
Confluence of Pure Differential Nets with Promotion

Paolo Tranquilli

Laboratoire PPS – Université Paris Diderot - Paris 7
Case 7014 – 75205 Paris – France

ptranqui@pps.jussieu.fr

Abstract. We study the confluence of Ehrhard and Regnier’s differential
nets with exponential promotion, in a pure setting. Confluence fails with
promotion and codereliction in absence of associativity of (co)contractions.
We thus introduce it as a necessary equivalence, together with other op-
tional ones. We then prove that pure differential nets are Church-Rosser
modulo such equivalences. This result generalizes to linear logic regular
proof nets, where the same notion of equivalence was already studied in
the literature, but only with respect to the problem of normalization in a
typed setting. Our proof uses a result of finiteness of developments, which
in this setting is given by strong normalization when blocking a suitable
notion of “new” cuts.

1 Introduction

The inception of Linear Logic (LL, [1]) in the 80’s has reinforced the bridge
between logic and computer science already established by the Curry-Howard
correspondence years before. LL is in fact a refinement of intuitionistic and clas-
sical logic brought forth by a fine semantical analysis. One of its main features is
the introduction of two dual modalities, the exponentials ! and ?, regulating the
use of structural rules (weakening and contraction), which on the program side
correspond to erasure and duplication of resources.

This endeavour, among other things, led the way to a new, parallel syntax
of proofs, proof nets. These are the syntax of choice for LL, especially when
considering cut elimination. In fact one of the main advances of LL over classical
logic is that, though preserving an involutive negation (and therefore two-
sided sequents), it also preserves properties of intuitionistic logic lacking in
the classical framework. One of these, central to our work, is confluence of cut
elimination, i.e. the independence of the result of the cut elimination procedure
with respect to the actual cuts one decides to reduce.

A further semantical analysis led by Ehrhard [2] has recently provided LL
with new models based on topological vector spaces where we can take the
derivative of an object. The efforts of the same author and Regnier have permit-
ted to lift such operations to syntax, giving rise to Differential Linear Logic (DiLL,
[3]), and their syntax, differential nets. Three new rules are introduced to handle
the !-modality (coweakening, cocontraction and codereliction) which are duals to the
LL rules handling ?. In the proofs as programs paradigm, codereliction allows

2 Paolo Tranquilli

to introduce depletable resources, which may be asked for many times but may
be used just one time, nondeterministically choosing which query they satisfy.
This feature configures differential nets as a promising logical framework to ex-
tend the Curry-Howard correspondence to nondeterminism and concurrency
(see [4]).

Actually, [3] gives the syntax for the promotion free fragment of DiLL only,
giving rise to differential interaction nets, a nondeterministic example of Lafont’s
interaction nets [5]. By modelling nondeterminism by formal sums confluence
remains an important property, which is however straightforward in an inter-
action net paradigm, where no reduction can change the other ones. Here we
will extend such property to the whole of differential nets. Promotion in proof
nets is handled by boxes, synchronized areas of proofs enabling to mark what
is to be erased or duplicated. Boxes break the interaction net paradigm: there
are cuts (the commutative ones) which can be changed by other reductions, so
confluence is definitely more delicate.

Part of a previous work of ours [6] was focused on proving confluence for the
intuitionistic fragment, which used the recursive types needed to translate λ-
calculus. There we observed that confluence fails without keeping into account
some semantically grounded equivalences, namely associativity of contractions
and cocontractions. A fully quotienting syntax as the one used in [7] for LL is
seemingly out of reach in DiLL. Our solution in [6] was employing generalized
(co)contraction cells in the style of [8], and some additional reductions.

Here we generalize the result in three ways. By concentrating on the com-
putational contents rather than the logical one, we consider pure nets, where
types (i.e. formulae) play no role whatsoever, not even recursive ones. Fur-
therly, the needed equivalences are settled to the maximum extent by means
of. . . equivalences on nets. We thus generalize the equivalences and reductions
of [9], providing as a byproduct the first proof of confluence1 for such LL proof
nets with equivalences in the completely pure case, as previous works concen-
trated on normalization in the typed one. Finally, we are able to introduce one
more equivalence potentially giving the right to always consider boxes without
sums inside (the bang sum equivalence).

This result has several ramifications. As is evident in [10], this is the first
step in proving strong normalization in the typed case2. Furtherly, as can be
deducted from [9], this can be the ground for new work on calculi with explicit
substitutions: whether by extending some results to untyped calculi; or by
considering explicit substitutions for nondeterministic calculi akin to Boudol’s
λ-calculus with resources (see [6]).

Our technique, reminiscent of the work done on LL in [10], uses a finite
development theorem used to prove a strong confluence property of a suitable
notion of parallel reduction.

1 To be precise, the stronger result of being Church-Rosser modulo (see Section 1.1).
2 Actually the subject of a future submission by the author and Pagani.

