
Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

References, multithreading and differential nets

Paolo Tranquilli

paolo.tranquilli@ens-lyon.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon

séminaire choco
Lyon, 22/04/2010

http://perso.ens-lyon.fr/paolo.tranquilli
mailto:paolo.tranquilli@ens-lyon.fr

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

Outline

1 Types and Effects
The syntax
Typing and stratification

2 Translating into Proof Nets
The target
The translation

3 Multithreading and Differential Nets
First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Outline

1 Types and Effects
The syntax
Typing and stratification

2 Translating into Proof Nets
The target
The translation

3 Multithreading and Differential Nets
First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

The context

We study Λreg, a call-by-value calculus with two basic memory access
ops (set and get) and a memory management op (ν).

J. M. Lucassen and D. K. Gifford.
Polymorphic effect systems.
In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 47–57, New York, NY, USA, 1988.
ACM.

Roberto M. Amadio.
On stratified regions.
In Zhenjiang Hu, editor, APLAS, volume 5904 of Lecture Notes in Computer
Science, pages 210–225. Springer, 2009.

An abstraction of functional programming languages with references.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

The syntax of Λreg

Functions are values:

U,V ::= x | 〈〉 | λx .M

Terms can also be memory management operations:

M,N ::= V | MN | set(r ,V) | get(r) | νr⇐V .N

Call-by-value order enforced via evaluation contexts:

E ,F ::= [] | EM | VE | νr⇐V .E

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Evaluation

Intuition: νr ’s allocate, represent and garbage collect memory.

E [(λx .M)V]→ E [M{V/x}]
E
[
νr⇐V .F [set(r ,U)]

]→ E
[
νr⇐U.F [〈〉]]

E
[
νr⇐V .F [get(r)]

]→ E
[
νr⇐V .F [V]

]
E [νr⇐V .U]→ E [U]

with r /∈ PR(F),

where PR(E) are given by what νr ’s bind the hole.

ν is not very classical, however it conveniently represents stores
and it is quite natural from the monadic point of view (more later).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

An example
Power function in imperative style (M; N := (λd .N)M):

function pow(n,m) pow := λn,m.
r := 1; νr⇐1.
for i := 1 to m m

r := n ∗ r ; (λd .set(r ,multn get(r))) 〈〉 ;
return r ; get(r)

pow3 2→ νr⇐1.2(λd .set(r ,mult3get(r)) 〈〉 ;get(r)
∗−→ νr⇐1. 〈〉 ;set(r ,mult3get(r));set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,mult3 1);set(r ,mult3get(r));get(r)
∗−→ νr⇐1.set(r ,3);set(r ,mult3get(r));get(r)
∗−→ νr⇐3.set(r ,mult3get(r));get(r)
∗−→ νr⇐9.get(r)→ νr⇐9.9→ 9

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Types and effects

Types and effect systems statically analyze side effects via
annotations in regular typing systems.

Usually for memory ops one divides memory into a finite set of
regions (r , s, . . .).

Types have annotated arrows: A ::= 1 | A e−→ B, e set of
accessed regions.

R = r1 : A1, . . . , rk : Ak is a region context (i.e. regions hold
values of a single type).
We are simplifying by identifying locations and regions (no refr A type).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Types and effects

Types and effect systems statically analyze side effects via
annotations in regular typing systems.

Usually for memory ops one divides memory into a finite set of
regions (r , s, . . .).

Types have annotated arrows: A ::= 1 | A e−→ B, e set of
accessed regions.

R = r1 : A1, . . . , rk : Ak is a region context (i.e. regions hold
values of a single type).
We are simplifying by identifying locations and regions (no refr A type).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Typing rules

Typing judgments R; Γ ` M : A,e: means M accesses e.

R; Γ, x : A ` x : A, ∅ R; Γ ` 〈〉 : 1, ∅
R; Γ, x : A ` M : B,e

R : Γ ` λx .M : A e−→ B, ∅
R; Γ ` M : A e3−→ B,e1 R; Γ ` N : A,e2

R : Γ ` MN : B,e1 ∪ e2 ∪ e3

R, r : A; Γ ` V : A, ∅
R, r : A; Γ ` set(r ,V) : 1, {r} R, r : A; Γ ` get(r) : A, {r}

R, r : A; Γ ` V : A, ∅ R, r : A; Γ ` M : B,e
R, r : A; Γ ` νr⇐V .M : B,e \ {r}

R; Γ ` M : A,e e (f ⊆ dom(R)

R; Γ ` M : A, f

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Typing rules

Typing judgments R; Γ ` M : A,e: means M accesses e.

R; Γ, x : A ` x : A, ∅ R; Γ ` 〈〉 : 1, ∅
R; Γ, x : A ` M : B,e

R : Γ ` λx .M : A e−→ B, ∅
R; Γ ` M : A e3−→ B,e1 R; Γ ` N : A,e2

R : Γ ` MN : B,e1 ∪ e2 ∪ e3

R, r : A; Γ ` V : A, ∅
R, r : A; Γ ` set(r ,V) : 1, {r} R, r : A; Γ ` get(r) : A, {r}

R, r : A; Γ ` V : A, ∅ R, r : A; Γ ` M : B,e
R, r : A; Γ ` νr⇐V .M : B,e \ {r}

R; Γ ` M : A,e e (f ⊆ dom(R)

R; Γ ` M : A, f

Regular axioms, no effects

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Typing rules

Typing judgments R; Γ ` M : A,e: means M accesses e.

R; Γ, x : A ` x : A, ∅ R; Γ ` 〈〉 : 1, ∅
R; Γ, x : A ` M : B,e

R : Γ ` λx .M : A e−→ B, ∅
R; Γ ` M : A e3−→ B,e1 R; Γ ` N : A,e2

R : Γ ` MN : B,e1 ∪ e2 ∪ e3

R, r : A; Γ ` V : A, ∅
R, r : A; Γ ` set(r ,V) : 1, {r} R, r : A; Γ ` get(r) : A, {r}

R, r : A; Γ ` V : A, ∅ R, r : A; Γ ` M : B,e
R, r : A; Γ ` νr⇐V .M : B,e \ {r}

R; Γ ` M : A,e e (f ⊆ dom(R)

R; Γ ` M : A, f

Effects annotate arrow type and are reset

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Typing rules

Typing judgments R; Γ ` M : A,e: means M accesses e.

