A Characterization of Hypercoherent Correctness in MALL

Paolo Tranquilli

Dipartimento di Matematica
Università degli Studi Roma Tre
Preuves, Programmes et Systèmes
Université Denis-Diderot Paris 7

Computer Science Logic 2008-17/09/2008

A Characterization of Hypercoherent Correctness in MALL*

Paolo Tranquilli

Dipartimento di Matematica
Università degli Studi Roma Tre
Preuves, Programmes et Systèmes
Université Denis-Diderot Paris 7

Computer Science Logic 2008-17/09/2008

Outline

(1) Multiplicative LL
(2) Multiplicative Additive LL
(3) Hypercoherence

4 The characterization

Outline

(2) Multiplicative Additive LL

(3) Hypercoherence
4. The characterization

The framework

- Linear Logic (Girard, 1987) has always shown a persistent tendency to link with computer science. Its very roots are in the Curry-Howard isomorphism.
- Denotational semantics: giving mathematical invariants for the execution of programs (and cut-elimination of proofs).
- Proof-nets: the desequentialized representation of proofs of LL.
- We here work with the truly linear fragment of LL (no structural rules, i.e. no erasing or duplicating).

MLL is robust

- The multiplicative fragment (without units) works like a charm.
- There is a robust pairing between syntax - proof-nets and its main denotational semantics - coherent spaces.
- Coherent spaces: sets with a symmetric reflexive relation, the coherence (i.e. graphs). The states of the spaces are its cliques.
- Coherent spaces validate the MIX rule, which correspond to unconnected proof-nets.
- From now on, we will regard only cut-free proofs and structures (typical of semantical investigations).

The picture

Proof-nets, corresponding to sequential proofs

The picture

$\mathbb{I} \cdot \mathbb{\|}$

Sequents as syntactical forests

$$
\Gamma=A 8 B, \quad\left(B^{\perp} \otimes C\right) 8\left(C^{\perp} 8 A^{\perp}\right)
$$

Sequents as syntactical forests

Proof-nets as linkings

Proof-nets as linkings

Experiments

$$
a \in|\llbracket A \mathbb{\|}|, \quad b \in|\llbracket B \mathbb{\|}|, \quad c \in|\llbracket C \mathbb{C}| \quad \Rightarrow \quad e(\pi) \in \mid \llbracket\ulcorner\rrbracket \mid
$$

$\llbracket \pi \rrbracket:=\{e(\pi) \mid e$ experiment on $\pi\}$

Experiments

the choice of a point of the web for each axiom

$$
\begin{gathered}
e(\pi)=((a, b), \quad((b, c),(c, a))) \\
a \in|\llbracket A \rrbracket|, \quad b \in|\llbracket B \rrbracket|, \quad c \in|\llbracket C \mathbb{C}| \Rightarrow e(\pi) \in \mid \llbracket \Gamma \|
\end{gathered}
$$

$\llbracket \pi \rrbracket:=\{e(\pi) \mid e$ experiment on $\pi\}$

Experiments

the choice of a point of the web for each axiom

$$
e(\pi)=
$$

$$
a \in|\llbracket A \mathbb{\|}|, \quad b \in|\llbracket B \rrbracket|, \quad c \in|\llbracket C \mathbb{C}| \Rightarrow \quad e(\pi) \in|\llbracket \sqcap \rrbracket|
$$

$\llbracket \pi \rrbracket:=\{e(\pi) \mid e$ experiment on $\pi\}$

Experiments

the choice of a point of the web for each axiom

$$
a \in|\llbracket A \mathbb{\|}|, \quad b \in|\llbracket B \mathbb{\|}|, \quad c \in|\llbracket C \mathbb{L}| \Rightarrow e(\pi) \in \mid \llbracket\ulcorner\|
$$

$\llbracket \pi \rrbracket:=\{e(\pi) \mid e$ experiment on $\pi\}$

Experiments

which gives a result, collected at the conclusions

$\llbracket \pi \rrbracket:=\{e(\pi) \mid e$ experiment on $\pi\}$

Experiments

The picture

$\llbracket \cdot \rrbracket$

The picture

$\mathbb{\|} \cdot \mathbb{}$

The picture

The importance of allowing mistakes

- Proof correctness is established via a "geometric" sequentializability criterion (ex: long trip, Girard 1987, or switching acyclicity and connectedness, Danos \& Regnier 1989).
- "Making mistakes" \Longrightarrow richer syntax, better understanding of what "doing right" really means.
- It also allows to consider different ways of "doing right".