Confluence of Pure Differential Nets with Promotion 3

1.1 Rewriting Theory Modulo Equivalence

The aim of this section is making the reader acquainted with the notion of
rewriting modulo equivalence, to the extent needed for our purposes. We refer
to [11, Section 14.3] for more in-depth details and proofs.

Let (S,→) be an abstract reduction system and let∼be an equivalence relation
on S. As usual, =→ and ∗→ denote the reflexive and reflexive-transitive closures of
→ respectively. Take a symmetric relation 7− � such that 7− �∗ = ∼, possibly ∼ itself.
Let s Y t (t and s are joinable modulo ∼) if s ∗→∼ ∗← t. We say then that→ is

– locally confluent modulo ∼ if←→ ⊆ Y;
– confluent modulo ∼ if ∗←∼ ∗→ ⊆ Y;
– locally coherent with 7− � if 7− �→ ⊆ Y;
– Church-Rosser modulo ∼ (or CR∼) if ≈ ⊆ Y, where ≈ := (→ ∪← ∪ ∼)∗;
– strongly normalizing modulo ∼ (or SN∼) if→∼ is SN, where3 →∼ := ∼→∼;
– strongly Church-Rosser modulo ∼ if ∼ =← =→∼ ⊆ =→∼ =←;

The last definition is our terminology, while the rest follows [11]. Being Church-
Rosser modulo ∼ is the most important property of all those concerning conflu-
ence. In particular it implies the unique normal form modulo ∼ property, (≈ = ∼
on normal forms), which again implies that in order to compute the normal form
one can use just regular reductions, without ever be forced to∼-convert in order
to get the result4. Contrary to what happens in regular reduction, CR∼ is strictly
stronger than plain confluence in absence of WN [11, Remarks 14.3.6, Exercise
14.3.7]. Following are some important lemmas: the first is a generalization of
Newman’s Lemma, the last is a trivial result we did not find in the literature
which we will need in our proof.

Lemma 1 (Huet). If→ is SN∼, locally confluent modulo ∼ and locally coherent with
7− �, then it is CR∼.

Lemma 2 (van Oostrom).→ is CR∼ iff ∗→ is strongly CR∼.

Lemma 3. If→ is strongly CR∼, then it is CR∼.

Proof. Straightforward induction: to show that ∼ ∗← ∗→∼ is joinable, we proceed
by induction first on one side, then on the other.

2 The System

A net is intuitively a network of cells linked by wires connecting their ports. A
little more formally, a net π is given by the following data.

– A set p(π) of ports.

3 Here like in the rest of the paper, := means “defined as”.
4 This also means there is never the need to perform conversion steps in order to ready

some redexes, i.e. make them visible.

4 Paolo Tranquilli

– A set c(π) of cells; to each cell c is assigned a symbol σ(c) in a given alphabet,
a port in p(π) called principal, and a number of other, auxiliary ones. How
the latter are treated distinguishes between two kinds of cells: in non com-
mutative ones, auxiliary ports are a finite sequence, in commutative ones
they form a finite set. Every port in p(π) can be associated with at most one
cell; a port associated with a cell is called connected, otherwise it is free.
Free ports (also called conclusions) are denoted by fp(π). The number of
auxiliary ports is determined by the symbol σ(c).

– A set w(π) of wires, which can be either unordered pairs {p, q} of ports, or
deadlocks, i.e. wires not connecting any port (intuitively short circuited
wires). Each port is in exactly one wire. A directed wire is an ordered pair
(p, q) such that {p, q} is a wire. Terminal wires are the directed ones going to
the free ports.

An elementary path in π is one in the graph trivially obtained by taking cells
and free ports as nodes and directed wires as edges, which moreover does not
intersect itself5. A polynet is a formal sum of nets, or equivalently a multiset
of nets, all sharing the same free ports. At times we distinguish nets (thus
singletons) from polynets by calling them simple.

2.1 Statics

DiLL0 nets and polynets are built from all the symbols in Figure 1 but the box
one. These are exactly the differential interaction nets presented in [3]. For the
moment let us ignore the labels we assign to the ports in the figure, which will
be needed only later (see page 9). As usual, the apex of the cell represents the
principal port, while the auxiliary ones are depicted on the opposite side.

In order to add boxes, one proceeds by induction, by considering them as
cells having a whole polynet as symbol. Let DiLLk+1 nets and polynets be the
ones built from all the cells of Figure 1 where for each box its symbol is a polynet
π in DiLLk and there is a bijection between its ports and fp(π). The symbol σ(B)
of a box B is also called its contents. We will denote by !π a generic box having
π as contents. A DiLL polynet π is one of DiLLk for any k; if such k is minimal,
we say that k is the depth of π (in fact, the maximal number of nested boxes). A
port is active if it is either a principal one, or an auxiliary one of a box. A wire
linking two active ports is a cut.

