Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

A Characterization of Hypercoherent Correctness in MALL

Paolo Tranquilli

Dipartimento di Matematica Università degli Studi Roma Tre

Preuves, Programmes et Systèmes Université Denis-Diderot Paris 7

Computer Science Logic 2008 - 17/09/2008

Multiplicative Additive LL

Hypercoherence

The characterization

A Characterization of Hypercoherent Correctness in MALL^{*}

Paolo Tranquilli

Dipartimento di Matematica Università degli Studi Roma Tre

Preuves, Programmes et Systèmes Université Denis-Diderot Paris 7

Computer Science Logic 2008 - 17/09/2008

Multiplicative Additive LL

Hypercoherence

Multiplicative Additive LL

Hypercoherence

The characterization

Outline

2 Multiplicative Additive LL

3 Hypercoherence

The characterization

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < の < の

Multiplicative	LL
•00000000	

Multiplicative Additive LL

Hypercoherence

The characterization

The framework

- Linear Logic (Girard, 1987) has always shown a persistent tendency to link with computer science. Its very roots are in the Curry-Howard isomorphism.
- Denotational semantics: giving mathematical invariants for the execution of programs (and cut-elimination of proofs).
- Proof-nets: the desequentialized representation of proofs of LL.
- We here work with the truly linear fragment of LL (no structural rules, i.e. no erasing or duplicating).

Multiplicative LL	
00000000	

MLL is robust

- The multiplicative fragment (without units) works like a charm.
- There is a robust pairing between syntax proof-nets and its main denotational semantics coherent spaces.
- Coherent spaces: sets with a symmetric reflexive relation, the coherence (i.e. graphs). The states of the spaces are its cliques.
- Coherent spaces validate the MIX rule, which correspond to unconnected proof-nets.
- From now on, we will regard only cut-free proofs and structures (typical of semantical investigations).

Multiplicative LL	Multiplicative Additive L	L	Hypercoherence		he characterization
The picture					
	F	Proof-nets,	correspondi	ng to	

root-nets, corresponding to sequential proofs

Multiplicative LL oo●oooooo	Multiplicative Additive LL	Hypercoherence	The characterization
The picture			

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Multiplicative Additive LL

Hypercoherence

The characterization

Sequents as syntactical forests

Multiplicative Additive LL

Hypercoherence

The characterization

Sequents as syntactical forests

Multiplicative Additive LL

Hypercoherence

The characterization

Proof-nets as linkings

Multiplicative Additive LL

Hypercoherence

The characterization

Proof-nets as linkings

$\llbracket \pi \rrbracket := \{ e(\pi) \mid e \text{ experiment on } \pi \}$

$e(\pi) = ((a, b), ((b, c), (c, a)))$ $a \in |\llbracket A \rrbracket|, \quad b \in |\llbracket B \rrbracket|, \quad c \in |\llbracket C \rrbracket| \implies e(\pi) \in |\llbracket \Gamma \rrbracket|$

Experiments

Multiplicative LL

Multiplicative Additive LL

Hypercoherence

▲ロト 4個ト 4回ト 4回ト 回目 のQの

$\llbracket \pi \rrbracket := \{ e(\pi) \mid e \text{ experiment on } \pi \}$

$e(\pi) = ((a, b), ((b, c), (c, a)))$ $a \in [[A]], b \in [[B]], c \in [[C]] \implies e(\pi) \in [[\Gamma]]$

Multiplicative LL

Experiments

Multiplicative Additive LL

Hypercoherence

а b b а the choice of a R point of the web for each axiom

Experiments

Multiplicative LL

000000000

Multiplicative Additive LL

Hypercoherence

Multiplicative Additive LL

Hypercoherence

The characterization

Experiments

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Experiments

Multiplicative LL	
000000000	

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Experiments

Multiplicative LL	Multiplicative Additive LL	Hypercoherence	The characterization
The picture			

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Multiplicative LL oooooooo	Multiplicative Additive LL	Hypercoherence	The characterization
The picture			

Multiplicative LL	Multiplicative Additive LL	Hypercoherence	The characterization
The picture			

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Multiplicative Additive LL

Hypercoherence

The characterization

The importance of allowing mistakes

- Proof correctness is established via a "geometric" sequentializability criterion (ex: long trip, Girard 1987, or switching acyclicity and connectedness, Danos & Regnier 1989).
- Making mistakes" ⇒ richer syntax, better understanding of what "doing right" really means.
- It also allows to consider different ways of "doing right".

