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The framework

Linear Logic (Girard, 1987) has always shown a persistent
tendency to link with computer science. Its very roots are
in the Curry-Howard isomorphism.
Denotational semantics: giving mathematical invariants for
the execution of programs (and cut-elimination of proofs).
Proof-nets: the desequentialized representation of proofs
of LL.
We here work with the truly linear fragment of LL (no
structural rules, i.e. no erasing or duplicating).
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MLL is robust

The multiplicative fragment (without units) works like a
charm.
There is a robust pairing between syntax – proof-nets –
and its main denotational semantics – coherent spaces.
Coherent spaces: sets with a symmetric reflexive relation,
the coherence (i.e. graphs). The states of the spaces are
its cliques.
Coherent spaces validate the MIX rule, which correspond
to unconnected proof-nets.
From now on, we will regard only cut-free proofs and
structures (typical of semantical investigations).
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The picture

PS

PN Proof-nets, corresponding to
sequential proofs
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Sequents as syntactical forests

A

&

B,
&

A B

(B⊥ ⊗ C)

&

(C⊥

&

A⊥)

&

⊗

B⊥ C

&

C⊥ A⊥

Γ =

a ∈
∣∣∣~A�∣∣∣, b ∈

∣∣∣~B�∣∣∣, c ∈
∣∣∣~C�∣∣∣ ⇒ e(π) ∈

∣∣∣~Γ�∣∣∣
~π� := {e(π) | e experiment on π }
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Experiments
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sult, collected at
the conclusions
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the set of
results gives the

interpretation
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The picture

PS

PN

cliques

Proof-structures, corresponding
also to “wrong” proofs

~ · �
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The importance of allowing mistakes

Proof correctness is established via a “geometric”
sequentializability criterion (ex: long trip, Girard 1987, or
switching acyclicity and connectedness, Danos & Regnier
1989).
“Making mistakes” =⇒ richer syntax, better
understanding of what “doing right” really means.
It also allows to consider different ways of “doing right”.
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Semantic correctness

As proof-structures
~ · �
7−→ sets, it makes sense to define:

π semantically correct ⇐⇒ ∀ ~ · � : ~π� is a clique.

The fact that proof-nets
~ · �
7−→ cliques is reworded as

Theorem (Girard 1987)
π correct⇒ ~π� semantically correct.

In MLL also the reverse hold!

Theorem (Rétoré 1997)
π correct ⇐ ~π� semantically correct.
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Hughes – van Glabbeek’s proof-structures

(A ⊕ B)⊕A, (A⊥ & B⊥)⊗(C ⊕ C), C⊥

&

(A & A), A⊥

⊕

⊕

⊗

& ⊕

&

&

Slices are MLL proof-structures with unary additives

We can superimpose slices. . .
. . . and register additive dependancies via jumps
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Hughes – van Glabbeek’s proof-nets

From HvG 2003: a set θ of linkings is a PS if

&-compatibility and fullness (or resolution)
Every choice on the &s has a unique λ ∈ θ agreeing with it

A PS θ is correct (i.e. a PN) iff

MLL correctness
Every λ ∈ θ is switching acyclic and conncted

Toggling

∀Λ ⊆ θ : ∃w ∈ &2(GΛ) out of all switching cycles in GΛ
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Without connectedness PNs sequentialize in MALL+MIX
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Experiments

Multiplicative experiments extend to slices and proof-structures

(A ⊕ B)⊕A, (A⊥ & B⊥)⊗(C ⊕ C), C⊥

&

(A & A), A⊥

(
a.11,

⊕
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a

a.1

(a.1, c.1),
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&

a

a.1
⊕

c

c.1

(c,a′.2),

&
c

&

a′

a′.2

a′
)

a′

e(λ1) =

a,a′ ∈
∣∣∣~A�∣∣∣, c ∈

∣∣∣~C�∣∣∣ ⇒ e(λ1) ∈
∣∣∣~Γ�∣∣∣
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⋃
λ∈θ

~λ�
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Additive proof-structure and coherent spaces

Though θ correct⇒ ~θ� is a clique, the inverse is far from
true.
The most famous counterexample is the Gustave
proof-structure.
It is the counterpart of the unsequentializable function in
the stable model of PCF.

G(t,f,⊥) := t

G(f,⊥,t) := t

G(⊥,t,f) := t
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The Gustave proof-structure

(A & A)⊕A, (B & B)⊕B, (R & R)⊕R

⊕

&

⊕

&

⊕

&

γ =

By taking Λ and superposing it we get a cycle. . .
But
�
γ
�

is a clique (coherence checked two slices at a time).
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is a clique (coherence checked two slices at a time).
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Hypercoherent spaces

Coherent spaces:
(|X | ,¨), with ¨ ⊆ |X | × |X | a binary relation
Hypercoherent spaces (Ehrhard 1995):
(|X | ,¨) with ¨ ⊆ Pfin

(
|X |

)
a predicate on finite sets

Additives:

˝
&

• •

and

ˇ
⊕

• •

The strongly stable model of hypercoherent spaces
(Bucciarelli & Ehrhard 1991) rejects Guastave’s function,
and correspond to sequentializable functions, maybe it can
help with MALL?
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Hypercoherent semantic correctness

Again we can define

θ semantically correct ⇐⇒ ∀ ~ · � : ~θ� is a hyperclique.

and again

Theorem
θ correct⇒ ~θ� semantically correct.