Figures 5 and 6 will show examples of differential nets. The explicit marking
of ports is dropped as they can always be identified with the extremities of
wires.

Let p!(π), fp!(π) c!(π) and w!(π) be the set of all occurrences of ports, free
ports, cells and wires respectively occurring in π, including in all the contents
of the boxes in π. We can slice those sets by depth, so we will denote by pi(π),

5 Technically, one prohibits the repetition of unoriented wires and that three ports of
the same cell be crossed by the path.

Confluence of Pure Differential Nets with Promotion 5

⊗ ∗ ` ∗ ? ? ?2 ?
!
! ?0 ?

tensor par dereliction contraction weakening
(commutative)

1 ∗ ⊥ ∗ ! ! !2 !
?
? !0 !

one bottom codereliction cocontraction coweakening
(commutative)

!
∑

i λi?
? ! box of DiLLk+1 (

∑
i λi polynet of DiLLk)

Fig. 1: The cells of differential nets. The labels in { !, ?, ∗ } assigned to ports will
be needed only later (see page 9).

fpi(π) ci(π) and wi(π) the corresponding elements of the nets contained in i
nested boxes, where i is called the depth of the element in π6.

Correctness criterion. As usual, the nets blindly built with the cells available
are not in general “correct”, where the word can take the meaning of unsequen-
tializable in sequent calculus, or having deranged computational behaviour.
Since [12] one of the most used correctness criteria for proof nets is that of
switching acyclicity. Given a DiLL net, a switching path is an elementary one
which does not traverse two auxiliary ports of any ` or contraction cell (does
not bounce “above” it). A DiLL polynet is called a DiLL proof net (or differential
proof net) if it is switching acyclic, i.e. it has no deadlocks nor switching cycles,
and inductively all box contents are also switching acyclic. From now on we
will deal almost only with proof nets.

2.2 Dynamics

As with various calculi, the reduction of differential nets can be defined as the
context closure of a set of reduction rules, presented as pairs of redexes and
contracta. A linear context δ[] is a simple net δ together with a subset Hδ of
its free ports (the hole of δ[]). It is linear as it is not a sum and the hole is not
inside a box. Given a simple net λ and a bijection σ between Hδ and fp(λ), the
plugging δ[λ] of a simple net λ in the hole of δ[] amounts to identifying the
ports according to σ and welding the wires that come together in this way7, as
shown in Figure 2. This definition is then extended by linearity when we plug
a polynet, by setting δ

[∑
i λi

]
:=

∑
i δ[λi].

6 All of this can be defined more formally by an inductive definition. Nevertheless we
leave it to the reader as an easy exercise.

7 For the quite delicate technical details the reader is referred to [13].

6 Paolo Tranquilli

δ

pkp1

Hδ

[
λ

σ(p1)σ(pk)

]
:= δ λ

Fig. 2: Plugging of a net in a context.

` ⊗ m→ ` ⊗ ⊥ 1
m→ ?!π

e→ π ?!
e→

!π
α

e→ !π
α

εε2
e→ ε

ε0
+

ε0
ε εε0

e→ 0

α ?2
e→ ?2

?2

α

α
α ?0

e→ ?0

?0

!π
!

e→ !2

!π
!0

!π
!

?2

?2

Fig. 3: The multiplicative and exponential reduction rules of DiLL. ε and εdenote
either ? and ! or vice versa. α denotes any symbol among !2, !0 or a box symbol
π. In particular weakening against coweakening reduces to the empty net. We
make implicit use of the rule for context plugging of sums: the π inside boxes is
a polynet. For example the dereliction on box rule may introduce sums.

Finally, contexts generalize the concept in the following way. A linear context
δ[] is a context; furthermore ifω[] is a context then δ[ω[]] for δ[] linear8,ω[]+π
forπpolynet and !ω[] (i.e. a box containing a context) are also contexts. Plugging
is easily extended to all contexts. The context closure R̃ of a relation R is then
defined by π R̃ σ iff π = ω[λ], σ = ω[µ] and λ R µ.

We are now able to define multiplicative reduction m→ and the exponential
one e→ by context closure of the rules of Figure 3, which are pairs consisting
of a simple net (the redex) and a polynet (the contractum). Each redex here
is identified by a unique cut. The union me→ of the two reduction is the cut
elimination of DiLL.

2.3 Equivalences and Canonical Reductions

As we will show as a remark at page 7, the reductions just presented fail to
give a confluent system: we cannot ignore associativity of (co)contractions and
neutrality of (co)weakening over (co)contraction. This prompts us to introduce
the former as an equivalence and the latter as a reduction. As we need any-
way to consider reduction modulo an equivalence, we also study other equiva-
lences (backed by semantical and observational equivalence) which are optional
though must be taken together. Each equivalence is accompanied by a reduc-
tion which in a sense settles a zeroary case of the equivalence. Reversing each of

8 Composition of contexts should be defined, but it is trivial once plain plugging is
defined.

Confluence of Pure Differential Nets with Promotion 7

ε2

ε2 a7− � ε2

ε2

!π
?2

p7−� !π
?2

!π + σ
s7−� !2

!σ

!π

?2

?2

ε2

ε0 n→ !

