## References, multithreading and differential nets

#### Paolo Tranquilli

paolo.tranquilli@ens-lyon.fr

Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon

Lip

séminaire choco Lyon, 22/04/2010

#### **Outline**

- Types and Effects
  - The syntax
  - Typing and stratification
- Translating into Proof Nets
  - The target
  - The translation
- Multithreading and Differential Nets
  - First go: communication by differential operator
  - Second go: infinitary nondeterminism (slides only)

#### **Outline**

- Types and Effects
  - The syntax
  - Typing and stratification
- Translating into Proof Nets
  - The target
  - The translation
- Multithreading and Differential Nets
  - First go: communication by differential operator
  - Second go: infinitary nondeterminism (slides only)

#### The context

We study  $\Lambda_{reg}$ , a call-by-value calculus with two basic memory access ops (set and get) and a memory management op ( $\nu$ ).



J. M. Lucassen and D. K. Gifford.

Polymorphic effect systems.

In POPL '88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 47–57, New York, NY, USA, 1988. ACM



Roberto M. Amadio.

On stratified regions.

In Zhenjiang Hu, editor, *APLAS*, volume 5904 of *Lecture Notes in Computer Science*, pages 210–225. Springer, 2009.

An abstraction of functional programming languages with references.

# The syntax of $\Lambda_{reg}$

Functions are values:

$$U, V ::= x \mid \langle \rangle \mid \lambda x.M$$

Terms can also be memory management operations:

$$M, N ::= V \mid MN \mid set(r, V) \mid get(r) \mid \nu r \Leftarrow V.N$$

Call-by-value order enforced via evaluation contexts:

$$E, F ::= [] \mid EM \mid VE \mid \nu r \Leftarrow V.E$$

#### **Evaluation**

Intuition:  $\nu r$ 's allocate, represent and garbage collect memory.

$$E[(\lambda x.M)V] \to E[M\{V/x\}]$$

$$E[\nu r \Leftarrow V.F[\operatorname{set}(r,U)]] \to E[\nu r \Leftarrow U.F[\langle \rangle]]$$

$$E[\nu r \Leftarrow V.F[\operatorname{get}(r)]] \to E[\nu r \Leftarrow V.F[V]]$$

$$E[\nu r \Leftarrow V.U] \to E[U]$$
with  $r \notin PR(F)$ ,
$$E[\nu r \Leftarrow V.U] \to E[U]$$

where PR(E) are given by what  $\nu r$ 's bind the hole.