Multiplicative LL ooooooo●oo	Multiplicative Additive LL	Hypercoherence	The characterization
The picture			

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Multiplicative LL oooooooooo	Multiplicative Additive LL	Hypercoherence	The characterization
The picture			

Multiplicative Additive LL

Hypercoherence

The characterization

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Semantic correctness

As proof-structures $\stackrel{\llbracket \cdot \rrbracket}{\longmapsto}$ sets, it makes sense to define:

 π semantically correct $\iff \forall \llbracket \cdot \rrbracket : \llbracket \pi \rrbracket$ is a clique.

The fact that proof-nets $\stackrel{\llbracket \cdot \rrbracket}{\longmapsto}$ cliques is reworded as

Theorem (Girard 1987)

 $\pi \text{ correct} \Rightarrow \llbracket \pi \rrbracket$ semantically correct.

In MLL also the reverse hold!

Theorem (Rétoré 1997)

 π correct $\leftarrow [\![\pi]\!]$ semantically correct.

Multiplicative Additive LL

Hypercoherence

The characterization

Semantic correctness

As proof-structures $\stackrel{\llbracket \cdot \rrbracket}{\longmapsto}$ sets, it makes sense to define:

 π semantically correct $\iff \forall \llbracket \cdot \rrbracket : \llbracket \pi \rrbracket$ is a clique.

The fact that proof-nets $\stackrel{\llbracket \cdot \rrbracket}{\longmapsto}$ cliques is reworded as

Theorem (Girard 1987)

 $\pi \text{ correct} \Rightarrow \llbracket \pi \rrbracket$ semantically correct.

In MLL also the reverse hold!

Theorem (Rétoré 1997)

 π correct \leftarrow $\llbracket \pi \rrbracket$ semantically correct.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Multiplicative LL	Multiplicative Additive LL	Hypercoherence	The characterization
The picture			

Multiplicative LL	Multiplicative Additive LL	Hypercoherence 00000	The characterization
The picture			

Multiplicative Additive LL

Hypercoherence

The characterization

Outline

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-structures

Slices are MLL proof-structures with unary additives

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-structures

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-structures

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-structures

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-structures

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▼ ◇ ◇ ◇

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-structures

Multiplicative Additive LL

Hypercoherence

The characterization

< ロ > < 同 > < E > < E > E = < 0 < 0</p>

Hughes – van Glabbeek's proof-structures

Proof structures are sets of slices (or equivalently, linkings.) We can superimpose slices...

... and register additive dependancies via jumps
Multiplicative Additive LL

Hypercoherence

The characterization

< ロ > < 同 > < 三 > < 三 > 三 = < の < ○</p>

Hughes – van Glabbeek's proof-structures

Proof structures are sets of slices (or equivalently, linkings.) We can superimpose slices...

... and register additive dependancies via jumps

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or *resolution*)

Every choice on the &s has a unique $\lambda \in \theta$ agreeing with it

A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted

Toggling

 $\forall \Lambda \subseteq \theta$: $\exists w \in \& 2(\mathfrak{G}_{\Lambda})$ out of all switching cycles in \mathfrak{G}_{Λ}

< ロ > < 母 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Multiplicative Additive LL

Hypercoherence

The characterization

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

Hughes – van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or *resolution*)

Every choice on the &s has a unique $\lambda \in \theta$ agreeing with it

A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted

Toggling

 $\forall \Lambda \subseteq \theta$: $\exists w \in \& 2(\mathcal{G}_{\Lambda})$ out of all switching cycles in \mathcal{G}_{Λ}

Multiplicative Additive LL

Hypercoherence

The characterization

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

Hughes – van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or *resolution*)

Every choice on the &s has a unique $\lambda \in \theta$ agreeing with it

A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted

Toggling

 $\forall \Lambda \subseteq \theta$: $\exists w \in \& 2(\mathcal{G}_{\Lambda})$ out of all switching cycles in \mathcal{G}_{Λ}

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or *resolution*)

Every choice on the &s has a unique $\lambda \in \theta$ agreeing with it

A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and connected

Without connectedness PNs sequentialize in MALL+MIX

 $\forall \Lambda \subseteq \theta : \exists w \in \& 2(\mathcal{G}_{\Lambda}) \text{ out of all switching cycles in } \mathcal{G}_{\Lambda}$

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or *resolution*)

Every choice on the &s has a unique $\lambda \in \theta$ agreeing with it

A PS θ is correct (i.e. a PN) iff

MLL correctness

Every $\lambda \in \theta$ is switching acyclic and conncted

Toggling

 $\forall \Lambda \subseteq \theta$: $\exists w \in \& 2(\mathcal{G}_{\Lambda})$ out of all switching cycles in \mathcal{G}_{Λ}

