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Motivation

Why am I here? Well, mainly I wanted to know more about
what I will show you, and what better way than this? So, please,
bear with me, it won’t take long... I hope!
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First things first: what does operational semantic
mean?

Operational semantic is a cool and fancy name for what
describes how a program written in some language runs.
Functional programming language, λ-calculus at the core:

variables: x
application of a function to an argument: M N
definition of a function by abstraction of a variable: λx .M
+ constants + types
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Operational Semantics Means...

... giving rules for the evaluation of terms.
Interaction between abstraction and application, involving
substitution:

λx .M N B M[x := N]

Constants have their rules also, for example:

ifP Q R B

{
Q if P B true

R if P B false
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Denotational semantic means instead...

... capturing (or trying to do so) the essence of a program,
regardless of its evaluation.
This is done by interpreting programs as true functions (or
rather morphisms) between mathematical structures (or
rather objects of a category) which interpret the types.
This interpretation is usually denoted by J . K.
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Set-theoretic partial functions

Types as sets: JoK := { tt, ff } =: Bool,
Jσ → τK := JτK ⇀ JσK. Partiality sits there for handling
divergence.
Programs are interpreted with their extensional meaning,
for JifK ∈ Bool ⇀ (Bool ⇀ (Bool ⇀ Bool)) as an example:

JifK(tt)(x)(y) := x
JifK(ff)(x)(y) := y

Way too many functions: the interpretations get drowned in the
sea of all the set theoretical functions!
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Terms themselves

We can formally define a category in which objects are
types τ and morphisms M : σ → τ are evaluated terms M
of type σ → τ .
Types are interpreted as themselves, terms as their
evaluation.

Way too uninformative: the interpretation does not say anything
more than the syntax!

Paolo Tranquilli Denoting computation



Motivation
Introducing Denotational Semantics

Orders
Events

Conclusion

What Does Denotational Semantic Mean?
Trivial examples
Basic things to know

Terms themselves

We can formally define a category in which objects are
types τ and morphisms M : σ → τ are evaluated terms M
of type σ → τ .
Types are interpreted as themselves, terms as their
evaluation.

Way too uninformative: the interpretation does not say anything
more than the syntax!

Paolo Tranquilli Denoting computation



Motivation
Introducing Denotational Semantics

Orders
Events

Conclusion

What Does Denotational Semantic Mean?
Trivial examples
Basic things to know

Outline
1 Motivation
2 Introducing Denotational Semantics

What Does Denotational Semantic Mean?
Trivial examples
Basic things to know

3 Orders
Scott domains
dI-domains

4 Events
Event structures
Coherences
Hypercoherences

5 Conclusion

Paolo Tranquilli Denoting computation



Motivation
Introducing Denotational Semantics

Orders
Events

Conclusion

What Does Denotational Semantic Mean?
Trivial examples
Basic things to know

From Operational to Denotational

Operational semantic
J . K−→ Denotational semantic

types τ −→ objects JτK
terms M : σ → τ −→ morphisms JMK : JσK → JτK
reduction M B N −→ equality JMK = JNK

dynamic −→ static
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CCC

In order to interpret λ-calculus we must necessarily be able to
handle function spaces inside the category. This amounts to
using a cartesian closed category, ccc in short.

cartesian for A, B we have a product A× B, so that we have
(a natural transformation):

f : P → A, g : P → B ∼7−→ 〈f , g〉 : P → A× B

and the void product: a terminal object 1, neutral
up to isomorphism for ×.

closed for A, B we have a function space A ⇒ B, so that
we have (a natural transformation):

f : A× B → C ∼7−→ Λ(f ) : A → B ⇒ C
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CCC

In particular:
arrows A → B of the category are in correspondance with
the points 1 → A ⇒ B of the object A ⇒ B.
we have a morphism ev = Λ−1(idA⇒B) : (A ⇒ B)× A → B
which represents internally the application of a function to
a point.
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What Do We Get?

Quoting from the back of Domains and Lambda-Calculi by
Amadio and Curien:

The main goals are to provide formal tools to assess
the meaning of programming constructs [...] and to
prove properties about programs, such as whether
they terminate, or whether their result is a solution of
the problem they are supposed to solve.
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A good idea!

Dana Scott’s idea is to use a refined mathematical concept:
Types are interpreted as topological spaces, with a
spatial flavour to the concept of information.
Programs are interpreted as continuous functions, with
computation as some kind of well-behaved flow of
information.

However ....
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A good idea!

