLF [3] is a type system for (extensions of) λ -calculus which enriches ML with
the first class polymorphism of system F, providing a partial type annotation mechanism with an
automatic type reconstructor. In this extension we can write programs that cannot be written in
ML, while still being conservative: ML programs still typecheck without needing any annotation.
An important feature are principal type schemata, lacking in system F, which are obtained by
employing a downward bounded quantification ∀(α ≥ σ)τ, the so-called flexible quantifier. This
type says that τ may be instantiated to any τ {σ ′/α}, provided that σ ′ is an instantiation of σ .

As already pointed out, system F is contained in MLF. It is not yet known, but it is con-
jectured [3], that the inclusion is strict. This makes the question of strong normalization (SN,
i.e. whether λ -terms typed in MLF always terminate) a non-trivial one. In this paper we answer
positively to the question. The result is proved via a suitable simulation in system F, with
additional structure dealing with the complex type instantiations possible in MLF.

Our starting point is xMLF [5], the Church version of MLF: here type inference (and the
rigid quantifier ∀(α = σ)τ we did not mention) is omitted, with the aim of providing an internal
language to which a compiler might map the surface language briefly presented above (denoted
eMLF from now on1). Compared to Church-style system F, the type reduction →ι of xMLF is
more complex, and may a priori cause unexpected glitches: it could cause non-termination, or
block the reduction of a β -redex. To prove that none of this happens, we use as target language
of our translation a decoration of system F, the coercion calculus, which in our opinion has its
own interest. Indeed, xMLF has syntactic entities (the instantiations φ) which testify an instance
relation between types, and it is not hard to regard them as coercions. The delicate point is
that some of these instantiations (the “abstractions” !α) behave in fact as variables, abstracted
when introducing a bounded quantifier. In fact, for all the choices of α, ∀(α ≥ σ)τ expects a
coercion from σ to α.

A question that arises naturally is: what does it mean to be a coercion in this context? Our
answer, which works for xMLF, is in the form of a type system (Figure 2). In section 2 we will
show the good properties enjoyed by coercion calculus. The generality of coercion calculus allows
∗Supported by Digiteo project COLLODI (2009-28HD).
†Supported by ANR project COMPLICE (ANR-08-BLANC-0211-01).
1There is also a completely annotation-free version, iMLF, clearly at the cost of loosing type inference.

2 A Calculus of Coercions Proving SN of MLF

Syntactic definitions
σ ,τ ::= α | σ → τ | ⊥ | ∀(α ≥ σ)τ (types)
φ ,ψ ::= τ | !α | ∀(≥ φ) | ∀(α ≥)φ |& | &| φ ;ψ | 1 (instantiations)
a,b,c ::= x | λ (x : τ)a | ab | Λ(α ≥ τ)a | aφ | letx=ainb (terms)
Γ,∆ ::= /0 | Γ,α ≥ τ | Γ,x : τ (environments)

Reduction rules
(λ (x : τ)a)b→β a{x/b} a

&→ι Λ(α ≥⊥)a, α /∈ ftv(τ) a1→ι a
letx=bina→β a{x/b} (Λ(α ≥ τ)a)&→ι a{1/!α}{τ/α} a(φ ;ψ)→ι (aφ)ψ

(Λ(α ≥ τ)a)(∀(α ≥)φ)→ι Λ(α ≥ τ)(aφ) (Λ(α ≥ τ)a)(∀(≥ φ))→ι Λ(α ≥ τφ)a{φ ; !α/!α}

Figure 1: Syntactic definitions and reduction rules of xMLF.

then to lift these results to xMLF via a translation (section 3). The main idea of the translation
is the same as the one shown for eMLF in [4], where however no dynamic property was provided.
Here we finally produce a proof of SN for all versions of MLF. Moreover the bisimulation result
for xMLF establishes once and for all that xMLF can be used as an internal language for eMLF,
as the additional type structure cannot block reductions of programs in eMLF.