Multiplicative Additive LL

Hypercoherence

The characterization

Hughes – van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or *resolution*)

Every choice on the &s has a unique $\lambda \in \theta$ agreeing with it

A PS θ is correct (i.e. a PN) iff

Multiplicative Additive LL

Hypercoherence

The characterization

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Hughes – van Glabbeek's proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or *resolution*)

Every choice on the &s has a unique $\lambda \in \theta$ agreeing with it

A PS θ is correct (i.e. a PN) iff

Toggling

 $\begin{array}{l} \forall \Lambda \subseteq \theta : \ \forall S \neq \emptyset \text{ union of switching cycles in } \mathcal{G}_{\Lambda} : \\ \exists w \in \& 2(\mathcal{G}_{\Lambda}) : \ w \notin S \end{array}$

Multiplicative LL	Multiplicative Additive LL	Hypercoherence 00000	The characterization
Experiments			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplicative LL	Multiplicative Additive LL	Hypercoherence	The characterization
Experiments			

Multiplicative LL	Multiplicative Additive LL	Hypercoherence	The characterization
Experiments			

Multiplicative LL	Multiplicative Additive LL	Hypercoherence	The characterization
Experiments			

Multip	olicative	LL

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Additive proof-structure and coherent spaces

- Though θ correct ⇒ [[θ]] is a clique, the inverse is far from true.
- The most famous counterexample is the Gustave proof-structure.
- It is the counterpart of the unsequentializable function in the stable model of PCF.

$$egin{aligned} G(extsf{t}, extsf{t},oldsymbol{\perp}) &:= extsf{t} \ G(extsf{t},oldsymbol{\perp}, extsf{t}) &:= extsf{t} \ G(oldsymbol{\perp}, extsf{t}, extsf{t}) &:= extsf{t} \end{aligned}$$

Multiplicative LL Multiplicative Additive LL Hypercoherence The characterization

The Gustave proof-structure

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

By taking Λ and superposing it we get a cycle... But $[\gamma]$ is a clique (coherence checked two slices at a time).

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

By taking Λ and superposing it we get a cycle... But $[\gamma]$ is a clique (coherence checked two slices at a time).

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave proof-structure

By taking Λ and superposing it we get a cycle... But $[\![\gamma]\!]$ is a clique (coherence checked two slices at a time).

Multiplicative Additive LL

Hypercoherence

The characterization

Outline

2 Multiplicative Additive LL

The characterization

Hypercoherent spaces

Coherent spaces: (|X|, ○), with ○ ⊆ |X| × |X| a binary relation

Hypercoherent spaces (Ehrhard 1995):
(|X|, ○) with ○ ⊆ 𝒫_{fin}(|X|) a predicate on finite sets

• The strongly stable model of hypercoherent spaces (Bucciarelli & Ehrhard 1991) rejects Guastave's function, and correspond to sequentializable functions, maybe it can help with MALL?

Hypercoherent spaces

Coherent spaces:

 $(|X|, \bigcirc)$, with $\bigcirc \subseteq |X| \times |X|$ a binary relation

Hypercoherent spaces (Ehrhard 1995):
(|X|, ○) with ○ ⊆ 𝒫_{fin}(|X|) a predicate on finite sets

 The strongly stable model of hypercoherent spaces (Bucciarelli & Ehrhard 1991) rejects Guastave's function, and correspond to sequentializable functions, maybe it can help with MALL?

Multiplicative Additive LL

Hypercoherence

The characterization

Hypercoherent semantic correctness

Again we can define

 θ semantically correct $\iff \forall \llbracket \cdot \rrbracket : \llbracket \theta \rrbracket$ is a hyperclique.

and again

Theorem

 θ correct \Rightarrow [θ] semantically correct.

In MALL the reverse does not hold! (for HvG PS: Pagani 2006)

Theorem ("Rétoré")

 π incorrect \rightarrow [,,] semantically incorrect.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplicative Additive LL

Hypercoherence

The characterization

Hypercoherent semantic correctness

Again we can define

 θ semantically correct $\iff \forall \llbracket \cdot \rrbracket : \llbracket \theta \rrbracket$ is a hyperclique.

and again

Theorem $\theta \text{ correct} \Rightarrow \llbracket \theta \rrbracket \text{ semantically correct.}$ In M. We give a direct proof of this, rather than passing via sequentialization, more on this later Theorem this later

Multiplicative Additive LL

Hypercoherence

The characterization

Hypercoherent semantic correctness

Again we can define

 θ semantically correct $\iff \forall \llbracket \cdot \rrbracket : \llbracket \theta \rrbracket$ is a hyperclique.

and again

Theorem

 θ correct \Rightarrow [θ] semantically correct.