R; Γ, x : A ` x : A, ∅ R; Γ ` 〈〉 : 1, ∅
R; Γ, x : A ` M : B,e

R : Γ ` λx .M : A e−→ B, ∅
R; Γ ` M : A e3−→ B,e1 R; Γ ` N : A,e2

R : Γ ` MN : B,e1 ∪ e2 ∪ e3

R, r : A; Γ ` V : A, ∅
R, r : A; Γ ` set(r ,V) : 1, {r} R, r : A; Γ ` get(r) : A, {r}

R, r : A; Γ ` V : A, ∅ R, r : A; Γ ` M : B,e
R, r : A; Γ ` νr⇐V .M : B,e \ {r}

R; Γ ` M : A,e e (f ⊆ dom(R)

R; Γ ` M : A, f

Effects are merged, annotated ones are “extracted”

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Typing rules

Typing judgments R; Γ ` M : A,e: means M accesses e.

R; Γ, x : A ` x : A, ∅ R; Γ ` 〈〉 : 1, ∅
R; Γ, x : A ` M : B,e

R : Γ ` λx .M : A e−→ B, ∅
R; Γ ` M : A e3−→ B,e1 R; Γ ` N : A,e2

R : Γ ` MN : B,e1 ∪ e2 ∪ e3

R, r : A; Γ ` V : A, ∅
R, r : A; Γ ` set(r ,V) : 1, {r} R, r : A; Γ ` get(r) : A, {r}

R, r : A; Γ ` V : A, ∅ R, r : A; Γ ` M : B,e
R, r : A; Γ ` νr⇐V .M : B,e \ {r}

R; Γ ` M : A,e e (f ⊆ dom(R)

R; Γ ` M : A, f

Accessed regions are noted

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Typing rules

Typing judgments R; Γ ` M : A,e: means M accesses e.

R; Γ, x : A ` x : A, ∅ R; Γ ` 〈〉 : 1, ∅
R; Γ, x : A ` M : B,e

R : Γ ` λx .M : A e−→ B, ∅
R; Γ ` M : A e3−→ B,e1 R; Γ ` N : A,e2

R : Γ ` MN : B,e1 ∪ e2 ∪ e3

R, r : A; Γ ` V : A, ∅
R, r : A; Γ ` set(r ,V) : 1, {r} R, r : A; Γ ` get(r) : A, {r}

R, r : A; Γ ` V : A, ∅ R, r : A; Γ ` M : B,e
R, r : A; Γ ` νr⇐V .M : B,e \ {r}

R; Γ ` M : A,e e (f ⊆ dom(R)

R; Γ ` M : A, f
Allocations/deallocations hide effects on region

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Typing rules

Typing judgments R; Γ ` M : A,e: means M accesses e.

R; Γ, x : A ` x : A, ∅ R; Γ ` 〈〉 : 1, ∅
R; Γ, x : A ` M : B,e

R : Γ ` λx .M : A e−→ B, ∅
R; Γ ` M : A e3−→ B,e1 R; Γ ` N : A,e2

R : Γ ` MN : B,e1 ∪ e2 ∪ e3

R, r : A; Γ ` V : A, ∅
R, r : A; Γ ` set(r ,V) : 1, {r} R, r : A; Γ ` get(r) : A, {r}

R, r : A; Γ ` V : A, ∅ R, r : A; Γ ` M : B,e
R, r : A; Γ ` νr⇐V .M : B,e \ {r}

R; Γ ` M : A,e e (f ⊆ dom(R)

R; Γ ` M : A, f

Dummy effects can be added

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Type, effects and termination

Types and effects assure type and memory safety, but not
termination.

Typed fixpoints! In particular endless loop:

r : 1
{r}→ A;` νr⇐λx .get(r)x .get(r) 〈〉 : 1, ∅

νr⇐λx .get(r)x .get(r) 〈〉 → νr⇐λx .get(r)x .(λx .get(r)x) 〈〉
→ νr⇐λx .get(r)x .get(r) 〈〉 → · · ·

Typing prevents self-application, but not self-reference.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Type, effects and termination

Types and effects assure type and memory safety, but not
termination.

Typed fixpoints! In particular endless loop:

r : 1
{r}→ A;` νr⇐λx .get(r)x .get(r) 〈〉 : 1, ∅

νr⇐λx .get(r)x .get(r) 〈〉 → νr⇐λx .get(r)x .(λx .get(r)x) 〈〉
→ νr⇐λx .get(r)x .get(r) 〈〉 → · · ·

Typing prevents self-application, but not self-reference.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Stratification

Boudol/Amadio’s proposal to avoid self-reference and ensure
normalization: stratification of the region context (R `).

∅ `
R ` A r /∈ dom(R)

R, r : A `
R `

R ` 1
R ` A R ` B e ⊆ dom(R)

R ` A e−→ B

Order given by definition: r : 1
{r}−−→ A is not stratified as r needs

to already have a type when using 1
{r}−−→ A.

Alternative proof with stratification by natural numbers by
Demangeon, Hirschkoff and Sangiorgi.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Stratification

Boudol/Amadio’s proposal to avoid self-reference and ensure
normalization: stratification of the region context (R `).

∅ `
R ` A r /∈ dom(R)

R, r : A `
R `

R ` 1
R ` A R ` B e ⊆ dom(R)

R ` A e−→ B

Order given by definition: r : 1
{r}−−→ A is not stratified as r needs

to already have a type when using 1
{r}−−→ A.

Alternative proof with stratification by natural numbers by
Demangeon, Hirschkoff and Sangiorgi.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The syntax
Typing and stratification

Stratification

Boudol/Amadio’s proposal to avoid self-reference and ensure
normalization: stratification of the region context (R `).

∅ `
R ` A r /∈ dom(R)

R, r : A `
R `

R ` 1
R ` A R ` B e ⊆ dom(R)

R ` A e−→ B

Order given by definition: r : 1
{r}−−→ A is not stratified as r needs

to already have a type when using 1
{r}−−→ A.

Alternative proof with stratification by natural numbers by
Demangeon, Hirschkoff and Sangiorgi.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Outline

1 Types and Effects
The syntax
Typing and stratification

2 Translating into Proof Nets
The target
The translation

3 Multithreading and Differential Nets
First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The aim

We will give a translation of Λreg in Linear Logic (LL).

It is essentially the call-by-value translation Λ→ LL composed
with a localized monadic translation Λreg → Λ we will not give
here.

All can be carried out in Λ, however LL provides graphical
intuitions and parallel evaluation, and opens the way for the third
part of the talk.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The target

Proof nets are the parallel representation of linear logic proofs.