1 A short introduction to xMLF

The syntactic entities of xMLF are presented in Figure 1. Intuitively, ⊥∼= ∀α.α and ∀(α ≥ σ)τ

restricts the variable α to range over instances of σ only. Instantiations2 generalize system F’s
type application, by providing a way to instantiate from one type to another. A let construct
is added mainly to accommodate the type reconstructor of eMLF; apart from type inference
purposes, one could assume (letx=ainb) = (λ (x : σ)b)a, with σ the correct type of a. Apart
from the usual variable assignments x : τ, environments also contain type variable assignments
α ≥ τ, which are abstracted by the type abstraction Λ(α ≥ τ)a.

Typing judgments are of the usual form Γ` a : σ for terms, and Γ` φ : σ ≤ τ for instantiations.
The latter means that φ can take a term a of type σ to aφ of type τ. For the sake of space,
we will not present here the typing rules of instantiations and terms, for which we refer to [5],
along with a more detailed discussion about xMLF. Reduction rules are divided into→β (regular
β -reductions) and →ι , reducing instantiations. The type τφ is given by an inductive definition
(which we will not give here) which computes the unique type such that Γ ` φ : τ ≤ τφ , if φ

typechecks. We recall (from [5]) that both →β and →ι enjoy subject reduction. Moreover, we
denote by dae the type erasure that ignores all type and instantiation annotations and maps
xMLF terms to ordinary λ -terms (with let).

2 The coercion calculus

The syntax, the type system and the reduction rules of the coercion calculus are introduced in
Figure 2. The notion of coercion is captured by the type τ (σ : the use of linear logic’s linear
implication for the type of coercions is not casual. Indeed the typing system is a fragment of

2We follow the original notation of [5]; in particular it must be underlined that

&

and & have no relation
whatsoever with linear logic’s par and with connectives.

G. Manzonetto & P. Tranquilli 3

Syntactic definitions
σ ,τ ::= α | σ → τ | κ → τ | ∀α.τ (types) Γ,∆ ::= /0 | Γ,x : τ | Γ,x : σ (α (environments)
κ ::= σ (τ (coercion types) L ::= /0 | x : τ (linear environments)
ζ ::= τ | κ (type expressions) Γ;` a : σ (term judgements)
a,b ::= x | λx.a | λx.a | ab | a/b | a.b (terms) Γ;` a : κ (coercion judgements)
u,v ::= λx.a | λx.u | x.u (c-values) Γ;z : τ ` a : σ (linear judgements)

Typing rules
Γ(y) = ζ

Ax
Γ;` y : ζ

Γ;` a : σ → τ Γ;` b : σ
App

Γ;` ab : τ

Γ;L ` a : ∀α.σ
Inst

Γ;L ` a : σ {τ ′/α}
Γ;` a : τ Γ,x : τ;` b : σ

Let
Γ;` letx=ainb : σ

Γ,x : τ;` a : σ
Abs

Γ;` λx.a : τ → σ

Γ;L ` a : σ α /∈ ftv(Γ;L)
Gen

Γ;L ` a : ∀α.σ

LAx
Γ;z : τ ` z : τ

Γ;z : τ ` a : σ
LAbs

Γ;` λw.a : τ (σ

Γ;` a : σ1 (σ2 Γ;L ` b : σ1
LApp

Γ;L ` a.b : σ2

Γ,x : κ;L ` a : σ
CAbs

Γ;L ` λx.a : κ → σ

Γ;L ` a : κ → σ Γ;` b : κ
CApp

Γ;L ` a/b : σ

Reduction rules
(λx.a)b→β a{b/x} , letx=bina→β a{b/x} ,

(λx.a)/b→c a{b/x} , (λx.a).b→c a{b/x} , (λx.u)/b→cv u{b/x} , (λx.a).u→cv a{u/x} .
Figure 2: Syntactic definitions, typing and reduction rules of the coercion calculus.

DILL, the dual intuitionistic linear logic [1]. This captures an aspect of coercions: they consume
their argument without erasing it (as they must preserve it) nor duplicate it (as there is no true
computation, just a type recasting). Environments are of shape Γ;L, where Γ is a map from
variables to type expressions3, and L is the linear part of the environment, containing (contrary
to DILL) at most one assignment.