The picture

The picture

semantically correct PSs

cliques

Semantic correctness

As proof-structures $\stackrel{\mathbb{I} \cdot \mathbb{I}}{\longmapsto}$ sets, it makes sense to define: π semantically correct $\Longleftrightarrow \forall \llbracket \cdot \rrbracket: \llbracket \pi \rrbracket$ is a clique.

The fact that proof-nets $\stackrel{\mathbb{I} \cdot \mathbb{I}}{\longrightarrow}$ cliques is reworded as
Theorem (Girard 1987)
π correct $\Rightarrow \llbracket \pi \rrbracket$ semantically correct.
In MLL also the reverse hold!
Theorem (Rétoré 1997)
π correct $\Leftarrow \llbracket \tau \rrbracket$ semantically correct

Semantic correctness

As proof-structures $\stackrel{\|\cdot\|}{\longmapsto}$ sets, it makes sense to define: π semantically correct $\Longleftrightarrow \forall \mathbb{\|} \|: \llbracket \pi \rrbracket$ is a clique.

The fact that proof-nets $\stackrel{\mathbb{I} \cdot \mathbb{I}}{\longrightarrow}$ cliques is reworded as

Theorem (Girard 1987)

π correct $\Rightarrow \llbracket \pi \rrbracket$ semantically correct.
In MLL also the reverse hold!

Theorem (Rétoré 1997)

π correct $\Leftarrow \llbracket \pi \rrbracket$ semantically correct.

The picture

semantically correct PSs

cliques

The picture

semantically

 correct PSs
cliques

Outline

(1) Multiplicative LL

(2) Multiplicative Additive LL
(3) Hypercoherence

4 The characterization

Hughes - van Glabbeek's proof-structures

Slices are MLL proof-structures with unary additives

Hughes - van Glabbeek's proof-structures

Slices are MLL proof-structures with unary additives

Hughes - van Glabbeek's proof-structures

Slices are MLL proof-structures with unary additives

Hughes - van Glabbeek's proof-structures

Slices are MLL proof-structures with unary additives

Hughes - van Glabbeek's proof-structures

Slices are MLL proof-structures with unary additives

Hughes - van Glabbeek's proof-structures

Proof structures are sets of slices (or equivalently, linkings.)
and register additive dependancies via jumps

Hughes - van Glabbeek's proof-structures

Proof structures are sets of slices (or equivalently, linkings.) We can superimpose slices. . .

Hughes - van Glabbeek's proof-structures

Proof structures are sets of slices (or equivalently, linkings.) We can superimpose slices. . .
... and register additive dependancies via jumps

Hughes - van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

\&-compatibility and fullness (or resolution)

Every choice on the \&s has a unique $\lambda \in \theta$ agreeing with it
A PS θ is correct (i.e. a PN) iff
MLL correciness
Every $\lambda \in \theta$ is switching acyclic and conncted

Hughes - van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

\&-compatibility and fullness (or resolution)

Every choice on the \&s has a unique $\lambda \in \theta$ agreeing with it
A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted
\square
Toggling
$\forall \wedge \subseteq \theta: \exists w \in \& 2\left(\mathcal{G}_{\wedge}\right)$ out of all switching cycles in \mathcal{G}_{\wedge}

Hughes - van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

\&-compatibility and fullness (or resolution)

Every choice on the \&s has a unique $\lambda \in \theta$ agreeing with it
A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted
\square
Toggling
$\forall \wedge \subseteq \theta: \exists w \in \& 2\left(\mathcal{G}_{\wedge}\right)$ out of all switching cycles in \mathcal{G}_{\wedge}

Hughes - van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

\&-compatibility and fullness (or resolution)

Every choice on the \&s has a unique $\lambda \in \theta$ agreeing with it
A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic

Without connectedness PNs sequentialize in MALL+MIX

Hughes - van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

\&-compatibility and fullness (or resolution)

Every choice on the \&s has a unique $\lambda \in \theta$ agreeing with it
A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted

Toggling

$\forall \wedge \subseteq \theta: \exists w \in \& 2\left(\mathcal{G}_{\wedge}\right)$ out of all switching cycles in \mathcal{G}_{\wedge}

Hughes - van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

\&-compatibility and fullness (or resolution)