Types: X | X⊥ | 1 | ⊥ | A⊗ B | A` B | !A | ?A with duality A⊥,
linear arrow A(B = A⊥ ` B, systems of equations Xi

.
= Ai .

Cells:

11
1

A⊗ BA⊗ B

AA

BB
⊗ ⊥⊥⊥ A` BA` B

BB

AA
`

one tensor bottom par

?A?AAA
?

?A?A

?A?A

?A?A
?2

?A?A
?0

!A!AAA

!B1!B1

!Bk!Bk

!B1!B1

!Bk!Bk

!π

dereliction contraction weakening box

Proof nets formed matching wires and enforcing a correctness
criterion.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The target

Proof nets are the parallel representation of linear logic proofs.

Types: X | X⊥ | 1 | ⊥ | A⊗ B | A` B | !A | ?A with duality A⊥,
linear arrow A(B = A⊥ ` B, systems of equations Xi

.
= Ai .

Cells:

11
1

A⊗ BA⊗ B

AA

BB
⊗ ⊥⊥⊥ A` BA` B

BB

AA
`

one tensor bottom par

?A?AAA
?

?A?A

?A?A

?A?A
?2

?A?A
?0

!A!AAA

!B1!B1

!Bk!Bk

!B1!B1

!Bk!Bk

!π

dereliction contraction weakening box

Proof nets formed matching wires and enforcing a correctness
criterion.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The target

Proof nets are the parallel representation of linear logic proofs.

Types: X | X⊥ | 1 | ⊥ | A⊗ B | A` B | !A | ?A with duality A⊥,
linear arrow A(B = A⊥ ` B, systems of equations Xi

.
= Ai .

Cells:

11
1

A⊗ BA⊗ B

AA

BB
⊗ ⊥⊥⊥ A` BA` B

BB

AA
`

one tensor bottom par

?A?AAA
?

?A?A

?A?A

?A?A
?2

?A?A
?0

!A!AAA

!B1!B1

!Bk!Bk

!B1!B1

!Bk!Bk

!π

dereliction contraction weakening box

planar presentation (`’s premises swapped)

Proof nets formed matching wires and enforcing a correctness
criterion.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Surface reduction

`⊗ m−→ ?!π
e−→ π at depth 0

?2!π
s−→

!π

!π

?2

?2

?0!π
s−→

?0

?0

?2
?0

s−→

!π

!σ

s−→ !π

!σ

?0
s−→ ?0

?2 ≡ ?2 ?2

?2 ≡ ?2
?2

?2 ≡ ?2

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Surface reduction

`⊗ m−→ ?!π
e−→ π at depth 0

?2!π
s−→

!π

!π

?2

?2

?0!π
s−→

?0

?0

?2
?0

s−→

!π

!σ

s−→ !π

!σ

?0
s−→ ?0

?2 ≡ ?2 ?2

?2 ≡ ?2
?2

?2 ≡ ?2

logical reductions (multiplicative and exponential)
at depth 0 means not inside boxes

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Surface reduction

`⊗ m−→ ?!π
e−→ π at depth 0

?2!π
s−→

!π

!π

?2

?2

?0!π
s−→

?0

?0

?2
?0

s−→

!π

!σ

s−→ !π

!σ

?0
s−→ ?0

?2 ≡ ?2 ?2

?2 ≡ ?2
?2

?2 ≡ ?2

usual structural reductions (duplication, erasing, composition of boxes)
at any depth

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Surface reduction

`⊗ m−→ ?!π
e−→ π at depth 0

?2!π
s−→

!π

!π

?2

?2

?0!π
s−→

?0

?0

?2
?0

s−→

!π

!σ

s−→ !π

!σ

?0
s−→ ?0

?2 ≡ ?2 ?2

?2 ≡ ?2
?2

?2 ≡ ?2

neutrality of weakening on contraction and pull reduction

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Surface reduction

`⊗ m−→ ?!π
e−→ π at depth 0

?2!π
s−→

!π

!π

?2

?2

?0!π
s−→

?0

?0

?2
?0

s−→

!π

!σ

s−→ !π

!σ

?0
s−→ ?0

?2 ≡ ?2 ?2

?2 ≡ ?2
?2

?2 ≡ ?2

commutativity and associativity of contraction,
commuting of contraction with box borders

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The results

We present a translation M• from typed Λreg programs M to
(resursively) typed proof nets.

Theorem

If M → N then M• e−→ m∗−→ s∗−→ N•.

Theorem

M• normalizes by surface reduction to π iff π = V • and M ∗−→ V.

Regions contexts R are translated as systems of equations R•,
generally giving recursive types.

Theorem
R is stratified iff R• is solvable (i.e. no real recursive types).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The results

We present a translation M• from typed Λreg programs M to
(resursively) typed proof nets.

Theorem

If M → N then M• e−→ m∗−→ s∗−→ N•.

Theorem

M• normalizes by surface reduction to π iff π = V • and M ∗−→ V.

Regions contexts R are translated as systems of equations R•,
generally giving recursive types.

Theorem
R is stratified iff R• is solvable (i.e. no real recursive types).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The results

We present a translation M• from typed Λreg programs M to
(resursively) typed proof nets.

Theorem

If M → N then M• e−→ m∗−→ s∗−→ N•.

Theorem

M• normalizes by surface reduction to π iff π = V • and M ∗−→ V.

Regions contexts R are translated as systems of equations R•,
generally giving recursive types.

Theorem
R is stratified iff R• is solvable (i.e. no real recursive types).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Call-by-value translation

Regular λ-calculus has two translations into linear logic, allowing
its parallel evaluation.

They are based on the two Girard’s translations of intuitionistic
logic:

(A→ B)N = !AN (BN, (A→ B)• = !(A•(B•)

In fact, the former corresponds to call-by-name (arguments are
duplicable), the latter to call-by-value (functions are duplicable).

J. Maraist, M. Odersky, D. N. Turner, and P. Wadler.
Call-by-name, call-by-value, call-by-need and the linear lambda calculus.
Theor. Comput. Sci., 228(1-2):175–210, 1999.

We will therefore extend the call-by-value translation.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

General form of the translation

R; x1 : A1, . . . , xn : An ` M : B, {r1, . . . , rk} gets translated to a net

M• B•

!Xrk

rk

!Xrk

r1

!Xrk

rk

!Xr1

r1

A•
1x1

A•
n

xn

(we will show the translation of types and effects later)

It is useful to visualize programs as processing streams of
regions going top to bottom.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Dummy variables and dummy effects

We consider translations up to dummy variables and dummy effects.