In MALL the reverse does not hold! (for HvG PS: Pagani 2006)

Theorem ("Rétoré")

 π incorrect \rightarrow [π] semantically incorrect.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplicative Additive LL

Hypercoherence

The characterization

The counterexample

Taking δ , superimposing, adding jumps, we get a (bad) cycle. But $[\![\delta]\!]$ is a hyperclique!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

The counterexample

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

The counterexample

Multiplicative Additive LL

Hypercoherence

The characterization

The counterexample

Multiplicative Additive LL

Hypercoherence

The characterization

The counterexample

Multiplicative Additive LL

Hypercoherence

The characterization

The conjecture and its factorization

Conjecture (Pagani 2006)

For θ proof-structure with every slice switching connected [$[\theta]$] semantically correct $\Rightarrow \theta$ correct

We have "factorized" the conjecture by finding the geometric criterion for semantic correctness, that we call hypercorrectness (definition in the next slides).

Theorem

 θ hypercorrect $\Leftrightarrow \theta$ semantically correct.
Multiplicative Additive LL

Hypercoherence

The characterization

The conjecture and its factorization

Conjecture (Pagani 2006)

For θ proof-structure with every slice switching connected [$[\theta]$] semantically correct $\Rightarrow \theta$ correct

We have "factorized" the conjecture by finding the geometric criterion for semantic correctness, that we call hypercorrectness (definition in the next slides).

Theorem

 θ hypercorrect $\Leftrightarrow \theta$ semantically correct.

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

The conjecture and its factorization

Conjecture (Pagani-Tranquilli)

For θ proof-structure with every slice switching connected $\llbracket \theta \rrbracket$ hypercorrect $\Rightarrow \theta$ correct

Theorem

 θ hypercorrect $\Leftrightarrow \theta$ semantically correct.

Multiplicative LL	Multiplicative Additive LL	Hypercoherence ○○○○●	The characterization
The picture			

Multiplicative LL	Multiplicative Additive LL	Hypercoherence ○○○○●	The characterization
The picture			

Multiplicative Additive LL

Hypercoherence

The characterization

Outline

2 Multiplicative Additive LL

3 Hypercoherence

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < < □ > < < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Orientating the cycles

- The idea is consider switching oriented paths.
- Other works (Abramski & Mèllies 1999, Blute, Hamano & Scott 2005) suggest semantics "sees" cycles with jumps oriented in the same sense.
- For a technical reason we change the definition of jumps.

where $\lambda_1, \lambda_2 \in \Lambda$, *c* is a \oplus or an atomic leaf (an additive contraction), and *w* is the only with binary for λ_1 and λ_2 .

Multiplicative Additive LL

Hypercoherence

The characterization

&-oriented paths

- An oriented switching path Φ is &-oriented if binary &s in it are traversed from premise to conclusion (in particular all jumps are traversed in the same direction)
- Φ and Ψ oriented switching paths on G_Λ are compatible if every time they traverse the same edge, they do so in the same direction. A union of paths is compatible if they are pairwise so.

Multiplicative Additive LL

Hypercoherence

The characterization

&-oriented paths

- An oriented switching path Φ is &-oriented if binary &s in it are traversed from premise to conclusion (in particular all jumps are traversed in the same direction)
- Φ and Ψ oriented s vitching paths on G_Λ are
 Constitute if order there is a dual
 Condition on contractions, which however can be dropped

Multiplicative Additive LL

Hypercoherence

The characterization

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

The criterion

A proof-structure θ is a proof-net if

Toggling $\forall \Lambda \subseteq \theta : \forall S \neq \emptyset$ union of switching cycles in \mathcal{G}_{Λ} $\exists w \in \& 2(\mathcal{G}_{\Lambda}) : w \notin S$

Multiplicative Additive LL

Hypercoherence

The characterization

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

The criterion

A proof-structure θ is a proof-net if

Hypertoggling

 $\forall \Lambda \subseteq \theta : \forall S \neq \emptyset \text{ compatible union of sw &-oriented cycles in } \mathcal{G}_{\Lambda} \\ \exists w \in \& 2(\mathcal{G}_{\Lambda}) : w \notin S$

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

The criterion

A proof-structure θ is hypercorrect if

Hypertoggling

 $\forall \Lambda \subseteq \theta : \forall S \neq \emptyset \text{ compatible union of sw } \& \text{-oriented cycles in } \mathfrak{G}_{\Lambda} \\ \exists w \in \& 2(\mathfrak{G}_{\Lambda}) : w \notin S$