π
?0

+

%

p→ !2

!%

!π

?2

?2

!0
z→ !0

?0

?0

with π, σ , 0.

Fig. 4: Top: the rules for associative equivalence a∼, the push one p∼ and the
bang sum one s∼; 7− � denotes a one-step conversion. Bottom: the rules for neutral
reduction n→, the pull one

p→ and the bang zero one z→. The condition π, σ , 0
applies to all rules.

these gives unwanted looping reductions. The associative, push and bang sum
equivalences, together with the neutral, pull and bang zero reductions (which
do not reduce cuts), are shown in Figure 4. The π, σ , 0 condition is needed, lest
one would be able to spawn trees of contractions from nothing, giving looping
reductions.

The push equivalence9 has already been studied in the literature on proof
nets and explicit substitutions [8,9]. The pull reduction may seem somewhat
complicated, however it is a generalization of the reduction pulling out weak-
enings from boxes [9]. The usual reduction can be reobtained when having % = 0,
which by means of a z-reduction and some n ones gives the expected result.
Such form (which in fact contains a sort of on-the-fly s-conversion) is required
in order to get local coherence10.

The part about sums inside boxes was already known to be valid semanti-
cally and observationally: we give here some syntactic ground to using it. From
the point of view of semantics it is interesting to note that it implements the well
known exponential isomorphism !A ⊗ !B � !(A & B) from linear logic (see [2]).

From now on ∼ and c→ (canonical reduction) will denote either a∼ and n→ or
the union of the a, p and s conversions and the npz-reduction respectively. By
checking the cases not already proved in the literature, one gets the following.

Proposition 4 (stability of correctness). If π is switching acyclic and π mec−→ π′ or
π ∼ π′ then π′ is switching acyclic also.

Examples and remarks. Figure 5 gives the reason to employ associative equiva-
lence, showing the reduction of the coderelictions on box critical peak, which
cannot be joined with regular reductions. One reduction only is shown, as

9 Though an equivalence is not directed, the name comes from [14] and [6] where it was
a reduction. We felt like keeping it for its good pairing with the pull reduction.

10 The problem arises in a p-equivalence and n-reduction critical peak, as the latter may
eliminate a contraction of one of the addends in the box.

8 Paolo Tranquilli

!π!

!

b

a
e→ !2

!π!0

!π
!

?2

?2! e∗→ !2

!π!0

!0

!π!

!

?2

+ !2!2

!π!0

!0

!π!

!0

!π!0

!

?2
?2

Fig. 5: Reduction of a box with two coderelictions on it. Starting with codere-
liction b swaps the two linear copies of !π and therefore both the cocontraction
and contraction trees in the last addend.

!

?1

⊥ me∗←−
!

? 1

1

!

?⊥
⊥

me∗−→
!

? ⊥
1

(a) Non-confluence in absence of switching acyclicity.

!?2
? ?2

? e→ !?2
?

? ! ?2
? e→ ?2

?
! ?2

?

(b) Non-termination of exponential reduction with switching acyclicity.

Fig. 6: Issues with confluence. Figure 6(a) shows the need for correctness. The
example shown is even simply typed. Figure 6(b) shows how in the pure case
even the exponential reduction alone is not terminating.

the other is symmetric. Other critical peaks due to the codereliction on box
rule (namely when against dereliction and contraction) show that also the n-
reductions cannot be left out. One can already see two big differences with
respect to LL and the work done with it in [10]: firstly, sums may arise even
without the “logical” step of dereliction on box; moreover, the codereliction on
box rule, which reduces a commutative cut, changes the possible cuts on all
other cuts of the box. These problems prevent an immediate adaptation of the
measures used in [10]. The nets in Figure 6 are examples already known in LL
showing issues about correctness and types.

3 The Finite Development Theorem

In [15], Danos proved the counterpart of the finite development theorem for
MELL, and Pagani and Tortora de Falco did the same for the whole of second
order LL in [10]. In this setting the actual definition of what a “new” redex is
gets more technical.

3.1 Marking New Cuts

We define a notion of new and old cuts, by leaving a mark on the new ones.
Marks are cells of a new symbol with two ports and no reduction rule, graphi-

Confluence of Pure Differential Nets with Promotion 9

` ⊗ m→ ? !
e→ ? ! π e→ π

Fig. 7: The modified reduction rules of DiLL◦.

cally depicted by little circles. Its main purpose is to block reductions and equiv-
alences (for example a mark between two contractions blocks the a-conversion).