M•

e

ey

Γ

?0

≡ M•

e

e

Γ ≡ M•

e

e

Γ

s

s

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Dummy variables and dummy effects

We consider translations up to dummy variables and dummy effects.

M•

e

ey

Γ

?0

≡ M•

e

e

Γ ≡ M•

e

e

Γ

s

s

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Dummy variables and dummy effects

We consider translations up to dummy variables and dummy effects.

M•

e

ey

Γ

?0

≡ M•

e

e

Γ ≡ M•

e

e

Γ

s

s

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: variable and unit

x• =
A• 〈〉• =

!1!1
!1

Types: 1• = !1.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: abstraction

(λx .M)• =
!((A•)⊥ ` B•)!((A•)⊥ ` B•)

!`
⊗

M•

`
x

Γ

Usual call-by-value translation extended by encapsulating the effects.

Types: e• =
⊗
r∈e

!Xr , (A e−→ B)• = !(A•(e•((e• ⊗ B•)).

(the keen of eye will recognize a state monad here)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: abstraction

(λx .M)• =
!(A• (B•)!(A• (B•)

!`
⊗

M•

`
x

Γ

Usual call-by-value translation extended by encapsulating the effects.

Types: e• =
⊗
r∈e

!Xr , (A e−→ B)• = !(A•(e•((e• ⊗ B•)).

(the keen of eye will recognize a state monad here)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: abstraction

(λx .M)• = !`
⊗

M•

`x

Γ e

e

Usual call-by-value translation extended by encapsulating the effects.

Types: e• =
⊗
r∈e

!Xr , (A e−→ B)• = !(A•(e•((e• ⊗ B•)).

(the keen of eye will recognize a state monad here)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: abstraction

(λx .M)• =
!
`

(A•)⊥ `˙r∈e ?X⊥r ` `Nr∈e !Xr ⊗ B•
´´

!
`

(A•)⊥ `˙r∈e ?X⊥r ` `Nr∈e !Xr ⊗ B•
´´

!`
⊗

M•

`x

Γ e

e

Usual call-by-value translation extended by encapsulating the effects.

Types: e• =
⊗
r∈e

!Xr , (A e−→ B)• = !(A•(e•((e• ⊗ B•)).

(the keen of eye will recognize a state monad here)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: abstraction

(λx .M)• =
!
`
A• (N

r∈e !Xr (`N
r∈e !Xr ⊗ B•

´´
!
`
A• (N

r∈e !Xr (`N
r∈e !Xr ⊗ B•

´´
!`

⊗
M•

`x

Γ e

e

Usual call-by-value translation extended by encapsulating the effects.

Types: e• =
⊗
r∈e

!Xr , (A e−→ B)• = !(A•(e•((e• ⊗ B•)).

(the keen of eye will recognize a state monad here)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: application

Suppose M : A→ B, ∅ and N : A, ∅.

(MN)• =

ΓΓ

? ⊗
⊗

`

N•

M•

e f

e f

?2

Usual translation extended by extracting effects and linking in
evaluation order.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: application

Suppose M : A e−→ B,e + f and N : A,e + f .

(MN)• =

ΓΓ

? ⊗
⊗

`

N•

M•

e f

e f

?2

Usual translation extended by extracting effects and linking in
evaluation order.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation of memory operations
νr⇐V .M, set(r ,M), get(r)

(νr⇐V .M)• = rr

ΓΓ

M•

!

V•

?

?0

e r

e r

?2

(set(r , V))• =

!

V•

?

?0

Γ

r

r

!1

(get(r))• =

rr

rr

?2

?

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation of memory operations
νr⇐V .M, set(r ,M), get(r)

(νr⇐V .M)• = rr

ΓΓ

M•

!

V•

?

?0

e r

e r

?2

(set(r , V))• =

!

V•

?

?0

Γ

r

r

!1

(get(r))• =

rr

rr

?2

?

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation of memory operations
νr⇐V .M, set(r ,M), get(r)

(νr⇐V .M)• = rr

ΓΓ

M•

!

V•

?

?0

e r

e r

?2

(set(r , V))• =

!

V•

?

?0

Γ

r

r

!1

(get(r))• =

rr

rr

?2

?

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation of memory operations
νr⇐V .M, set(r ,M), get(r)

(νr⇐V .M)• = rr

ΓΓ

M•

!

V•

?

?0

e r

e r

?2

(set(r , V))• =

!

V•

?

?0

Γ

r

r

!1

(get(r))• =

rr

rr

?2

?

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

The translation: summing up

Sets of regions: e• =
⊗
r∈e

!Xr .

Types: 1• = !1 (A e−→ B)• = !(A•(e•((e• ⊗ B•))

(we consider (A ∅−→ B)• = !(A• (B•))

Region contexts: (r1 : A1, . . . , rk : Ak)• = (Xr1

.
=A•1, . . . ,Xrk

.
=A•k).

Theorem

If M → N then M• e−→ m∗−→ s∗−→ N•.

Theorem

M• normalizes by surface reduction to π iff π = V • and M ∗−→ V.

Theorem
R is stratified iff R• is solvable (i.e. M• simply typed!).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Proof nets as parallel evaluators

Proof nets instantiate as connections the
dependencies described by effects.

E.g. M : A, {s}, N : B, {r}, and
set(r ,V); M; N. After unfolding the seq.
composition. . .

N can be safely evaluated before or at the
same time of M.

The third result

Theorem
M• normalizes by surface reduction to π iff
π = V • and M ∗−→ V.

ensures sequential semantics is preserved.

(set(r ,V); M; N)•
∗−→

rr

M• ?0

!

V

?0

?

N•
rs

s

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Proof nets as parallel evaluators

Proof nets instantiate as connections the
dependencies described by effects.

E.g. M : A, {s}, N : B, {r}, and
set(r ,V); M; N. After unfolding the seq.
composition. . .

N can be safely evaluated before or at the
same time of M.

The third result

Theorem
M• normalizes by surface reduction to π iff
π = V • and M ∗−→ V.

ensures sequential semantics is preserved.

(set(r ,V); M; N)•
∗−→

rr

M• ?0

!

V

?0

?

N•
rs

s

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Proof nets as parallel evaluators

Proof nets instantiate as connections the
dependencies described by effects.

E.g. M : A, {s}, N : B, {r}, and
set(r ,V); M; N. After unfolding the seq.
composition. . .