ullet  $\nu$  is not very classical, however it conveniently represents stores and it is quite natural from the monadic point of view (more later).

```
function pow(n, m)
    r := 1:
    for i := 1 to m
        r := n * r:
    return r:
```

```
function pow(n, m)
                              pow := \lambda n, m.
    r := 1:
    for i := 1 to m
         r := n * r:
    return r:
```

```
function pow(n, m)
                                  pow := \lambda n, m.
     r := 1:
                                        \nu r \Leftarrow 1.
     for i := 1 to m
          r := n * r:
     return r:
```

```
pow := \lambda n, m.
function pow(n, m)
     r := 1:
                                       \nu r \Leftarrow 1.
     for i := 1 to m
                                        m
          r := n * r:
     return r:
```

```
pow := \lambda n, m.
function pow(n, m)
       r := 1:
                                                        \nu r \Leftarrow 1.
       for i := 1 to m
                                                        m
                                                               (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
              r := n * r:
       return r:
```

```
function pow(n, m)
                                               pow := \lambda n, m.
       r := 1:
                                                      \nu r \Leftarrow 1.
       for i := 1 to m
                                                      m
                                                              (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
              r := n * r:
                                                       get(r)
       return r:
```

```
function pow(n, m)
                                                 pow := \lambda n, m.
        r := 1:
                                                         \nu r \Leftarrow 1.
         for i := 1 to m
                                                         m
                                                                (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                r := n * r:
                                                         get(r)
         return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. set(r, mult 3 get(r)) \langle \rangle; get(r)
```

```
function pow(n, m)
                                                          pow := \lambda n, m.
          r := 1:
                                                                   \nu r \Leftarrow 1.
          for i := 1 to m
                                                                    m
                                                                             (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                   r := n * r:
                                                                    get(r)
          return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
```

```
function pow(n, m)
                                                               pow := \lambda n, m.
           r := 1:
                                                                         \nu r \Leftarrow 1.
           for i := 1 to m
                                                                          m
                                                                                    (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                     r := n * r:
                                                                           get(r)
           return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
                 \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \langle \rangle; set(r, \text{mult } 3 \text{ get}(r)); set(r, \text{mult } 3 \text{ get}(r)); get(r, \text{mult } 3 \text{ get}(r));
```

```
function pow(n, m)
                                                                    pow := \lambda n, m.
            r := 1:
                                                                               \nu r \Leftarrow 1.
            for i := 1 to m
                                                                                m
                                                                                          (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                      r := n * r:
                                                                                get(r)
            return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
                  \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \langle \rangle; set(r, \text{mult } 3 \text{ get}(r)); set(r, \text{mult } 3 \text{ get}(r)); get(r)
                  \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r, \operatorname{mult} \underline{31}); \operatorname{set}(r, \operatorname{mult} \underline{3} \operatorname{get}(r)); \operatorname{get}(r)
```

```
function pow(n, m)
                                                                         pow := \lambda n, m.
             r := 1:
                                                                                    \nu r \Leftarrow 1.
             for i := 1 to m
                                                                                     m
                                                                                                (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                        r := n * r:
                                                                                     get(r)
             return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
                   \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \langle \rangle; set(r, \text{mult } 3 \text{ get}(r)); set(r, \text{mult } 3 \text{ get}(r)); get(r)
                   \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r, \operatorname{mult} \underline{3} \underline{1}); \operatorname{set}(r, \operatorname{mult} \underline{3} \operatorname{get}(r)); \operatorname{get}(r)
                   \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r,3); \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
```

```
function pow(n, m)
                                                                              pow := \lambda n, m.
              r := 1:
                                                                                          \nu r \Leftarrow 1.
              for i := 1 to m
                                                                                           m
                                                                                                      (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                         r := n * r:
                                                                                           get(r)
              return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \langle \rangle; set(r, \text{mult } 3 \text{ get}(r)); set(r, \text{mult } 3 \text{ get}(r)); get(r, \text{mult } 3 \text{ get}(r));
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r, \operatorname{mult} \underline{3} \underline{1}); \operatorname{set}(r, \operatorname{mult} \underline{3} \operatorname{get}(r)); \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r,3); \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 3. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
```

```
function pow(n, m)
                                                                               pow := \lambda n, m.
              r := 1:
                                                                                           \nu r \Leftarrow 1.
              for i := 1 to m
                                                                                            m
                                                                                                        (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                          r := n * r:
                                                                                            get(r)
              return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \langle \rangle; set(r, \text{mult } 3 \text{ get}(r)); set(r, \text{mult } 3 \text{ get}(r)); get(r, \text{mult } 3 \text{ get}(r));
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r, \operatorname{mult} \underline{3} \underline{1}); \operatorname{set}(r, \operatorname{mult} \underline{3} \operatorname{get}(r)); \operatorname{get}(r)
                      \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r,3); \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 3. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
                     \xrightarrow{*} \nu r \Leftarrow 9. \operatorname{qet}(r) \rightarrow \nu r \Leftarrow 9.9 \rightarrow 9
```

```
function pow(n, m)
                                                                               pow := \lambda n, m.
              r := 1:
                                                                                           \nu r \Leftarrow 1.
              for i := 1 to m
                                                                                            m
                                                                                                        (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                          r := n * r:
                                                                                             get(r)
              return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \langle \rangle; set(r, \text{mult } 3 \text{ get}(r)); set(r, \text{mult } 3 \text{ get}(r)); get(r, \text{mult } 3 \text{ get}(r));
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r, \operatorname{mult} \underline{3} \underline{1}); \operatorname{set}(r, \operatorname{mult} \underline{3} \operatorname{get}(r)); \operatorname{get}(r)
                      \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r,3); \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 3. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
                     \xrightarrow{*} \nu r \Leftarrow 9. \operatorname{qet}(r) \rightarrow \nu r \Leftarrow 9.9 \rightarrow 9
```

```
function pow(n, m)
                                                                               pow := \lambda n, m.
              r := 1:
                                                                                           \nu r \Leftarrow 1.
              for i := 1 to m
                                                                                            m
                                                                                                        (\lambda d. \operatorname{set}(r, \operatorname{mult} n \operatorname{get}(r))) \langle \rangle;
                          r := n * r:
                                                                                            get(r)
              return r:
pow 32 \rightarrow \nu r \Leftarrow 1.2(\lambda d. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)) \langle \rangle; \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \langle \rangle; set(r, \text{mult } 3 \text{ get}(r)); set(r, \text{mult } 3 \text{ get}(r)); get(r, \text{mult } 3 \text{ get}(r));
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r, \operatorname{mult} \underline{3} \underline{1}); \operatorname{set}(r, \operatorname{mult} \underline{3} \operatorname{get}(r)); \operatorname{get}(r)
                      \stackrel{*}{\rightarrow} \nu r \Leftarrow 1. \operatorname{set}(r,3); \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
                     \stackrel{*}{\rightarrow} \nu r \Leftarrow 3. \operatorname{set}(r, \operatorname{mult} 3 \operatorname{get}(r)); \operatorname{get}(r)
                     \xrightarrow{*} \nu r \Leftarrow 9. \operatorname{qet}(r) \rightarrow \nu r \Leftarrow 9.9 \rightarrow 9
```