Dana Scott’s idea is to use a refined mathematical concept:
Types are interpreted as topological spaces, with a
spatial flavour to the concept of information.
Programs are interpreted as continuous functions, with
computation as some kind of well-behaved flow of
information.

However topological spaces behave terribly with function
spaces, one needs many constraints!
Anyway usually domains are presented as orders.
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A Scott Domain Is...

... a partially ordered set (D,v).

Points of D (states) represent amounts of information.
x v y represents that y contains all the information in x .
Supremum and infimum of X (if they exist) are noted by⊔

X and
d

X .
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A Scott Domain Is...

... a poset (D,v).

Points of D (states) represent amounts of information.
x v y represents that y contains all the information in x .
Supremum and infimum of X (if they exist) are noted by⊔

X and
d

X .
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A Scott Domain Is...

... a directed complete poset (D,v).

X 6= ∅ directed if ∀x , y ∈ X .∃z ∈ X .x v z & y v z.
D has suprema for all of its directed subsets.
Directed sets represent arbitrary approximations of
possibly infinite information. Here we say D has the targets
of such approximations.
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A Scott Domain Is...

... a bounded complete dcpo (D,v).

X 6= ∅ bounded if ∃z ∈ D.∀x ∈ X .x v z.
D has suprema for all of its bounded subsets.
Bounded sets represent consistent information which they
can be completed to a common state. Here we say
compatible information has a unique way of being
extended.
In particular we have a bottom element ⊥ =

⊔
∅ which

represents no information (as for definitions this fact turns
the dcpo into a cpo).
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A Scott Domain Is...

... an algebraic bcpo (D,v).

The compact elements of D are
K(D) := {d ∈ D | ∀X ⊆dir D.(d v

⊔
X ⇒ ∃x ∈ D.d v x) }

Compact elements are primitive in some sense: they
cannot be in an approximation

⊔
X without already being

present in some approximant.
Algebraicity is the condition:
∀d ∈ D.d =

⊔
{ k ∈ K(D) | k v d }.

Here we say that compacts are really primitive: every
element is approximable (representable) by them.
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That’s It!

A Scott Domain is an algebraic bcpo.

Not such a long definition, don’t you think?
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Example: Flat Domains

S set: S⊥ is (S + {⊥},v) where x v y ⇐⇒ x = ⊥. These
are flat domains.
They are used to represent atomic data, know all or
nothing. For example

Bool⊥ =
tt

?? ff
��

⊥
N⊥ =

0 1 2

⊥
· · ·
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Morphisms of Scott Domains

f : D → E is continuous iff:
it is monotonic: x v y =⇒ f (x) v f (y);
it preserves directed suprema: ∀X ⊆dir D.f (

⊔
X ) =

⊔
f (X ).

What we are saying is that in order to process infinite
information we can stick to the approximations of it and indeed
get approximations of the output.
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Scott Domains Are a CCC - Product

The product is the set-theoretic one with componentwise order,
the unit is {⊥}. So for example Bool⊥ × Bool⊥ is:

(tt, tt)

(tt, ff) (ff, ff) (ff, tt)

(tt,⊥) (⊥, ff) (ff,⊥) (⊥, tt)

(⊥,⊥)
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Scott Domains Are a CCC - Function Space

We have to define the order on the set of continuous functions,
but the pointwise one turns out to be good.

f vc g ⇐⇒ ∀x .f (x) v g(x)
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Ok, So What’s the Problem?

We have more functions than we would like to have.
Most notably the parallel or:

por(tt, x) := tt

por(x , tt) := tt

por(ff, ff) := ff

por(x , y) := ⊥ otherwise

por is Scott continuous but cannot be computed sequentially!
How can I capture sequentiality?
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From Continuity to Stability

Berry’s idea: f : D → E is stable iff:
it is continuous;
if X is bounded then f (

d
X ) =

d
f (X ).

Given partial info about an output, there exist a minimum info
read from input that produces that partial info, in particular that
output info cannot come from various input sources.
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por Is Not Stable

(tt,⊥) and (⊥, tt) are bounded by (tt, tt). But

por((tt,⊥) t (⊥, tt)) = por(⊥,⊥) = ⊥

por(tt,⊥) t por(⊥, tt) = tt t tt = tt

There is no minimum info taken from input in order to produce
output tt, as there are two possible ways of gaining that
information.
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Oops...