N can be safely evaluated before or at the
same time of M.

The third result

Theorem
M• normalizes by surface reduction to π iff
π = V • and M ∗−→ V.

ensures sequential semantics is preserved.

(set(r ,V); M; N)•
∗−→

rr

M• ?0

!

V

?0

?

N•
rs

s

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

The target
The translation

Proof nets as parallel evaluators

Proof nets instantiate as connections the
dependencies described by effects.

E.g. M : A, {s}, N : B, {r}, and
set(r ,V); M; N. After unfolding the seq.
composition. . .

N can be safely evaluated before or at the
same time of M.

The third result

Theorem
M• normalizes by surface reduction to π iff
π = V • and M ∗−→ V.

ensures sequential semantics is preserved.

(set(r ,V); M; N)•
∗−→

rr

M• ?0

!

V

?0

?

N•
rs

s

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Outline

1 Types and Effects
The syntax
Typing and stratification

2 Translating into Proof Nets
The target
The translation

3 Multithreading and Differential Nets
First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Outline

Work in
progress. . .

1 Types and Effects
The syntax
Typing and stratification

2 Translating into Proof Nets
The target
The translation

3 Multithreading and Differential Nets
First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Multithreading

Parallel threads cooperating via references.

Terms: . . . | (M|N).

Evaluation contexts: . . . | (E |M) | (M|E).

Maximal evaluation context not unique anymore concurrency:

νr⇐true .
(
get(r)|set(r ,notget(r))

)
true | 〈〉 false | 〈〉

∗ ∗

Thread control operations possible but left aside (e.g. joining, or
“worker” threads).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Multithreading

Parallel threads cooperating via references.

Terms: . . . | (M|N).

Evaluation contexts: . . . | (E |M) | (M|E).

Maximal evaluation context not unique anymore concurrency:

νr⇐true .
(
get(r)|set(r ,notget(r))

)
true | 〈〉 false | 〈〉

∗ ∗

Thread control operations possible but left aside (e.g. joining, or
“worker” threads).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Multithreading

Parallel threads cooperating via references.

Terms: . . . | (M|N).

Evaluation contexts: . . . | (E |M) | (M|E).

Maximal evaluation context not unique anymore concurrency:

νr⇐true .
(
get(r)|set(r ,notget(r))

)
true | 〈〉 false | 〈〉

∗ ∗

Thread control operations possible but left aside (e.g. joining, or
“worker” threads).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types for multithreading

In types, one introduces a “thread behaviour”:
Types: . . . | A e−→ B;

B is the behaviour of parallel threads, of any type.

Example : (NatA = (A→ A)→ A→ A)

npar := λn,p.n (λf ,d . f 〈〉|p〈〉) p 〈〉 : Nat
1

e−→B
→ (1 e−→ B)

e−→ B

nparn (λd .M)
∗−→ M| · · · |M︸ ︷︷ ︸

n+1

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types for multithreading

In types, one introduces a “thread behaviour”:
Types: . . . | A e−→ B;

B is the behaviour of parallel threads, of any type.

Example : (NatA = (A→ A)→ A→ A)

npar := λn,p.n (λf ,d . f 〈〉|p〈〉) p 〈〉 : Nat
1

e−→B
→ (1 e−→ B)

e−→ B

nparn (λd .M)
∗−→ M| · · · |M︸ ︷︷ ︸

n+1

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Types for multithreading

In types, one introduces a “thread behaviour”:
Types: . . . | A e−→ B;

B is the behaviour of parallel threads, of any type.

Example : (NatA = (A→ A)→ A→ A)

npar := λn,p.n (λf ,d . f 〈〉|p〈〉) p 〈〉 : Nat
1

e−→B
→ (1 e−→ B)

e−→ B

nparn (λd .M)
∗−→ M| · · · |M︸ ︷︷ ︸

n+1

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The base idea

Parallel threads live in a “communication soup”.

The sequentiality of each thread is similar to prefixing.

Proof nets are parallel but deterministic, i.e. not suitable for
concurrency. . .

. . . but nowadays we have differential nets!

Thomas Ehrhard and Laurent Regnier.
Differential interaction nets.
Theor. Comput. Sci., 364(2):166–195, 2006.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The base idea

Parallel threads live in a “communication soup”.

The sequentiality of each thread is similar to prefixing.

Proof nets are parallel but deterministic, i.e. not suitable for
concurrency. . .

. . . but nowadays we have differential nets!

Thomas Ehrhard and Laurent Regnier.
Differential interaction nets.
Theor. Comput. Sci., 364(2):166–195, 2006.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The base idea

Parallel threads live in a “communication soup”.

The sequentiality of each thread is similar to prefixing.

Proof nets are parallel but deterministic, i.e. not suitable for
concurrency. . .

. . . but nowadays we have differential nets!

Thomas Ehrhard and Laurent Regnier.
Differential interaction nets.
Theor. Comput. Sci., 364(2):166–195, 2006.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The target: differential nets

Extension of proofnets with one-use resources/differential
operator.

New cells:
!A!AAA

!
!A!A

!A!A

!A!A
!2

!A!A
!0

codereliction cocontraction coweakening

We will use two specific instances of second order: ∀X .(X (X) (for
“transistors”) and ∃X .X (for B).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The target: differential nets

Extension of proofnets with one-use resources/differential
operator.

New cells:
!A!AAA

!
!A!A

!A!A

!A!A
!2

!A!A
!0

codereliction cocontraction coweakening

We will use two specific instances of second order: ∀X .(X (X) (for
“transistors”) and ∃X .X (for B).

One-use resource, asked many times, used excalty once.

Differential operator ∂f
∂x

˛̨
x=0.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The target: differential nets

Extension of proofnets with one-use resources/differential
operator.

New cells:
!A!AAA

!
!A!A

!A!A

!A!A
!2

!A!A
!0

codereliction cocontraction coweakening

We will use two specific instances of second order: ∀X .(X (X) (for
“transistors”) and ∃X .X (for B).

Joining of resources.

Evaluation in a sum x + y .

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The target: differential nets

Extension of proofnets with one-use resources/differential
operator.

New cells:
!A!AAA

!
!A!A

!A!A

!A!A
!2

!A!A
!0

codereliction cocontraction coweakening

We will use two specific instances of second order: ∀X .(X (X) (for
“transistors”) and ∃X .X (for B).

Empty resource.

Evaluation in 0.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The target: differential nets

Extension of proofnets with one-use resources/differential
operator.