In MALL the reverse does not hold! (for HvG PS: Pagani 2006)

Theorem (“Rétoré”)
π incorrect⇒ ~π� semantically incorrect.
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θ correct⇒ ~θ� semantically correct.

In MALL the reverse does not hold! (for HvG PS: Pagani 2006)

Theorem (“Rétoré”)
π incorrect⇒ ~π� semantically incorrect.

We give a direct proof of this,
rather than passing via

sequentialization, more on
this later
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A⊥, (A & A)⊗(B & B), B⊥, C⊕C, C⊥

⊗

& & ⊕

δ =

Taking δ, superimposing, adding jumps, we get a (bad) cycle.
But ~δ� is a hyperclique!
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The counterexample

A⊥, (A & A)⊗(B & B), B⊥, C⊕C, C⊥

⊗

& & ⊕

δ =

unconnectedness
(moral use of

MIX rule)

Taking δ, superimposing, adding jumps, we get a (bad) cycle.
But ~δ� is a hyperclique!
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The conjecture and its factorization

Conjecture (Pagani 2006)
For θ proof-structure with every slice switching connected

~θ� semantically correct⇒θ correct

We have “factorized” the conjecture by finding the geometric
criterion for semantic correctness, that we call
hypercorrectness (definition in the next slides).

Theorem
θ hypercorrect⇔ θ semantically correct.
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The conjecture and its factorization

Conjecture (Pagani–Tranquilli)
For θ proof-structure with every slice switching connected

~θ� hypercorrect⇒θ correct

We have “factorized” the conjecture by finding the geometric
criterion for semantic correctness, that we call
hypercorrectness (definition in the next slides).

Theorem
θ hypercorrect⇔ θ semantically correct.

So now we can try to prove it
all inside graphs
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Orientating the cycles

The idea is consider switching oriented paths.
Other works (Abramski & Mèllies 1999, Blute, Hamano &
Scott 2005) suggest semantics “sees” cycles with jumps
oriented in the same sense.
For a technical reason we change the definition of jumps.

∗

λ1 λ2

&

λ1 λ2

c w
in GΛ

where λ1, λ2 ∈ Λ, c is a ⊕ or an atomic leaf (an additive
contraction), and w is the only with binary for λ1 and λ2.
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&-oriented paths

An oriented switching path Φ is &-oriented if
binary &s in it are traversed from premise to
conclusion (in particular all jumps are
traversed in the same direction)
Φ and Ψ oriented switching paths on GΛ are
compatible if every time they traverse the
same edge, they do so in the same direction.
A union of paths is compatible if they are
pairwise so.

&

Φ
Ψ
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&-oriented paths

An oriented switching path Φ is &-oriented if
binary &s in it are traversed from premise to
conclusion (in particular all jumps are
traversed in the same direction)
Φ and Ψ oriented switching paths on GΛ are
compatible if every time they traverse the
same edge, they do so in the same direction.
A union of paths is compatible if they are
pairwise so.

&

Φ
Ψ

In the paper there is a dual
condition on contractions, which

however can be dropped
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The criterion

A proof-structure θ is a proof-net if

Toggling

∀Λ ⊆ θ : ∀S , ∅ union of switching cycles in GΛ

∀Λ ⊆ θ :

∃w ∈ &2(GΛ) : w < S
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The criterion

A proof-structure θ is hypercorrect if

Hypertoggling

∀Λ ⊆ θ : ∀S , ∅ compatible union of sw &-oriented cycles in GΛ

∀Λ ⊆ θ :

∃w ∈ &2(GΛ) : w < S
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The Gustave PS revisited

(A & A)⊕A, (B & B)⊕B, (R & R)⊕R

⊕

&

⊕

&

⊕

&

γ =

The Gustave PS γ is hyperincorrect
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The counterexample revisited

A⊥, (A & A)⊗(B & B), B⊥, C⊕C, C⊥

⊗

& & ⊕

δ =

The counterexample δ is hypercorrect!
(only way for a cycle to go down a & is going up the other)
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Future work

1 Is the second part of the conjecture true?
For θ sw. connected proof structure, θ hypercorrect iff
correct?
There is evidence (AM 1999, BHS 2005)

2 Employ the new jumps for a more general syntax (no
η-expansion, exponentials)

3 Has the criterion significance for cut reduction?
Probably, semantics usually lift to good properties. A very
good recent example is Pagani 2006 and his current work
on differential interaction nets (visible acyclicity
corresponding to fintary relations)
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e1(c) ˇ e2(c)
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Given e1,e2 with a strict incoherent conclusion. . .
. . . one builds a path. . .
. . . arriving to a strict coherent one.
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