# Types and effects

- Types and effect systems statically analyze side effects via annotations in regular typing systems.
- Usually for memory ops one divides memory into a finite set of regions (r, s,...).
- Types have annotated arrows: A ::= 1 | A → B, e set of accessed regions.
- $R = r_1 : A_1, \dots, r_k : A_k$  is a region context (i.e. regions hold values of a single type).
- We are simplifying by identifying locations and regions (no ref<sub>r</sub> A type)

# Types and effects

- Types and effect systems statically analyze side effects via annotations in regular typing systems.
- Usually for memory ops one divides memory into a finite set of regions (r, s,...).
- Types have annotated arrows: A ::= 1 | A → B, e set of accessed regions.
- $R = r_1 : A_1, \dots, r_k : A_k$  is a region context (i.e. regions hold values of a single type).
- We are simplifying by identifying locations and regions (no  $ref_r A$  type).

$$\overline{R; \Gamma, x : A \vdash x : A, \emptyset} \quad \overline{R; \Gamma \vdash \langle \rangle : 1, \emptyset}$$

$$\underline{R; \Gamma, x : A \vdash M : B, e}_{R : \Gamma \vdash \lambda x.M : A \xrightarrow{e} B, \emptyset} \quad \underline{R; \Gamma \vdash M : A \xrightarrow{e_3} B, e_1 \quad R; \Gamma \vdash N : A, e_2}_{R : \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3}$$

$$\underline{R, r : A; \Gamma \vdash V : A, \emptyset}_{R, r : A; \Gamma \vdash \text{set}(r, V) : 1, \{r\}} \quad \overline{R, r : A; \Gamma \vdash \text{get}(r) : A, \{r\}}$$

$$\underline{R, r : A; \Gamma \vdash V : A, \emptyset \quad R, r : A; \Gamma \vdash M : B, e}_{R, r : A; \Gamma \vdash M : A, e \quad e \subsetneq f \subseteq \text{dom}(R)}$$

$$\underline{R; \Gamma \vdash M : A, e \quad e \subsetneq f \subseteq \text{dom}(R)}_{R; \Gamma \vdash M : A, f}$$

$$R; \Gamma, x : A \vdash x : A, \emptyset \quad R; \Gamma \vdash \langle \rangle : 1, \emptyset$$
 $R; \Gamma, x : A \vdash M : B$ 
Regular axioms, no effects
 $R; \Gamma \vdash N : A, e_2$ 
 $R: \Gamma \vdash \lambda x.M : A \stackrel{e}{\rightarrow} B, \emptyset \qquad R: \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3$ 

$$R, r : A; \Gamma \vdash V : A, \emptyset$$

$$R, r : A; \Gamma \vdash Set(r, V) : 1, \{r\} \qquad R, r : A; \Gamma \vdash get(r) : A, \{r\}$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash \nu r \Leftarrow V.M : B, e \setminus \{r\}$$

$$R; \Gamma \vdash M : A, e \qquad e \subsetneq f \subseteq dom(R)$$

$$R; \Gamma \vdash M : A, f$$

$$R; \Gamma, x : A \vdash x : A, \emptyset \qquad R; \Gamma \vdash \langle \rangle : 1, \emptyset$$