Every choice on the \&s has a unique $\lambda \in \theta$ agreeing with it
A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted

Toggling

$\forall \wedge \subseteq \theta: \forall S \neq \emptyset$ union of switching cycles in \mathcal{G}_{Λ} :

$$
\exists w \in \& 2\left(\mathcal{G}_{\wedge}\right): w \notin S
$$

Hughes - van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

\&-compatibility and fullness (or resolution)

Every choice on the \&s has a unique $\lambda \in \theta$ agreeing with it
A PS θ is correct (i.e. a PN) iff

Toggling

$\forall \wedge \subseteq \theta: \forall S \neq \emptyset$ union of switching cycles in \mathcal{G}_{Λ} :
$\exists w \in \& 2\left(\mathcal{G}_{\wedge}\right): w \notin S$

Experiments

Multiplicative experiments extend to slices and proof-structures

Experiments

Multiplicative experiments extend to slices and proof-structures

Experiments

Multiplicative experiments extend to slices and proof-structures

Experiments

Multiplicative experiments extend to slices and proof-structures

$$
\llbracket \theta \rrbracket:=\bigcup_{\lambda \in \Theta} \llbracket \lambda \rrbracket
$$

Additive proof-structure and coherent spaces

- Though θ correct $\Rightarrow \llbracket \theta \rrbracket$ is a clique, the inverse is far from true.
- The most famous counterexample is the Gustave proof-structure.
- It is the counterpart of the unsequentializable function in the stable model of PCF.

$$
\begin{aligned}
& G(\mathrm{t}, \mathrm{f}, \perp):=\mathrm{t} \\
& G(\mathrm{f}, \perp, \mathrm{t}):=\mathrm{t} \\
& G(\perp, \mathrm{t}, \mathrm{f}):=\mathrm{t}
\end{aligned}
$$

The Gustave proof-structure

By taking \wedge and superposing it we get a cycle
But $[\gamma]$ is a clique (coherence checked two slices at a time)

The Gustave proof-structure

By taking \wedge and superposing it we get a
But $[\gamma \rrbracket$ is a clique (coherence checked two slices at a time)

The Gustave proof-structure

By taking \wedge and superposing it we get a cycle... But $\llbracket \gamma \rrbracket$ is a clique (coherence checked two slices at a time).

Outline

1 Multiplicative LL

2 Multiplicative Additive LL
(3) Hypercoherence

4 The characterization

Hypercoherent spaces

- Coherent spaces: $(|X|, \frown)$, with $\subseteq \subseteq|X| \times|X|$ a binary relation
- Hypercoherent spaces (Ehrhard 1995): $(|X|, \frown)$ with $\simeq \subseteq \mathcal{P}_{\text {fin }}(|X|)$ a predicate on finite sets

- The strongly stable model of hypercoherent spaces (Bucciarelli \& Ehrhard 1991) rejects Guastave's function, and correspond to sequentializable functions, maybe it can help with MALL?

Hypercoherent spaces

- Coherent spaces:
$(|X|, \frown)$, with $\subseteq \subseteq|X| \times|X|$ a binary relation
- Hypercoherent spaces (Ehrhard 1995): $(|X|, \frown)$ with $\simeq \subseteq \mathcal{P}_{\text {fin }}(|X|)$ a predicate on finite sets
- Additives:

- The strongly stable model of hypercoherent spaces (Bucciarelli \& Ehrhard 1991) rejects Guastave's function, and correspond to sequentializable functions, maybe it can help with MALL?

Hypercoherent semantic correctness

Again we can define
θ semantically correct $\Longleftrightarrow \forall \llbracket \cdot \rrbracket: \llbracket \theta \rrbracket$ is a hyperclique.
and again

Theorem

θ correct $\Rightarrow \llbracket \theta \rrbracket$ semantically correct.

In MALL the reverse does not hold! (for HvG PS: Pagani 2006)

Theorem
π incorrect $=\pi$ semantically incorrect.

Hypercoherent semantic correctness

Again we can define
θ semantically correct $\Longleftrightarrow \forall \llbracket \cdot \rrbracket: \llbracket \theta \rrbracket$ is a hyperclique. and again

Theorem

θ correct $\Rightarrow \llbracket \theta \rrbracket$ semantically correct.
We give a direct proof of this, rather than passing via sequentialization, more on this later

Hypercoherent semantic correctness

Again we can define
θ semantically correct $\Longleftrightarrow \forall \llbracket \cdot \rrbracket: \llbracket \theta \rrbracket$ is a hyperclique.
and again

Theorem

θ correct $\Rightarrow \llbracket \theta \rrbracket$ semantically correct.
In MALL the reverse does not hold! (for HvG PS: Pagani 2006)

Theorem ("Rétoré")

π incorrect $\Rightarrow\|\pi\|$ semantically incorrect.