Ideally, these marks are placed during reduction to block “new” wires. By
new we mean two kinds of wires: those that in a typed setting would decrease the
logical complexity of the cut formula, and those that before the reduction were
exponential clashes. The latter are peculiar to a truly untyped setting, and are
brought by the opening box and neutral reductions, which erase an exponential
port. For example, if we erase marks from the net shown in Figure 8, and we
fire the dereliction against box redex we end up with a valid multiplicative cut
which was a clash before. Rather than lock this special kind of “new” wires
during reduction, we can lock all potentially dangerous clashes since the start,
as markings will prevent new clashes from arising. We thus need to define what
an exponential clash is.

Let τ be the partial function from p!(π) to the labels { !, ?, ∗ } thus defined.
On ports of cells it gives the values already shown in Figure 1; on the ports of
marks it is undefined; for p ∈ fp!(π) we set τ(p) = ? if p is over an auxiliary port
of a box, we leave it undefined otherwise. τ provides for a sort of pre-typing. A
directed wire (p, q) is called a !-wire (resp. ?-wire) if τ(p) = ? and τ(q) = ! (resp.
vice versa), where however we let at most one of the two be undefined. In any
case ! and ?-wires are called exponential (which applies to undirected wires
also). An exponential clash (simply clash from now on) is a wire {p, q} such that
one of τ(p), τ(q) is ! (resp. ?) and the other is defined but not ? (resp. !)11.

DiLL◦ is the system given by polynets with marks and without clashes, and
by changing some rules to introduce the mark as depicted in Figure 7. It is
immediate to see that the absence of clashes is preserved by reduction, as the
new wires which could bring close unmatched ports are interrupted by marks.
From the point of view of DiLL, clash-freeness imposes just that some marks be
added: given any DiLL polynet π, we define the injection π◦ in DiLL◦ by placing
a mark interrupting each clash. Conversely, DiLL◦ can be clearly surjected on
DiLL by erasing all marks. We call this surjection π◦�. The net π in Figure 8(a) is
an example of DiLL◦ net enjoying (π◦�)◦ = π. On the other hand, if σ is the net in
Figure 6(b), then σ◦ = σ and it is strongly normalizing to the net in Figure 8(b).

3.2 Measuring Exponential Reduction

Ideally, we may regard exponential reduction as a procedure that “slides” cells
along exponential paths in the net, with ! and ? cells sliding in opposite direction.

11 More intuitively: !-wires and ?-wires are those that in a typing attempt would get an
outermost ! or ? respectively, while clashes would give a failure to unify an outermost
exponential modality.

10 Paolo Tranquilli

? ! ! ?2

(a) A DiLL◦ net πwhere marks are
compulsory, such that (π◦�)◦ = π.

?2
?

! ?2
?

(b) The normal form in DiLL◦ of the
non-terminating net of Figure 6(b).

Fig. 8: Examples for DiLL◦.

We thus assign to each cut a natural number, indicating how far the two cells
around it are from the end of the path they are sliding on. After a reduction
however many cuts may have arisen. So we will employ the multiset of the
weights of the cuts and the multiset order12. Global additive duplication poses
another problem. In [6] we settled it by employing multisets of multisets. Here
however we estimate how many addends can sprout during reduction, so we
can use this value and count each cut as many times as there can be addends
containing it. We will also need to get an estimate of the number of copies (both
regular and linear) of a box.

Exponential paths. An !-path (resp. ?-path) is an elementary path made only
of !-wires (resp. ?-wires), not traversing any mark, dereliction or codereliction
(though it may end on them). In either case, the path is called exponential. All
cells internal to an exponential path must necessarily be contractions, cocon-
tractions or boxes. The main technical advantage of DiLL◦ over DiLL is that in it
no reduction can open new exponential paths.

Next we define by mutual induction three basic measures on which we will
base the measure of the whole net. Two of them, the ?-weight ?(e) and the
!-weight !(e), are on wires. The third, the spread sp(λ), is defined on simple
subnets of the given net13. For the purpose of working modularly with the
measures, we introduce variables on the terminal wires over fp0(π). We will thus
consider variables !(d) (resp. ?(d)) with d a terminal wire.

Weighting wires and estimating addends. Table 1 provides the laws for ?(e) (resp.
!(e)), giving them depending on an adjacent cell. By the absence of clashes there
is no ambiguity in the definitions. By eλ we denote the wire corresponding to
e inside a box, in the net λ of the box contents. At the bottom we also show
the law for the spread. Notice that all measures are polynomials with natural
coefficients. Notice also that there is a circular dependency between the three
measures, so the next lemma is not trivial.

Lemma 5. Given a DiLL◦ proof net π, ?(e), !(e) and sp(λ) are defined for all e ∈ w!(π)
and all λ simple subnets of π at any depth.
12 Multisets (here presented as [a1, . . . , ak] with additive notation) over a well founded

set are well ordered by the transitive closure of A + [a] > A + B with ∀b ∈ B : b < a.
13 Without getting into details, a subnet of π is a properly formed net given by a subset of

cells and wires of π, all taken from the same depth (but then including all the elements
contained in its boxes).