$$R; \Gamma, x : A \vdash M : B, e$$

$$R : \Gamma \vdash \lambda x.M : A \stackrel{e}{\rightarrow} B, \emptyset \qquad R; \Gamma \vdash M : A \stackrel{e_3}{\rightarrow} B, e_1 \qquad R; \Gamma \vdash N : A, e_2$$

$$R : \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3$$

$$R, r : A; \Gamma \vdash set(r, V) : 1, \{r\} \qquad R, r : A; \Gamma \vdash get(r) : A, \{r\}$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash W : A, \theta \qquad e \subsetneq f \subseteq dom(R)$$

$$R; \Gamma \vdash M : A, e \qquad e \subsetneq f \subseteq dom(R)$$

$$\overline{R; \Gamma, x : A \vdash x : A, \emptyset} \quad \overline{R; \Gamma \vdash \langle \rangle : 1, \emptyset}$$

$$\underline{R; \Gamma, x : A \vdash M : B, e}$$

$$R : \Gamma \vdash \lambda x.M : A \stackrel{\theta}{\rightarrow} B, \emptyset$$

$$\underline{R; \Gamma \vdash M : A \stackrel{\theta_3}{\rightarrow} B, e_1 \quad R; \Gamma \vdash N : A, e_2}$$

$$\underline{R: \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3}$$

$$\underline{R: \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3}$$

$$\underline{R; \Gamma \vdash M : A, \Gamma \vdash A, \Gamma \vdash$$

$$R; \Gamma, X : A \vdash X : A, \emptyset \qquad R; \Gamma \vdash \langle \rangle : 1, \emptyset$$

$$R; \Gamma, X : A \vdash M : B, e \qquad R; \Gamma \vdash M : A \xrightarrow{\Theta_3} B, e_1 \qquad R; \Gamma \vdash N : A, e_2$$

$$R : \Gamma \vdash \lambda X.M : A \xrightarrow{\Theta} B, \emptyset \qquad R : \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3$$

$$R, r : A; \Gamma \vdash V : A, \emptyset$$

$$R, r : A; \Gamma \vdash Set(r, V) : 1, \{r\} \qquad R, r : A; \Gamma \vdash get(r) : A, \{r\}$$

$$R, r : A; \Gamma \vdash vr \Leftarrow V.M : B, e \setminus \{r\}$$

$$R; \Gamma \vdash M : A, e \qquad e \subsetneq f \subseteq dom(R)$$

$$R; \Gamma \vdash M : A, f$$

Typing judgments R;  $\Gamma \vdash M : A, e$ : means M accesses e.

$$\overline{R; \Gamma, x : A \vdash x : A, \emptyset} \quad \overline{R; \Gamma \vdash \langle \rangle : 1, \emptyset}$$

$$R; \Gamma, x : A \vdash M : B, e \qquad R; \Gamma \vdash M : A \xrightarrow{e_3} B, e_1 \qquad R; \Gamma \vdash N : A, e_2$$

$$R : \Gamma \vdash \lambda x.M : A \xrightarrow{e} B, \emptyset \qquad R : \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad \overline{R, r : A; \Gamma \vdash \text{get}(r) : A, \{r\}}$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$R, r : A; \Gamma \vdash \nu r \Leftarrow V.M : B, e \setminus \{r\}$$
Allocations/deallocations bide effects on region

Allocations/deallocations hide effects on region

R;  $\Gamma \vdash M : A$ , I

$$\overline{R; \Gamma, x : A \vdash x : A, \emptyset} \quad \overline{R; \Gamma \vdash \langle \rangle : 1, \emptyset}$$

$$R; \Gamma, x : A \vdash M : B, e \qquad R; \Gamma \vdash M : A \xrightarrow{e_3} B, e_1 \qquad R; \Gamma \vdash N : A, e_2$$

$$R : \Gamma \vdash \lambda x.M : A \xrightarrow{e} B, \emptyset \qquad R : \Gamma \vdash MN : B, e_1 \cup e_2 \cup e_3$$

$$R, r : A; \Gamma \vdash V : A, \emptyset$$

$$R, r : A; \Gamma \vdash \text{set}(r, V) : 1, \{r\} \qquad \overline{R, r : A; \Gamma \vdash \text{get}(r) : A, \{r\}}$$