The counterexample

Taking δ, superimposing, adding jumps, we get a (bad) cycle But $\llbracket \delta \rrbracket$ is a hyperclique!

The counterexample

Taking δ, superimposing, adding jumps, we get a (bad) cycle But $\llbracket 8 \rrbracket$ is a hyperclique!

The counterexample

Taking δ, superimposing, adding jumps, we get a (bad) cycle.

The counterexample

Taking δ, superimposing, adding jumps, we get a (bad) cycle.
But $\llbracket \delta \rrbracket$ is a hyperclique!

The counterexample

Taking δ, superimposing, adding jumps, we get a (bad) cycle.
But $\llbracket \delta \rrbracket$ is a hyperclique!

The conjecture and its factorization

Conjecture (Pagani 2006)

For θ proof-structure with every slice switching connected $\llbracket \theta \rrbracket$ semantically correct $\Rightarrow \theta$ correct

> We have "factorized" the conjecture by finding the geometric criterion for semantic correctness, that we call hypercorrectness (definition in the next slides).

Theorem

θ hypercorrect $\Leftrightarrow \theta$ semantically correct.

The conjecture and its factorization

Conjecture（Pagani 2006）

For θ proof－structure with every slice switching connected【日】 semantically correct $\Rightarrow \theta$ correct

We have＂factorized＂the conjecture by finding the geometric criterion for semantic correctness，that we call hypercorrectness（definition in the next slides）．

Theorem

θ hypercorrect $\Leftrightarrow \theta$ semantically correct．

The conjecture and its factorization

Conjecture (Pagani-Tranquilli)

For θ proof-structure with every slice switching connected $\llbracket \theta \rrbracket$ hypercorrect $\Rightarrow \theta$ correct

We have "factorized" the conjequre by finding the geometric
criterion for sem So now we can try to prove it all inside graphs

Theorem

θ hvpercorrect $\Leftrightarrow \theta$ semantically correct.

The picture

semantically correct PSs

cliques

The picture

hypercorrect PSs

Outline

(1) Multiplicative LL

(2) Multiplicative Additive LL
(3) Hypercoherence

4 The characterization

Orientating the cycles

- The idea is consider switching oriented paths.
- Other works (Abramski \& Mèllies 1999, Blute, Hamano \& Scott 2005) suggest semantics "sees" cycles with jumps oriented in the same sense.
- For a technical reason we change the definition of jumps.

where $\lambda_{1}, \lambda_{2} \in \Lambda, c$ is $a \operatorname{or}$ an atomic leaf (an additive contraction), and w is the only with binary for λ_{1} and λ_{2}.

\&-oriented paths

- An oriented switching path Φ is \&-oriented if binary \&s in it are traversed from premise to conclusion (in particular all jumps are traversed in the same direction)
- Φ and ψ oriented switching paths on \mathcal{G}_{Λ} are compatible if every time they traverse the same edge, they do so in the same direction. A union of paths is compatible if they are pairwise so.

\&-oriented paths

- An oriented switching path Φ is \&-oriented if binary \&s in it are traversed from premise to conclusion (in particular all jumps are traversed in the same direction)
- Φ and ψ oriented s vitching paths on \mathcal{G}_{\wedge} are $\begin{array}{ll}\text { cone } \\ \text { sa } \\ \text { A the paper there is a dual } & \text { condition on contractions, which } \\ \text { however can be dropped } & \text { e }\end{array}$

The criterion

A proof-structure θ is a proof-net if

Toggling

$\forall \wedge \subseteq \theta: \forall S \neq \emptyset$ union of switching cycles in \mathcal{G}_{\wedge} $\exists w \in \& 2\left(\mathcal{G}_{\Lambda}\right): w \notin S$

The criterion

A proof-structure θ is a proof-net if

Hypertoggling
$\forall \wedge \subseteq \theta: \forall S \neq \emptyset$ compatible union of sw \&-oriented cycles in \mathcal{G}_{\wedge} $\exists w \in \& 2\left(\mathcal{G}_{\Lambda}\right): w \notin S$