With pointwise ordering of functions ev fails to be stable. No
hope of having a CCC!
Imposing the stability of ev one gets a restriction of the
ordering, the stable one:

f vs g ⇐⇒ ∀x v y .f (x) = f (y) t g(x)

Quite awkward if you ask me...
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Traces

In fact a more natural definition comes from traces. A stable
function is completely determined by

trace(f ) := { (d , e) ∈ K(D)×K(E) | e v f (d) with d minimal }

Then we remarkably have

f vs g ⇐⇒ trace(f ) ⊆ trace(g)

So vs is a good notion of “less information than”. Unfortunately
(D ⇒s E ,vs) is not a Scott domain in general...
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Ladies and Gentlemen, Meet the dI-Domains

dI-domains are Scott domains in which:
d) t distributes over t: if ∃b t c then

a t (b t c) = (a t b) t (a t c);
I) all compacts have a finite number of states under them:

compacts do not contain infinite pieces of information.
dI-domains and stable functions are a CCC with the usual
product.

Hmm, it’s becoming more complicated... but dI-domains are
event structures!
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Let’s Try and Keep it Simple!

An event structure is E = (|E |, Con,`) where:
|E | is a set: the events.
∅ 6= Con ⊆ Pfin(E): consistency, s.t.
Y ⊆ X ∈ Con =⇒ Y ∈ Con.
`⊆ Con × E : the enabling relation

The states of E , noted D(E), are subsets x of E
consistent, i.e. ∀X ⊆fin x .X ∈ Con, and
safe, i.e. each e ∈ x has a history of enablings all inside x
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Stable Event Structures

An event structure is stable if every event in every state has a
unique enabling in that state.

∀x ∈ D(E), e ∈ x , X , Y ⊆fin x .(X ` e & Y ` e =⇒ X = Y )

D(E) for E stable event structure are exactly the
dI-domains.
Traces on event structures get a nicer form:

trace(f ) = { (x , e) ∈ Dfin(E)×|F | | e ∈ f (x) with x minimal }

Let’s try to simplify more, even restricting our scope... what if all
events are initial, i.e. `= {∅} × |E |}?
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Simpler!

A qualitative event structure is E = (|E |, Con) where:
|E | is a set: the events.
∅ 6= Con ⊆ Pfin(E): consistency, s.t.
Y ⊆ X ∈ Con =⇒ Y ∈ Con.

The states of E , noted D(E), are subsets x of E
consistent, i.e. ∀X ⊆fin x .X ∈ Con

Safeness of states and stability are for free!

D(E) for E qualitative event structure are exactly the qualitative
domains.

Good. Can we simplify even more? What if Con is generated
by a binary relation?
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Simpler! Simpler!

A coherence space is E = (|E |,¨) where:
|E | is a set: the web.
¨ a binary symmetric reflexive relation: coherence.

The states of E , noted D(E), are subsets x of E
consistent, i.e. ∀e, f ∈ x : e ¨ f

Well, quite simple: E is a reflexive undirected graph, and D(E)
are its cliques.

Let’s take a look at the product and function spaces.
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Products, very briefly

|E × F | = |E |+ |F | = {0} × |E | ∪ {1} × |F |;
(i , a) ¨ (j , b) iff i = j =⇒ a ¨ b in the relative space.
In fact D(E × F ) = D(E)× D(F ).
1 is the empty web.
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Function Spaces

We have a coherence space in which states are exactly
the traces of stable functions;
|E ⇒s F | = Dfin(E)× |F |;
(x , f ) ¨ (y , g) iff
x ∪ y ∈ D(E) =⇒ (f ¨ g & (f = g =⇒ x = y))

Mmm, seems like two operations...
Exponential |!E | = Dfin(E) with x ¨ y iff x ∪ y ∈ D(E);
Linear arrow |E ( F | = |E | × |F | with (d , f ) ¨ (e, g) iff
d ¨ e =⇒ (f ¨ g & (f = g =⇒ d = e)).
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Function Spaces and a Glimpse of Linear Logic

We have a coherence space in which states are exactly
the traces of stable functions;
|E ⇒s F | = Dfin(E)× |F |;
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Problems again?

There is much more to coherence spaces, but there is also a
problem, shared by all models with stable functions.
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Problems again? Yes, the Gustave function

There is much more to coherence spaces, but there is also a
problem, shared by all models with stable functions.

The Gustave function G
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The Gustave Function

A vicious one, the Gustave function G is defined by:

G(tt, ff, x) := tt

G(x , tt, ff) := tt

G(ff, x , tt) := tt

G(x , y , z) := ⊥ otherwise

It is stable, because (tt, ff,⊥), (⊥, tt, ff), (ff, tt,⊥) are not
compatible, so we do not check for preservation of minimum.
Like por it is not sequentializable, no first input to look at.
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Getting Rid of the Gustave Function

We want to regard {(tt, ff,⊥), (⊥, tt, ff), (ff, tt,⊥)} as coherent,
while still any two of the triples are incoherent.