$$R, r : A; \Gamma \vdash V : A, \emptyset \qquad R, r : A; \Gamma \vdash M : B, e$$

$$\overline{R; \Gamma \vdash M : A, e} \qquad e \subsetneq f \subseteq \text{dom}(R)$$

$$R; \Gamma \vdash M : A, e \qquad e \subsetneq f \subseteq \text{dom}(R)$$

$$R; \Gamma \vdash M : A, f$$

# Type, effects and termination

- Types and effects assure type and memory safety, but not termination.
- Typed fixpoints! In particular endless loop:

$$r: 1 \xrightarrow{\{r\}} A; \vdash \nu r \Leftarrow \lambda x. \operatorname{get}(r) x. \operatorname{get}(r) \langle \rangle : 1, \emptyset$$
  
 $\nu r \Leftarrow \lambda x. \operatorname{get}(r) x. \operatorname{get}(r) \langle \rangle \to \nu r \Leftarrow \lambda x. \operatorname{get}(r) x. (\lambda x. \operatorname{get}(r) x) \langle \rangle$   
 $\to \nu r \Leftarrow \lambda x. \operatorname{get}(r) x. \operatorname{get}(r) \langle \rangle \to \cdots$ 

Typing prevents self-application, but not self-reference

## Type, effects and termination

- Types and effects assure type and memory safety, but not termination.
- Typed fixpoints! In particular endless loop:

$$r: 1 \xrightarrow{\{r\}} A; \vdash \nu r \Leftarrow \lambda x. \operatorname{get}(r) x. \operatorname{get}(r) \langle \rangle : 1, \emptyset$$

$$\nu r \Leftarrow \lambda x. \operatorname{get}(r) x. \operatorname{get}(r) \langle \rangle \to \nu r \Leftarrow \lambda x. \operatorname{get}(r) x. (\lambda x. \operatorname{get}(r) x) \langle \rangle$$

$$\to \nu r \Leftarrow \lambda x. \operatorname{get}(r) x. \operatorname{get}(r) \langle \rangle \to \cdots$$

• Typing prevents self-application, but not self-reference.

#### Stratification

 Boudol/Amadio's proposal to avoid self-reference and ensure normalization: stratification of the region context (R ⊢).

$$\frac{R \vdash A \quad r \notin \text{dom}(R)}{R, r : A \vdash}$$

$$\frac{R \vdash}{R \vdash 1} \quad \frac{R \vdash A \quad R \vdash B \quad e \subseteq \text{dom}(R)}{R \vdash A \stackrel{e}{\to} B}$$

- Order given by definition: r: 1 <sup>{r}</sup>/<sub>→</sub> A is not stratified as r needs to already have a type when using 1 <sup>{r}</sup>/<sub>→</sub> A.
- Alternative proof with stratification by natural numbers by Demangeon, Hirschkoff and Sangiorgi.

#### Stratification

 Boudol/Amadio's proposal to avoid self-reference and ensure normalization: stratification of the region context (R ⊢).

$$\frac{R \vdash A \quad r \notin \text{dom}(R)}{R, r : A \vdash}$$

$$\frac{R \vdash A \quad R \vdash B \quad e \subseteq \text{dom}(R)}{R \vdash A \stackrel{\theta}{\to} B}$$

- Order given by definition:  $r: 1 \xrightarrow{\{r\}} A$  is not stratified as r needs to already have a type when using  $1 \xrightarrow{\{r\}} A$ .
- Alternative proof with stratification by natural numbers by Demangeon, Hirschkoff and Sangiorgi.

#### Stratification

 Boudol/Amadio's proposal to avoid self-reference and ensure normalization: stratification of the region context (R ⊢).

$$\frac{R \vdash A \quad r \notin \text{dom}(R)}{R, r : A \vdash}$$

$$\frac{R \vdash}{R \vdash 1} \quad \frac{R \vdash A \quad R \vdash B \quad e \subseteq \text{dom}(R)}{R \vdash A \stackrel{e}{\to} B}$$

- Order given by definition:  $r: 1 \xrightarrow{\{r\}} A$  is not stratified as r needs to already have a type when using  $1 \xrightarrow{\{r\}} A$ .
- Alternative proof with stratification by natural numbers by Demangeon, Hirschkoff and Sangiorgi.