New cells:
!A!AAA

!
!A!A

!A!A

!A!A
!2

!A!A
!0

codereliction cocontraction coweakening

We will use two specific instances of second order: ∀X .(X (X) (for
“transistors”) and ∃X .X (for B).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

New reductions

?!
e−→

? !2
s−→

?

?0

+
?0

?
? !0

s−→ 0

! ?2
s−→

!

!0

+
!0

!
! ?0

s−→ 0

!2 ?2
s−→

!2

!2

?2

?2
!0 ?0

s−→

!0 ?2
s−→

!0

!0

!2 ?0
s−→

?0

?0

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

New reductions

?!
e−→

? !2
s−→

?

?0

+
?0

?
? !0

s−→ 0

! ?2
s−→

!

!0

+
!0

!
! ?0

s−→ 0

!2 ?2
s−→

!2

!2

?2

?2
!0 ?0

s−→

!0 ?2
s−→

!0

!0

!2 ?0
s−→

?0

?0

A query meets a one-use resource and is answered

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

New reductions

?!
e−→

? !2
s−→

?

?0

+
?0

?
? !0

s−→ 0

! ?2
s−→

!

!0

+
!0

!
! ?0

s−→ 0

!2 ?2
s−→

!2

!2

?2

?2
!0 ?0

s−→

!0 ?2
s−→

!0

!0

!2 ?0
s−→

?0

?0

A query chooses between two sets of resources. . .

. . . or fails facing no resource (starvation)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

New reductions

?!
e−→

? !2
s−→

?

?0

+
?0

?
? !0

s−→ 0

! ?2
s−→

!

!0

+
!0

!
! ?0

s−→ 0

!2 ?2
s−→

!2

!2

?2

?2
!0 ?0

s−→

!0 ?2
s−→

!0

!0

!2 ?0
s−→

?0

?0

A one-use resource is asked by more queries and goes to either one. . .

. . . or is not asked and gives a failure (linearity!)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

New reductions

?!
e−→

? !2
s−→

?

?0

+
?0

?
? !0

s−→ 0

! ?2
s−→

!

!0

+
!0

!
! ?0

s−→ 0

!2 ?2
s−→

!2

!2

?2

?2
!0 ?0

s−→

!0 ?2
s−→

!0

!0

!2 ?0
s−→

?0

?0

Nondeterministic routing (bialgebraic structure)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Sums and boxes

So reduction introduces sums, representing different
nondeterministic internal choices.

In the nets we will consider:
no sum will appear inside boxes;

no cocontraction, coweakening or codereliction on auxiliary port will
appear (a relief!).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Differential nets and π-calculus

Thomas Ehrhard and Olivier Laurent.
Interpreting a finitary pi-calculus in differential interaction nets.
In CONCUR, volume 4703 of LNCS, pages 333–348. Springer, 2007.

Translation of a finitary fragment of π-calculus in differential nets.

One of the basic structures: communication zones
γk−2

1 k
· · ·

E.g.: γ1 =
?2

!2

?2

!2

?2

!2

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Properties of communication zones

They fuse:

γh γk
s∗−→ γh+k

They allow queries and resources to communicate:

γh+1
!

?0

? s∗−→ e−→ γh
?0 + · · ·

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Signals, transistors, broadcast

Signal: := !`

Transistor: := ? ⊗

?2 → ∗−→

Broadcast and reception:

! := !⊗ ? := ? `

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

General form of the translation

Let I = ∀α(α(α):

M?

!(!Xrk ⊗ !I)!I

rk

!(!Xr1 ⊗ !I)!I

r1

!(!Xrk ⊗ !I)!I

rk

!(!Xr1 ⊗ !I)!I

r1

x1

xn

There are two channels for each region:

One transports the actual data, on a “first come first served” basis; data
travels with a signal, to be released when hold on data is achieved;

The other passes the signal enforcing sequentiality of each thread, on a per
region basis.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Dummy effects

In adding dummy effects signal passes through, data is cut off:

M?

e

e

Γ ≡ M?

e

e

Γ

s

s

?0

!0

= M?

e

e

Γ

s

s

γ−1

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Dummy effects

In adding dummy effects signal passes through, data is cut off:

M?

e

e

Γ ≡ M?

e

e

Γ

s

s

?0

!0

= M?

e

e

Γ

s

s

γ−1

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

On to the new translation: variable, unit, abstraction

Variable (axiom) and unit (boxed 1) remain the same.

Abstraction too, signal is encapsulated along data:

(λx .M)? = !`
⊗

M?

`x

Γ e

e

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The new translation: application

For simplicity, suppose M : A
{r}−−→ B, {r} and N : A, {r}.

We adapt the previous translation. . .

(MN)• =

ΓΓ

? ⊗
⊗

`

N•

M•
?2

γ2

. . . by passing signal only and leaving data to communication zones.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The new translation: application

For simplicity, suppose M : A
{r}−−→ B, {r} and N : A, {r}.

We adapt the previous translation. . .

(MN)? =

ΓΓ

? ⊗
⊗

`

N?

M?
?2

γ2

. . . by passing signal only and leaving data to communication zones.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The new translation: νr

1 νr⇐V .N broadcasts V to N and sends it a signal;

2 waits for N to give signal back which activates the garbage collection.

(νr⇐V .N)? =

ΓΓ

N?

!

V ?

?

?0?0

?2

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The new translation: set and get

1 Memory ops wait for signal to unlock,

2 then wait for exclusive access to data,

3 then release a signal and broadcast data back.

(set(r ,V))? =

?2
!

V ◦

?

?0

!1
(get(r))? =

?2
!

?

?2

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

The translation of parallel composition

1 A received signal is sent to both terms at the same time, while data is
handled by a communication zone;

2 will send the signal when both terms have (implementation not completely
symmetric).

(M|N)? = M?

N?

?2

⊗

γ1

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

A bit of discussion

Theorem

M → N =⇒ M? +−→ N? + · · · .

The bisimulation result is yet to be precised and proved: probably
based on some notion of observable reduction.

Unlike π-calculus and its translation, the prefixing here is selective:
only operations on the same region are blocked!

Parallel evaluation with preservation of semantics relies on the fact
that there is never absence of signal, similarities with session type
systems.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

A bit of discussion

Theorem

M → N =⇒ M? +−→ N? + · · · .

The bisimulation result is yet to be precised and proved: probably
based on some notion of observable reduction.