Reductions are divided into →β (the actual computation) and →c (the coercion reduction),
having a subreduction →cv which intuitively is just enough to unlock β -redexes, and is needed
for Theorem 4. We start from the basic properties of the coercion calculus. As usual, the
following result is achieved with weakening and substitution lemmas.

Theorem 1 (Subject reduction). Γ;L ` a : ζ and a→βc b entail Γ;L ` b : ζ .

The coercion calculus can be seen as a decoration of Curry-style system F. The latter can
be recovered by just collapsing the constructs (, λ , / and . to their regular counterparts, via
the decoration erasure defined as follows.

|α| := α, |ζ → τ| := |ζ | → |τ|, |σ (τ| := |σ | → |τ|, |Γ|(y) := |Γ(y)|, |Γ;z : τ| := |Γ|,z : |τ|,
|x| := x, |λx.a|= |λx.a| := λx.|a|, |letx=ainb|= (λx.|b|)|a|, |a/b|= |a.b|= |ab| := |a||b|.

It is possible to prove that Γ;L ` a : ζ implies that |Γ;L| ` a : |ζ | in system F. From this, and the
SN of system F [2, Sec. 14.3] it follows that the coercion calculus is SN. Confluence of reductions
can be proved by standard Tait-Martin Löf’s technique of parallel reductions. Summarizing, the
following theorem holds.

3Notice the restriction to σ (α for coercion variables. Theorem 4 relies on this restriction (d = λx.(x . δ)δ :
(σ ((σ → σ))→ σ , with δ = λy.yy : σ , bdc= δδ is a counterexample), but the preceding results do not.

4 A Calculus of Coercions Proving SN of MLF

Types and contexts
α• := α, (σ → τ)• := σ•→ τ•, (x : τ)• := x : τ•,
⊥• := ∀α.α, (∀(α ≥ σ)τ)• := ∀α.(σ• (α)→ τ•, (α ≥ τ)• := vα : τ• (α.

Instantiations
τ◦ := λx.x, (&)◦ := λx.λvα .x, (φ ;ψ)◦ := λ z.ψ◦ . (φ ◦ . z), (&)◦ := λx.x/λ z.z, (1)◦ := λ z.z,
(!α)◦ := vα , (∀(≥ φ))◦ := λx.λvα .x/ (λ z.vα . (φ ◦ . z)), (∀(α ≥)φ)◦ := λx.λvα .φ ◦ . (x/ vα).

Terms
x◦ := x, (λ (x : τ)a)◦ := λx.a◦, (ab)◦ := a◦b◦,

(letx=ainb)◦ := letx=a◦inb◦, (Λ(α ≥ τ)a)◦ := λvα .a◦, (aφ)◦ := φ ◦ .a◦.

Figure 3: Translation of types, instantiations and terms into the coercion calculus. For every
type variable α we suppose fixed a fresh term variable vα .

Theorem 2 (Confluence and termination). All of →β , →c, →cv and →βc are confluent. More-
over the coercion calculus is SN.

The use of coercions is annotated at the level of terms: λ is used to distinguish between
regular and coercion reduction, / and . locate coercions without the need to carry typing infor-
mation (the triangle’s side points to the direction of the coercion). Thus, the actual semantics
of the term can be recovered via its coercion erasure:

bxc := x, bλx.ac := λx.bac, babc := bacbbc, bλx.ac := bac,
bletx=ainbc= letx=bacinbbc, ba/bc := bac, ba.bc := bbc.

Proposition 3 (Preservation of semantics). Take a typable coercion term a. If
a→β b (resp. a→c b) then bac → bbc (resp. bac = bbc). Moreover we have the
confluence diagram shown on the right.

a b1

b1 c

β

c c∗
β

The following result shows the connection between the reductions of a term and of its semantics.

Theorem 4 (Bisimulation of b .c). If Γ;`A a : σ , then bac →β b iff a ∗→cv→β c with bcc= b.