#### **Outline**

- Types and Effects
  - The syntax
  - Typing and stratification
- Translating into Proof Nets
  - The target
  - The translation
- Multithreading and Differential Nets
  - First go: communication by differential operator
  - Second go: infinitary nondeterminism (slides only)

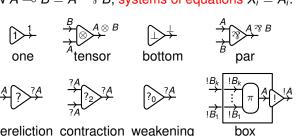
#### The aim

- We will give a translation of  $\Lambda_{reg}$  in Linear Logic (LL).
- It is essentially the call-by-value translation  $\Lambda \to LL$  composed with a localized monadic translation  $\Lambda_{reg} \to \Lambda$  we will not give here.
- All can be carried out in Λ, however LL provides graphical intuitions and parallel evaluation, and opens the way for the third part of the talk.

# The target

Cells:

- Proof nets are the parallel representation of linear logic proofs.
- Types:  $X \mid X^{\perp} \mid 1 \mid \bot \mid A \otimes B \mid A \nearrow B \mid A \mid A \mid A$  with duality  $A^{\perp}$ , linear arrow  $A \multimap B = A^{\perp} \Re B$ , systems of equations  $X_i \doteq A_i$ .



dereliction contraction weakening

 Proof nets formed matching wires and enforcing a correctness criterion.

# The target

- Proof nets are the parallel representation of linear logic proofs.
- Types:  $X \mid X^{\perp} \mid 1 \mid \bot \mid A \otimes B \mid A ? B \mid !A \mid ?A$  with duality  $A^{\perp}$ , linear arrow  $A \multimap B = A^{\perp} ? B$ , systems of equations  $X_i \doteq A_i$ .

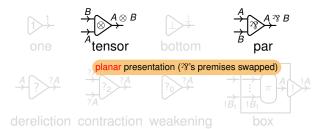


derenction contraction weakening

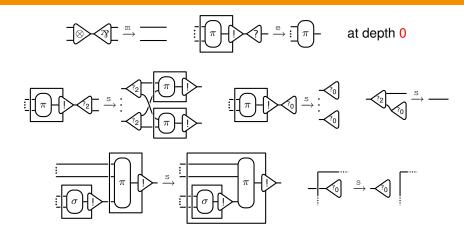
 Proof nets formed matching wires and enforcing a correctness criterion.

# The target

- Proof nets are the parallel representation of linear logic proofs.
- Types:  $X \mid X^{\perp} \mid 1 \mid \bot \mid A \otimes B \mid A ? B \mid !A \mid ?A$  with duality  $A^{\perp}$ , linear arrow  $A \multimap B = A^{\perp} ? B$ , systems of equations  $X_i \doteq A_i$ .



 Proof nets formed matching wires and enforcing a correctness criterion.



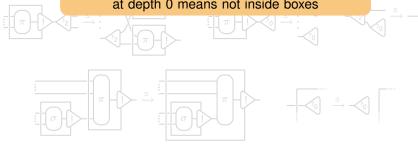
$$-\sqrt{2}$$
  $\equiv$   $-\sqrt{2}$ 

$$= \sqrt{2} = \sqrt{2}$$

$$-\sqrt{2} \equiv \sqrt{2}$$

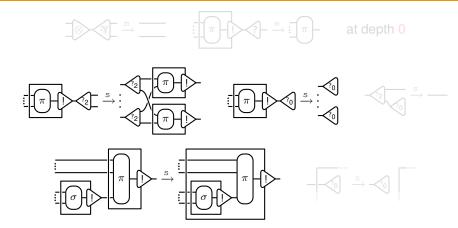


logical reductions (multiplicative and exponential) at depth 0 means not inside boxes



$$-\langle \overline{1}_2 \rangle \equiv -\langle \overline{1}_2 \rangle \langle$$

$$-\sqrt{2}$$



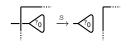
usual structural reductions (duplication, erasing, composition of boxes) at any depth



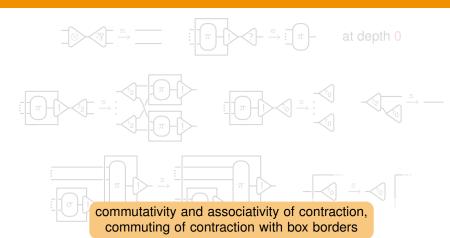


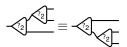
## neutrality of weakening on contraction and pull reduction

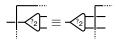




$$-\sqrt{2}$$
 
$$\equiv -\sqrt{2}$$







### The results

We present a translation  $M^{\bullet}$  from typed  $\Lambda_{\text{reg}}$  programs M to (resursively) typed proof nets.