Unlike π-calculus and its translation, the prefixing here is selective:
only operations on the same region are blocked!

Parallel evaluation with preservation of semantics relies on the fact
that there is never absence of signal, similarities with session type
systems.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

A bit of discussion

Theorem

M → N =⇒ M? +−→ N? + · · · .

The bisimulation result is yet to be precised and proved: probably
based on some notion of observable reduction.

Unlike π-calculus and its translation, the prefixing here is selective:
only operations on the same region are blocked!

Parallel evaluation with preservation of semantics relies on the fact
that there is never absence of signal, similarities with session type
systems.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Cycles

Like π-calculus’ translation, switching cycles (i.e. incorrect nets)
appear very easily.

set(r ,get(r));set(r ,get(r))

arrows indicate switching paths (dependecies) through r ’s data
wires.

backward arrow is wrong, can be avoided using directed
communication zones:

~γ1 =
?2 !2

?2

!2 ?2

!2

With them single threads are correct.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Cycles

Like π-calculus’ translation, switching cycles (i.e. incorrect nets)
appear very easily.

set(r ,get(r));set(r ,get(r))

arrows indicate switching paths (dependecies) through r ’s data
wires.

backward arrow is wrong, can be avoided using directed
communication zones:

~γ1 =
?2 !2

?2

!2 ?2

!2

With them single threads are correct.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Cycles

Like π-calculus’ translation, switching cycles (i.e. incorrect nets)
appear very easily.

set(r ,get(r));set(r ,get(r))

arrows indicate switching paths (dependecies) through r ’s data
wires.

backward arrow is wrong, can be avoided using directed
communication zones:

~γ1 =
?2 !2

?2

!2 ?2

!2

With them single threads are correct.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Cycles in parallel composition

However, no such workaround for parallel composition:

set(r ,get(r))|set(r ,get(r))

Here switching paths shows actual potential dependecies.

The dashed ones however are mutually exclusive! But this cannot be
detected by switching acyclicity (reduction preserves switching paths).

This happens with any threads updating the same region.

The same thing happens in π-calculus, e.g.

c(x).c 〈x〉 |c(x).c 〈x〉

No property derivable from nets!!

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Cycles in parallel composition

However, no such workaround for parallel composition:

set(r ,get(r))|set(r ,get(r))

Here switching paths shows actual potential dependecies.

The dashed ones however are mutually exclusive! But this cannot be
detected by switching acyclicity (reduction preserves switching paths).

This happens with any threads updating the same region.

The same thing happens in π-calculus, e.g.

c(x).c 〈x〉 |c(x).c 〈x〉

No property derivable from nets!!

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Cycles in parallel composition

However, no such workaround for parallel composition:

set(r ,get(r))|set(r ,get(r))

Here switching paths shows actual potential dependecies.

The dashed ones however are mutually exclusive! But this cannot be
detected by switching acyclicity (reduction preserves switching paths).

This happens with any threads updating the same region.

The same thing happens in π-calculus, e.g.

c(x).c 〈x〉 |c(x).c 〈x〉

No property derivable from nets!!

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Cycles in parallel composition

However, no such workaround for parallel composition:

set(r ,get(r))|set(r ,get(r))

Here switching paths shows actual potential dependecies.

The dashed ones however are mutually exclusive! But this cannot be
detected by switching acyclicity (reduction preserves switching paths).

This happens with any threads updating the same region.

The same thing happens in π-calculus, e.g.

c(x).c 〈x〉 |c(x).c 〈x〉

No property derivable from nets!!

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

What can be done?

Prove that these cycles do not disturb the observable reduction used
for bisimulation? I.e. relax correctness criterion.

Add structure to nets, e.g. syntactic mutual exclusion edges?

Find subcalculi that fit in switching acyclicity? (but threads updating
a same variable are hard to leave out)

skip to end

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Another approach

Let us concentrate on termination.

Take two typed & stratified sequential programs M and N accessing
region r .

νr⇐V .M terminates.

νr⇐V .N terminates too.

What about νr⇐V .(M|N)? Interleaved reduction. . .

νr⇐V .(M|N)
+−→ νr⇐V1.(M1|N)

+−→ νr⇐V2.(M1|N1)
+−→

· · · +−→ r⇐V2k+1.(Mk+1|Nk)
+−→ r⇐V2k+2.(Mk+1|Nk+1) · · ·

What if we were able to prove that νr⇐{V0,V1, . . . ,Vk , . . .}.M
terminates?
(i.e. νr⇐µ.get(r)→ V nondeterministically for any V ∈ µ.)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Another approach

Let us concentrate on termination.

Take two typed & stratified sequential programs M and N accessing
region r .

νr⇐V .M terminates.

νr⇐V .N terminates too.

What about νr⇐V .(M|N)? Interleaved reduction. . .

νr⇐V .(M|N)
+−→ νr⇐V1.(M1|N)

+−→ νr⇐V2.(M1|N1)
+−→

· · · +−→ r⇐V2k+1.(Mk+1|Nk)
+−→ r⇐V2k+2.(Mk+1|Nk+1) · · ·

What if we were able to prove that νr⇐{V0,V1, . . . ,Vk , . . .}.M
terminates?
(i.e. νr⇐µ.get(r)→ V nondeterministically for any V ∈ µ.)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Another approach

Let us concentrate on termination.

Take two typed & stratified sequential programs M and N accessing
region r .

νr⇐V .M terminates.

νr⇐V .N terminates too.

What about νr⇐V .(M|N)? Interleaved reduction. . .

νr⇐V .(M|N)
+−→ νr⇐V1.(M1|N)

+−→ νr⇐V2.(M1|N1)
+−→

· · · +−→ r⇐V2k+1.(Mk+1|Nk)
+−→ r⇐V2k+2.(Mk+1|Nk+1) · · ·

What if we were able to prove that νr⇐{V0,V1, . . . ,Vk , . . .}.M
terminates?
(i.e. νr⇐µ.get(r)→ V nondeterministically for any V ∈ µ.)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Another approach

Let us concentrate on termination.

Take two typed & stratified sequential programs M and N accessing
region r .

νr⇐V .M terminates.

νr⇐V .N terminates too.

What about νr⇐V .(M|N)? Interleaved reduction. . .