Confluence of Pure Differential Nets with Promotion 11

e

e2

e2

?2 : ?(e) = ?(e1) + ?(e2);
f e

e
!2 : ?(e) = ?(f);

f
! π

e1

ek

: ?(ei) =

?(f)(1 +
∑k

j=1 !(e j)) if π = 0,
?(f)(1 +

∑k
j=1 !(e j))

∑
λ∈π sp(λ)?(eλi) otherwise;

otherwise : ?(e) is a variable if e is terminal at depth 0, ?(e) = 1 otherwise.

e

e2

e2

!2 : !(e) = !(e1) + !(e2);
f e

e
?2 : !(e) = !(f);

e
!π

fk

f1

: !(e) =

1 +
∑k

j=1 !(f j) if π = 0,
(1 +
∑k

j=1 !(f j))
∑
λ∈π sp(λ) otherwise.

epf
: !(e) = !(f)

if p ∈ fp0(σ(B)) for a box B, p is above an auxiliary port,
and f is the wire corresponding to p outside the box,

otherwise : !(e) is a variable if e is terminal at depth 0, !(e) = 1 otherwise.

sp(λ) =
∏

c∈c0(λ)
σ(c)=?

!(c) ·
∏

c∈c0(λ)
σ(c)=!

?(c)

Table 1. Rules for the ?-weight (top), the ! one (middle) and the spread sp (bot-
tom). In the spread formula (which ranges over derelictions and coderelictions
at depth 0) we use the notation ?(c) and !(c) for the corresponding measure on
the wire from the principal port of c.

Proof (sketch). One proceeds by a primary induction on the depth: supposing all
the (polynomial) measures have been defined inside all boxes, one can

– define !(e) by induction on the maximal length of ?-paths starting from e
(instantiating the variables of the ?-conclusions inside boxes in the process);

– only then, define ?(e) by induction on the maximal length of !-paths (relying
also on the measures inside boxes just instantiated);

– finally define the spread from the two. ut

Weighting nets and polynets. The weight |e| of a wire is ?(e)+ !(e). Let !cw0(λ) (resp.
b0(λ)) be the set of exponential cuts (resp. boxes) at depth 0 of a simple net λ.
Let us fix a polynet π, and let c(B) (the count of the box B) denote ?(e)(1+

∑
j !(f j))

with e and f j the wires on the principal and the auxiliary ports of B respectively.
Then for each sum (i.e. multiset) ρ of subnets of π we define by induction on
their depth the following multiset (λ will denote a generic simple subnet):

‖ρ‖ :=
∑
λ∈ρ

sp(λ) ‖λ‖ , ‖λ‖ := [|e| | e ∈ !cw0(λ)] +
∑

B∈b0(λ)

c(B) ‖σ(B)‖ ,

12 Paolo Tranquilli

Finally, the polynomial measure of the whole net (a special case of the measure
already given) can be instantiated with 1 for all variables to get an actual number.

Notice that this measure depends monotonously from the weight of each
part of the net. This intuition will be given a solid ground by Lemma 7.

Intuitive ideas of the measures. As already hinted at the begin of this section, these
measures should help to estimate how far each cut has to go in both directions
to arrive at a “dead end” (for DiLL◦, the logical rules), and how many times each
cut should be accounted for.

Morally !(e) measures the size of the tree of cocontractions above e (which is
invariant under associativity). The most important feature is that it counts all
the coderelictions linked to e. On boxes we count

– the !-weight on the auxiliary ports because the codereliction against box rule
creates a contraction and a codereliction; plus one to count the box itself,
especially if it has no auxiliary ports;

– multiplied by the spread of the contents in order to be invariant by s-
conversion, and keep such invariants even if the sum inside. . . spreads.

Dually ?(e) measures the size of the tree of contractions above e. The rule when
e is on an auxiliary port of a box B contains:

– ?(f) because the contractions on the principal port of B may shift to auxiliary
ports during reduction;

– the sum of !-weights of the auxiliary wires because codereliction against
box creates contractions; plus 1 to provide something to decrease when a
cut enters a box (box against box and those similar);

– the ?-measures inside because either by opening the box or by p-conversion
the contraction trees inside can pour outside; summed, to respect both p-
conversion and s-conversion; this sum is weighted with the spread to pre-
vent a reduction generating a sum inside from increasing such weight.

As already hinted, sp(λ) estimates how many addends may have a reduct of
λ. This is achieved by morally multiplying all the possible number of choices
potentially to be done in λ. Now sums arise

– on (co)dereliction against co(co)ntraction reductions, so the size of the tree
of co(co)ntractions on the principal port of a (co)dereliction should estimate
what choices that (co)dereliction may do;

– on (co)dereliction against box rules, when the box contains an actual sum;
however the spread of a box contents are already accounted for in both the
!-weight and the ?-weight.