The criterion

A proof-structure θ is hypercorrect if
Hypertoggling
$\forall \wedge \subseteq \theta: \forall S \neq \emptyset$ compatible union of sw \&-oriented cycles in \mathcal{G}_{\wedge} $\exists w \in \& 2\left(\mathcal{G}_{\Lambda}\right): w \notin S$

The Gustave PS revisited

The Gustave PS revisited

The Gustave PS revisited

The counterexample revisited

The counterexample δ
(only way for a cycle to go down a \& is going up the other)

The counterexample revisited

The counterexample δ
(only way for a cycle to go down a \& is going up the other)

The counterexample revisited

The counterexample δ is hypercorrect!
(only way for a cycle to go down a \& is going up the other)

Future work

(1) Is the second part of the conjecture true?

For θ sw. connected proof structure, θ hypercorrect iff correct?
There is evidence (AM 1999, BHS 2005)
(2) Employ the new jumps for a more general syntax (no η-expansion, exponentials)
(3) Has the criterion significance for cut reduction?

Probably, semantics usually lift to good properties. A very
good recent example is Pagani 2006 and his current work
on differential interaction nets (visible acyclicity
corresponding to fintary relations)

Future work

(1) Is the second part of the conjecture true?

For θ sw. connected proof structure, θ hypercorrect iff correct?
There is evidence (AM 1999, BHS 2005)
(2) Employ the new jumps for a more general syntax (no η-expansion, exponentials)
(3) Has the criterion significance for cut reduction?

Probably, semantics usually lift to good properties. A very
good recent example is Pagani 2006 and his current work
on differential interaction nets (visible acyclicity
corresponding to fintary relations)

Future work

(1) Is the second part of the conjecture true?

For θ sw. connected proof structure, θ hypercorrect iff correct?
There is evidence (AM 1999, BHS 2005)
(2) Employ the new jumps for a more general syntax (no η-expansion, exponentials)
(3) Has the criterion significance for cut reduction?

Probably, semantics usually lift to good properties. A very
good recent example is Pagani 2006 and his current work
on differential interaction nets (visible acyclicity
corresponding to fintary relations)

Future work

(1) Is the second part of the conjecture true?

For θ sw. connected proof structure, θ hypercorrect iff correct?
There is evidence (AM 1999, BHS 2005)
(2) Employ the new jumps for a more general syntax (no η-expansion, exponentials)
(3) Has the criterion significance for cut reduction?

Probably, semantics usually lift to good properties. A very
good recent example is Pagani 2006 and his current work
on differential interaction nets (visible acyclicity
corresponding to fintary relations)

Future work

(1) Is the second part of the conjecture true?

For θ sw. connected proof structure, θ hypercorrect iff correct?
There is evidence (AM 1999, BHS 2005)
(2) Employ the new jumps for a more general syntax (no η-expansion, exponentials)
(3) Has the criterion significance for cut reduction? Probably, semantics usually lift to good properties. A very good recent example is Pagani 2006 and his current work on differential interaction nets (visible acyclicity corresponding to fintary relations)

Thank you．

Eర

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. . .
one builds a path.
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
arriving to a strict coherent one.

Correct implies coherent

- Given e_{1}, e_{2} with a strict incoherent conclusion. ..
- ... one builds a path...
- ... arriving to a strict coherent one.

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles.
it can be "opened", and $\llbracket \cdot \rrbracket$ and e_{1}, e_{2} devised. so that "closing" again, $e_{1}(\pi) \smile e_{2}(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
it can be "opened", and $\llbracket \cdot \rrbracket$ and e_{1}, e_{2} devised.
so that "closing" again, $e_{1}(\pi) \smile e_{2}(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and $\mathbb{I} \cdot \rrbracket$ and e_{1}, e_{2} devised. so that "closing" again, $e_{1}(\pi) \smile e_{2}(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and $\llbracket \cdot \rrbracket$ and e_{1}, e_{2} devised. . .
so that "closing" again, $e_{1}(\pi) \smile e_{2}(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and $\llbracket \cdot \rrbracket$ and e_{1}, e_{2} devised. . .
so that "closing" again, $e_{1}(\pi) \smile e_{2}(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and $\llbracket \cdot \rrbracket$ and e_{1}, e_{2} devised. . .
- ...so that "closing" again, $e_{1}(\pi) \smile e_{2}(\pi)$