3 The translation

A translation from xMLF terms and instantiations into the coercion calculus is given in Figure 3.
The idea is that instantiations can be seen as coercions; thus a term starting with a type
abstraction becomes a term waiting for a coercion, and a term aφ becomes a◦ coerced by φ ◦.
The rest of this section is devoted to showing how this translation and the properties of the
coercion calculus lead to the main result of this work, that is SN of both xMLF and eMLF.
First one needs to show that the translation maps to well-typed terms. As expected, type
instantiations are mapped to coercions.

Proposition 5 (Soundness). For Γ ` a : σ an xMLF term (resp. Γ ` φ : σ ≤ τ an xMLF instan-
tiation) we have Γ•;` a◦ : σ• (resp. Γ•;` φ ◦ : σ• (τ•). Moreover dae= ba◦c.

The following result shows that the translation is “faithful”, in the sense that β and ι steps
are mapped to β and c steps respectively: coercions do the job of instantiations, and just that.

Proposition 6 (Coercion calculus simulates xMLF). If a→β b (resp. a→ι b) in xMLF, then

a◦→β b◦ (resp. a◦ +→c b◦) in coercion calculus.

G. Manzonetto & P. Tranquilli 5

The above already shows SN of xMLF, however in order to show that eMLF is also normalizing
we need to make sure that ι-redexes cannot block β ones: in other words, a bisimulation result.
The following lemma lifts to xMLF the reduction in coercion calculus that bisimulates β -steps
(Theorem 4).

Lemma 7 (Lifting). For an xMLF term a, if a◦ ∗→cv→β b then a ∗→ι→β c with b ∗→c c◦.

Theorem 8 (Bisimulation of d .e for xMLF). For a typed xMLF term a, we have that dae →β b
iff a ∗→ι→β c with dce= b.

As a corollary of the two results stated above, we get the main result of this work, proving
conclusively that all versions of MLF enjoy SN.

Theorem 9 (SN of MLF). Both eMLF and xMLF are strongly normalizing.

Further work. We were able to prove new results for MLF (namely SN and bisimulation
of xMLF with its type erasure) by employing a more general calculus of coercions. It becomes
natural then to ask whether its typing system may be a framework to study coercions in general,
like those arising in Fη or when using subtyping. The typing rules of Figure 2 were tailored to
xMLF, disallowing in coercions polymorphism or coercion abstraction, i.e. coercion types ∀α.κ
and κ1→ κ2. Removing such restrictions we could still derive the main result, even though the
proofs would be more complex.

Apart from the extensions previously mentioned, one would need a way to build coer-
cions of arrow types, which are unneeded for xMLF. Namely, given coercions c1 : σ2 (σ1 and
c2 : τ1 (τ2, there should be a coercion c1 ⇒ c2 : (σ1 → τ1) ((σ2 → τ2), allowing a reduction
(c1⇒ c2). λx.a→c λx.c2 . a{c1 . x/x}. This could be achieved by introducing it as a primitive,
by translation or by special typing rules. Indeed if some sort of η-expansion would be available
while building a coercion, one could write c1⇒ c2 := λ f .λx.(c2 . (f (c1 .x))). However how to do
this without loosing bisimulation is under investigation.

Acknowledgements. We thank Didier Rémy for stimulating discussions and remarks.

References

[1] Andrew Barber & Gordon Plotkin (1997): Dual intuitionistic linear logic. Technical Report LFCS-
96-347, University of Edinburgh.

[2] Jean-Yves Girard, Yves Lafont & Paul Taylor (1989): Proofs and Types. Number 7 in Cambridge
tracts in theoretical computer science. Cambridge University Press.

[3] Didier Le Botlan & Didier Rémy (2003): MLF: Raising ML to the power of System F. In: Proc. of
International Conference on Functional Programming (ICFP’03), pp. 27–38.

[4] Daan Leijen (2007): A type directed translation of MLF to System F. In: Proc. of International
Conference on Functional Programming (ICFP’07), ACM Press.

[5] Didier Rémy & Boris Yakobowski (2009): A Church-style intermediate language for MLF. Available
at http://www.yakobowski.org/xmlf.html. Submitted.

http://www.yakobowski.org/xmlf.html

	A short introduction to xMLF
	The coercion calculus
	The translation
	References