Finally the cuts inside a box B count c(B) times as this number estimates how
many regular and linear copies of its contents may be done, and all cuts count
sp(λ) times to account for additive duplication.

Before sketching the proofs, we show in Figure 9 an example of reduction
step where we have calculated (in the way indicated by Lemma 5) all the relevant
measures of the two nets. It turns out that ‖λ‖ = 5184(12[3] + [8, 13, 13]), while
‖µ‖ = 900(9[3] + [7, 10]), which is indeed lower (though in a quite coarse way).

Confluence of Pure Differential Nets with Promotion 13

λ := ?2
?

?
! ? !2

!

!

(6, 1) (6, 2) (2, 1) (1, 1)
sp = 2

(1, 12)

sp = 62 · 122

e→ ?2
?

?
!2

! ? !2
!

! ? !2
!0

?2 !

(5, 1) (5, 2) (4, 2) (2, 1) (1, 1) (1, 8) (1, 9)
sp = 2

(1, 2) (2, 1) (1, 1)

(1, 1)
sp = 52 · 22 · 1 · 9

=: µ

Fig. 9: An example of calculated measures. Each relevant wire e is labelled by
the pair (!(e), ?(e)). Cuts are specially marked.

Replacement and modularity lemmas. In the following, we will consider the
extensional (i.e. pointwise) order ≤ on non-zero values for all the polynomials.

For different simple nets λ, µ, we distinguish the weights calculated on one
or the other by putting them as superscripts, as in ?λ(e). Suppose λ and µ are
two nets with identified terminal wires C. We say that λ can replace µ if for
each terminal wire d we have that !λ(d) ≤ !µ(d) and ?λ(d) ≤ ?µ(d) (one of the
comparisons may be a trivial one among the same variables). An induction on
the context reveals the following lemma.

Lemma 6 (replacement). Suppose λ can replace µ, ω[] is a linear context with ω[λ]
and ω[µ] proof nets. Then for each e wire in the context ω, ?ω[µ](e) ≤ ?ω[λ](e) and
!ω[µ](e) ≤ !ω[λ](e).

In the following the weight |D| of a set of wires D is the multiset of the weights
of its wires. A terminal wire is dormant if it connects an active port or two free
ones. Dormant wires are those that can become cuts when glued in a context.
The proof of the following lemma, which we omit, is an induction on the depth
of the hole in the context.

Lemma 7 (modularity). Take λ and µ1, . . . , µn simple nets and ω[] a context such
that ω[λ] and ω[µi] are all DiLL◦ pure proof nets. Suppose moreover that:

– for every i we have that µi can replace λ;
–

∑
i sp(µi) ≤ sp(λ);

– if n = 0, then ‖λ‖ > [], otherwise for every i we have ‖µi‖ + |Di|µi < ‖λ‖, (resp. ≤)
where Di is the set of active wires in µi that are not dormant in λ.

Then we have the pointwise inequality
∥∥∥ω[∑

i µi

]∥∥∥ < ‖ω[λ]‖ (resp. ≤).

Thanks to modularity, the following result is up to mechanical checks which we
omit altogether.

Lemma 8. ‖ . ‖ has the following properties.

– if π e→ π′ then ‖π′‖ < ‖π‖;
– if π mc→ π′ then ‖π′‖ ≤ ‖π‖;
– if π ∼ π′ then ‖π′‖ = ‖π‖.

Theorem 9 (finite developments). Reduction on DiLL◦ is SN.

14 Paolo Tranquilli

Proof (sketch). Only m and c remain to be settled. For all reductions, the pair given
by

(
‖π‖ , #m(π)+#c(π)

)
strictly decreases for lexicographic ordering, where #m just

counts the multiplicative cells in π, and #c weights coweakenings, weakenings
and boxes containing 0 in the following inductive way:

#c(π) := 1 + #!0 (π) + #?0 (π) +
∑

B∈b0(π)

(1 + deg(B)) #c(σ(B))

where #!0 and #?0 count coweakenings and weakenings at depth 0, and the
degree deg(B) is the number of ports of B. ut

4 Proving Confluence

Recall that ∼ and c may be a-equivalence and n-reduction, or full asp-equiv-
alence and nzp-reduction. Some of the diagrams show we cannot separate s-
equivalence from the p one (and their associated reductions). Checking all local
confluence and local coherence diagrams as indicated by Lemma 1, gives the
following proposition, which then finally leads the way to the main theorem of
the work.

Proposition 10. Reduction in DiLL◦ is CR∼, and so are m and ec alone.

Main Theorem. Reduction of DiLL pure proof nets is CR∼, and so are m and ec alone.