νr⇐V .(M|N)
+−→ νr⇐V1.(M1|N)

+−→ νr⇐V2.(M1|N1)
+−→

· · · +−→ r⇐V2k+1.(Mk+1|Nk)
+−→ r⇐V2k+2.(Mk+1|Nk+1) · · ·

What if we were able to prove that νr⇐{V0,V1, . . . ,Vk , . . .}.M
terminates?
(i.e. νr⇐µ.get(r)→ V nondeterministically for any V ∈ µ.)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Another approach

Let us concentrate on termination.

Take two typed & stratified sequential programs M and N accessing
region r .

νr⇐V .M terminates.

νr⇐V .N terminates too.

What about νr⇐V .(M|N)? Interleaved reduction. . .

νr⇐V .(M|N)
+−→ νr⇐V1.(M1|N)

+−→ νr⇐V2.(M1|N1)
+−→

· · · +−→ r⇐V2k+1.(Mk+1|Nk)
+−→ r⇐V2k+2.(Mk+1|Nk+1) · · ·

What if we were able to prove that νr⇐{V0,V1, . . . ,Vk , . . .}.M
terminates?
(i.e. νr⇐µ.get(r)→ V nondeterministically for any V ∈ µ.)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Another approach

Let us concentrate on termination.

Take two typed & stratified sequential programs M and N accessing
region r .

νr⇐V .M terminates.

νr⇐V .N terminates too.

What about νr⇐V .(M|N)? Interleaved reduction. . .

νr⇐V .(M|N)
+−→ νr⇐V1.(M1|N)

+−→ νr⇐V2.(M1|N1)
+−→

· · · +−→ r⇐V2k+1.(Mk+1|Nk)
+−→ r⇐V2k+2.(Mk+1|Nk+1) · · ·

What if we were able to prove that νr⇐{V0,V1, . . . ,Vk , . . .}.M
terminates?
(i.e. νr⇐µ.get(r)→ V nondeterministically for any V ∈ µ.)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Infinite memory cells

Let Λ∞ be given by

Terms: x | 〈〉 | λx .M | MN | get(r) | (M|N).
(memory is read-only)

Programs: M,S.

Stores: S functions from regions to sets of closed values.
(possibly infinite)

E [(λx .M)V],S → E [M{V/x}],S
E [get(r)],S → E [V],S with V ∈ S(r).

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Proving termination with Λ∞
Take any region based calculus. All we need to prove its termination
is

a forgetful mapping M↓ to Λ∞ translating all memory ops except
access into silent actions.

a mapping Φ↓ from reduction chains to stores, with Φ↓(r) containing
all V ↓ for V assigned to an r -marked cell during Φ.

a discipline (e.g. stratification) preserved by (.)↓ and ensuring
termination in Λ∞.

Then M↓,Φ↓ simulates R (among many nondeterministic branches!).

For example:

(νr⇐M.N)↓ = M↓; IN↓, (νr⇐V .N)↓ = IN↓, (set(r ,M))↓ = M↓; 〈〉
Φ↓(r) =

{
V ↓ | νr⇐V .M is subterm of N ∈ Φ

}

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Proving termination with Λ∞
Take any region based calculus. All we need to prove its termination
is

a forgetful mapping M↓ to Λ∞ translating all memory ops except
access into silent actions.

a mapping Φ↓ from reduction chains to stores, with Φ↓(r) containing
all V ↓ for V assigned to an r -marked cell during Φ.

a discipline (e.g. stratification) preserved by (.)↓ and ensuring
termination in Λ∞.

Then M↓,Φ↓ simulates R (among many nondeterministic branches!).

For example:

(νr⇐M.N)↓ = M↓; IN↓, (νr⇐V .N)↓ = IN↓, (set(r ,M))↓ = M↓; 〈〉
Φ↓(r) =

{
V ↓ | νr⇐V .M is subterm of N ∈ Φ

}

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Infinite boxes

LL∞: regular LL (no cocontraction, coweakening nor codereliction),
where boxes contain sets of nets.

?!{πi} e−→ πi for any i .

Need care (deep structural red. infinite red., so we revert to a
form of the so-called quotienting “nouvelle syntaxe”).

For the purpose of Λ∞, we can be strict:

infinite boxes at depth 0 only;

no infinite box on auxiliary port cut (by typing).

Theorem
Surface reduction of simply typed LL∞ terminates.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Termination of stratified Λ∞

Translation of Λ∞ in LL∞: a matter of simple adaptation of the one of
Λreg in LL.

Theorem

M,S evaluates to V ,S iff (M,S)• normalizes to (V ,S)•.

S typed under region context R if dom(S) ⊆ dom(R) and all
V ∈ S(r) typed by R(r).

M,S typed with stratified region R, then (M,S)• is simply typed.

Theorem
If M,S is simply typed, then all its reductions terminate.

Direct proof certainly possible, but for now I prefer playing with
infinite boxes :)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Termination of stratified Λ∞

Translation of Λ∞ in LL∞: a matter of simple adaptation of the one of
Λreg in LL.

Theorem

M,S evaluates to V ,S iff (M,S)• normalizes to (V ,S)•.

S typed under region context R if dom(S) ⊆ dom(R) and all
V ∈ S(r) typed by R(r).

M,S typed with stratified region R, then (M,S)• is simply typed.

Theorem
If M,S is simply typed, then all its reductions terminate.

Direct proof certainly possible, but for now I prefer playing with
infinite boxes :)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Termination of stratified Λ∞

Translation of Λ∞ in LL∞: a matter of simple adaptation of the one of
Λreg in LL.

Theorem

M,S evaluates to V ,S iff (M,S)• normalizes to (V ,S)•.

S typed under region context R if dom(S) ⊆ dom(R) and all
V ∈ S(r) typed by R(r).

M,S typed with stratified region R, then (M,S)• is simply typed.

Theorem
If M,S is simply typed, then all its reductions terminate.

Direct proof certainly possible, but for now I prefer playing with
infinite boxes :)

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

What’s next

Study LL∞.

Carry over results to second order.

Adapt to region polymorphism.

Design a sensible stratification discipline for real world languages
(ML and its dialects) ensuring termination.

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Thanks

Questions?

Types and Effects
Translating into Proof Nets

Multithreading and Differential Nets

First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

Outline

1 Types and Effects
The syntax
Typing and stratification

2 Translating into Proof Nets
The target
The translation

3 Multithreading and Differential Nets
First go: communication by differential operator
Second go: infinitary nondeterminism (slides only)

	Types and Effects
	The syntax
	Typing and stratification

	Translating into Proof Nets
	The target
	The translation

	Multithreading and Differential Nets
	First go: communication by differential operator
	Second go: infinitary nondeterminism (slides only)