We move on to a kind of consistency not downward consistent.
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dIC-Domains and Strongly Stable Functions

dIC-domains: dI-domains D equipped with a
C(D) ⊆ Pfin(D) with some properties.
bounded finite sets of states are in C(D).
f : D → E is strongly stable iff

it is continuous;
∀X ∈ C(D).f (X ) ∈ C(E) & f (

d
X ) =

d
f (X ).

A := {(tt, ff,⊥), (⊥, tt, ff), (ff, tt,⊥)} ∈ C(Bool3⊥), but

G(
l

A) = G(⊥,⊥,⊥) = ⊥ while
l

G(A) =
l
{tt} = tt
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Down again

As for coherence spaces, boil down to qualitative domains with
coherence and then...

A hypercoherence space is E = (|E |, Γ) where:
|E | is a set: the web.
Γ ⊆ Pfin(|E |) is s.t. {e} ∈ Γ: hypercoherence.

The states of E , noted D(E), are subsets x of E
consistent, i.e. ∀X ⊆fin x : X ∈ Γ

Well, almost simple: E is a reflexive undirected hypergraph,
and D(E) are its cliques.
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Products, very briefly

|E × F | = |E |+ |F | = {0} × |E | ∪ {1} × |F |;
X ∈ Γ(E × F ) iff X ∩ |E | = ∅ =⇒ X ∩ |F | ∈ Γ(F ) and
viceversa.
In fact D(E × F ) = D(E)× D(F ).
1 is the empty web.
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Function Spaces and a Glimpse of Linear Logic

We have a coherence space in which states are exactly
the traces of stable functions;
|E ⇒s F | = Dfin(E)× |F |;
(x , f ) ¨ (y , g) iff
x ∪ y ∈ D(E) =⇒ (f ¨ g & (f = g =⇒ x = y))

Mmm, seems like two operations...
Exponential |!E | = Dfin(E) with x ¨ y iff x ∪ y ∈ D(E);
Linear arrow |E ( F | = |E | × |F | with (d , f ) ¨ (e, g) iff
d ¨ e =⇒ (f ¨ g & (f = g =⇒ d = e)).
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Function Spaces and Again a Glimpse of Linear Logic

We have a hypercoherence space in which states are
exactly the traces of strongly stable functions;
|E ⇒s sF | = Dfin(E)× |F |;
Γ(X ) iff ∀u ⊆∗fin |E |.(u C π1(X ) =⇒ u ∈ Γ(E)) implies

(π2(X ) ∈ Γ & (#π2(X ) = 1 =⇒ #π1(X ) = 1))

u C X means ∀e ∈ u.∃v ∈ X .e ∈ v and
∀v ∈ X .∃e ∈ u.e ∈ v .
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Function Spaces and Again a Glimpse of Linear Logic

We have a hypercoherence space in which states are
exactly the traces of strongly stable functions;
|E ⇒s sF | = Dfin(E)× |F |;
Γ(X ) iff ∀u ⊆∗fin |E |.(u C π1(X ) =⇒ u ∈ Γ(E)) implies

(π2(X ) ∈ Γ & (#π2(X ) = 1 =⇒ #π1(X ) = 1))

Mmm, seems again like two operations...
Exponential |!E | = Dfin(E) with X ∈ Γ iff
∀u ⊆∗fin |E |.(u C X =⇒ u ∈ Γ(E);
Linear arrow |E ( F | = |E | × |F | with X ∈ Γ iff

π1(X ) ∈ Γ(E) =⇒
(π2(X ) ∈ Γ(F ) & (#π2(X ) = 1 =⇒ #π1(X ) = 1)). (1)
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Victory!

If Ei , E are flat hypercoherences, a function f :
∏

D(Ei) → D(E)
is sequential iff it is strongly stable.
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At Last!

This slides have turned out to be a kind of (maybe too) fast
tutorial. There is much still to say about denotational semantic.
Anyway my personal interests in them is about:

denoting proofs. Coherence spaces are full complete for
MLL. Hypercoherence and MALL? Not quite the same, but
it should be worked out.
the Gustave function arise in proof theory as particular
structures which do not correspond to sequential proofs.
What other parallelism between the two worlds can be
done?
is there anything more to say about the relations between
(strongly) stable functions and the linear ones which give
rise to a bunch of linear adjoints?
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Au Revoir!

Well, I hope I will be able to speak about these things another
time, and why not, maybe even with answers?
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