Proof. Using DiLL◦ we define a parallel reduction→q . Let π →q σ iff π◦ mec∗−→ % in
DiLL◦ and σ = %◦�. Then

– mec→ ⊆→q ⊆ mec∗−→, so that→q ∗ =
mec∗−→ (notice π◦ cannot block any reduction);

– →q is strongly CR∼ because mec∗−→ is so in DiLL◦: if π →q σ◦�1 , σ
◦�
2 with π◦ mec∗−→

σ1, σ2, then σ1, σ2
mec∗−→ ρ, and then (σ◦�i)◦ mec∗−→ ρ, because (σ◦�i)◦ has less marks

than σi as the latter is clash-free. In the end σ◦�1 , σ
◦�
2 →q ρ◦�.

Then we conclude, as →q is CR∼ by Lemma 3 (→q is reflexive as (π◦)◦� = π),
which means that→q ∗ =

mec∗−→ is strongly CR∼, which in turn by Lemma 2 gives
Church-Rosser modulo ∼ for the ordinary reduction14. It is not hard to give
parallel reductions for the ec and m ones and do the same. ut

A conclusion: the case for MELL. Our system of reductions and equivalences
bears close resemblance to the one developed for MELL in [9]. In fact, stripping
DiLL of all its differential features, the only difference is the absence in [9]
of anything related to the p-reduction. In MELL the p-reduction is given by
simply pulling out a weakening out of a box, which in DiLL can be done by
a concatenation of p, z and n reduction steps. In [16], the author calls such a

14 Notice that we cannot infer CR∼ of →q directly from the same property in DiLL◦, as
chained parallel reductions are not necessarily in DiLL◦

Confluence of Pure Differential Nets with Promotion 15

variant a total p-reduction, which was here omitted because of its redundancy
in DiLL. First, we argue that without such a step the CR∼ property is broken, as
shown by the following coherence critical peak, leading to two normal forms
which are not directly equivalent15:

!
?0

?2
p7−� !

?0
?2

n→ !

Then a direct consequence of the Main Theorem is the following, which may
prove useful in the study of calculi with explicit substitutions.

Theorem 11. MELL pure proof nets, with a and p equivalences together with n and
total p reduction is CR∼.

References

1. Girard, J.Y.: Linear logic. Th. Comp. Sc. 50 (1987) 1–102
2. Ehrhard, T.: Finiteness spaces. Math. Structures Comput. Sci. 15(4) (2005) 615–646
3. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2)

(2006) 166–195
4. Ehrhard, T., Laurent, O.: Interpreting a finitary pi-calculus in differential interaction

nets. In Caires, L., Vasconcelos, V.T., eds.: CONCUR. Volume 4703 of Lecture Notes
in Computer Science., Springer (2007) 333–348

5. Lafont, Y.: Interaction nets. In: POPL ’90, New York, NY, USA, ACM (1990) 95–108
6. Tranquilli, P.: Intuitionistic differential nets and lambda calculus. To appear on Theor.

Comput. Sci. (2008)
7. Regnier, L.: Lambda-Calcul et Réseaux. Thèse de doctorat, Université Paris 7 (1992)
8. Di Cosmo, R., Guerrini, S.: Strong normalization of proof nets modulo structural

congruences. Lecture Notes in Comput. Sci. 1631 (1999) 75–89
9. Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. Math.

Structures Comput. Sci. 13(3) (June 2003) 409–450
10. Pagani, M., Tortora de Falco, L.: Strong normalization property for second order

linear logic. To appear on Theor. Comput. Sci. (2008)
11. Terese: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press (2003)
12. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical

Logic 28 (1989) 181–203
13. Vaux, L.: λ-calcul différentiel et logique classique : interactions calculatoires. Thèse

de doctorat, Université de la Méditerranée (2007)
14. Di Cosmo, R., Kesner, D.: Strong normalization of explicit substitutions via cut

elimination in proof nets. In: LICS, IEEE Computer Society (1997) 35
15. Danos, V.: La Logique Linéaire appliquée à l’étude de divers processus de normali-

sation (principalement du λ-calcul). Thèse de doctorat, Université Paris 7 (1990)
16. Tranquilli, P.: Nets between determinism and nondeterminism. Ph.D. thesis, Uni-

versità Roma Tre/Université Paris Diderot (Paris 7) (April 2009)

15 In fact, even the confluence modulo property does not hold, though probably there is
confluence for ∼→∼.

	Confluence of Pure Differential Nets with Promotion
	Paolo Tranquilli
	Introduction
	Rewriting Theory Modulo Equivalence

	The System
	Statics
	Correctness criterion.

	Dynamics
	Equivalences and Canonical Reductions

	The Finite Development Theorem
	Marking New Cuts
	Measuring Exponential Reduction
	Exponential paths.
	Replacement and modularity lemmas.

	Proving Confluence
	A conclusion: the case for MELL.

	References