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave PS revisited

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave PS revisited

Multiplicative Additive LL

Hypercoherence

The characterization

The Gustave PS revisited

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

The counterexample revisited

The counterexample δ is hypercorrect! (only way for a cycle to go down a & is going up the other)

Multiplicative Additive LL

Hypercoherence

The characterization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

The counterexample revisited

The counterexample δ is hypercorrect! (only way for a cycle to go down a & is going up the other)

Multiplicative Additive LL

Hypercoherence

The characterization

The counterexample revisited

The counterexample δ is hypercorrect! (only way for a cycle to go down a & is going up the other)

Multiplicative	LL

- Is the second part of the conjecture true? For θ sw. connected proof structure, θ hypercorrect iff correct? There is evidence (AM 1999, BHS 2005)
- Employ the new jumps for a more general syntax (no η-expansion, exponentials)
- Has the criterion significance for cut reduction? Probably, semantics usually lift to good properties. A very good recent example is Pagani 2006 and his current work on differential interaction nets (visible acyclicity corresponding to fintary relations)

Mu	ltip	olic	ca	ti∖	/e	Ll	
00	00	00			ЭC		

- Is the second part of the conjecture true?
 For θ sw. connected proof structure, θ hypercorrect iff correct?
 There is evidence (AM 1999, BHS 2005)
- Employ the new jumps for a more general syntax (no η-expansion, exponentials)
- Has the criterion significance for cut reduction? Probably, semantics usually lift to good properties. A very good recent example is Pagani 2006 and his current work on differential interaction nets (visible acyclicity corresponding to fintary relations)

Mu	ltip	olic	ca	ti∖	/e	Ll	
00	00	00			ЭC		

- Is the second part of the conjecture true?
 For θ sw. connected proof structure, θ hypercorrect iff correct?
 There is evidence (AM 1999, BHS 2005)
- Employ the new jumps for a more general syntax (no η-expansion, exponentials)
- Has the criterion significance for cut reduction? Probably, semantics usually lift to good properties. A very good recent example is Pagani 2006 and his current work on differential interaction nets (visible acyclicity corresponding to fintary relations)

Mu	ltip	olic	ca	ti∖	/e	Ll	
00	00	00			ЭC		

- Is the second part of the conjecture true?
 For θ sw. connected proof structure, θ hypercorrect iff correct?
 There is evidence (AM 1999, BHS 2005)
- Employ the new jumps for a more general syntax (no η-expansion, exponentials)
- Has the criterion significance for cut reduction? Probably, semantics usually lift to good properties. A very good recent example is Pagani 2006 and his current work on differential interaction nets (visible acyclicity corresponding to fintary relations)

Multiplicative	LL
000000000	

- Is the second part of the conjecture true?
 For θ sw. connected proof structure, θ hypercorrect iff correct?
 There is evidence (AM 1999, BHS 2005)
- Employ the new jumps for a more general syntax (no η-expansion, exponentials)
- Has the criterion significance for cut reduction? Probably, semantics usually lift to good properties. A very good recent example is Pagani 2006 and his current work on differential interaction nets (visible acyclicity corresponding to fintary relations)

・ロト (個) (目) (目) (目) (0)

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

- Given e1, e2 with a strict incoherent conclusion...
- one builds a path...
- ... arriving to a strict coherent one.

- Given e1, e2 with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

- Given e1, e2 with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

- Given e1, e2 with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

- Given e₁, e₂ with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

- Given e1, e2 with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

- Given e1, e2 with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

- Given e1, e2 with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

- Given e1, e2 with a strict incoherent conclusion...
- ...one builds a path...
- ... arriving to a strict coherent one.

Given e1, e2 with a strict incoherent conclusion...

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

- ...one builds a path...
- ... arriving to a strict coherent one.

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and $\llbracket \cdot \rrbracket$ and e_1, e_2 devised...

• ... so that "closing" again, $e_1(\pi) \sim e_2(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and $\llbracket \cdot \rrbracket$ and e_1, e_2 devised...

• ... so that "closing" again, $e_1(\pi) \smile e_2(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and [[·]] and e_1, e_2 devised...

• ... so that "closing" again, $e_1(\pi) \sim e_2(\pi)$
Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and [[·]] and e₁, e₂ devised...

• ... so that "closing" again, $e_1(\pi) \sim e_2(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and [[·]] and e₁, e₂ devised...

• ... so that "closing" again, $e_1(\pi) \smile e_2(\pi)$

Incorrect implies semantically incorrect

- Given an incorrect PS, and one of its cycles...
- ... it can be "opened", and [[·]] and e1, e2 devised...

• ... so that "closing" again, $e_1(\pi) \sim e_2(\pi)$