#### **Theorem**

If  $M \to N$  then  $M^{\bullet} \xrightarrow{e} \xrightarrow{m*} \xrightarrow{s*} N^{\bullet}$ .

#### Theorem

 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\to} V$ .

Regions contexts R are translated as systems of equations  $R^{\bullet}$ , generally giving recursive types.

#### Theorem

R is stratified iff R<sup>o</sup> is solvable (i.e. no real recursive types).

### The results

We present a translation  $M^{\bullet}$  from typed  $\Lambda_{\text{reg}}$  programs M to (resursively) typed proof nets.

#### **Theorem**

If  $M \to N$  then  $M^{\bullet} \xrightarrow{e} \xrightarrow{m*} \xrightarrow{s*} N^{\bullet}$ .

#### **Theorem**

 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\to} V$ .

Regions contexts R are translated as systems of equations  $R^{\bullet}$ , generally giving recursive types.

#### Theorem

R is stratified iff R<sup>o</sup> is solvable (i.e. no real recursive types).

### The results

We present a translation  $M^{\bullet}$  from typed  $\Lambda_{\text{reg}}$  programs M to (resursively) typed proof nets.

#### **Theorem**

If  $M \to N$  then  $M^{\bullet} \xrightarrow{e} \xrightarrow{m*} \xrightarrow{s*} N^{\bullet}$ .

#### **Theorem**

 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\to} V$ .

Regions contexts R are translated as systems of equations  $R^{\bullet}$ , generally giving recursive types.

#### **Theorem**

R is stratified iff R<sup>o</sup> is solvable (i.e. no real recursive types).

# Call-by-value translation

- Regular  $\lambda$ -calculus has two translations into linear logic, allowing its parallel evaluation.
- They are based on the two Girard's translations of intuitionistic logic:

$$(A \rightarrow B)^{\blacktriangle} = !A^{\blacktriangle} \multimap B^{\blacktriangle}, \qquad (A \rightarrow B)^{\bullet} = !(A^{\bullet} \multimap B^{\bullet})$$

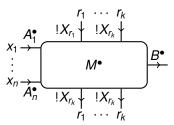
 In fact, the former corresponds to call-by-name (arguments are duplicable), the latter to call-by-value (functions are duplicable).



- J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name, call-by-value, call-by-need and the linear lambda calculus. *Theor. Comput. Sci.*, 228(1-2):175–210, 1999.
- We will therefore extend the call-by-value translation.

## General form of the translation

• R;  $x_1 : A_1, \dots, x_n : A_n \vdash M : B, \{r_1, \dots, r_k\}$  gets translated to a net



(we will show the translation of types and effects later)

 It is useful to visualize programs as processing streams of regions going top to bottom.

# Dummy variables and dummy effects

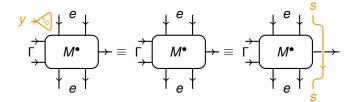
We consider translations up to dummy variables and dummy effects.

# Dummy variables and dummy effects

We consider translations up to dummy variables and dummy effects.

# Dummy variables and dummy effects

We consider translations up to dummy variables and dummy effects.



## The translation: variable and unit

$$X^{\bullet} = \xrightarrow{A^{\bullet}} \langle \rangle^{\bullet} =$$

Types: 
$$1^{\bullet} = !1$$
.

$$(\lambda x.M)^{\bullet} = \underbrace{\begin{array}{c} x \\ M^{\bullet} \end{array}}_{\Gamma} \underbrace{\begin{array}{c} |((A^{\bullet})^{\perp} \approx B^{\bullet}) \\ \end{array}}_{\Gamma}$$

Usual call-by-value translation extended by encapsulating the effects.

Types: 
$$e^{\bullet} = \bigotimes_{r \in e} !X_r$$
,  $(A \xrightarrow{e} B)^{\bullet} = !(A^{\bullet} \multimap e^{\bullet} \multimap (e^{\bullet} \otimes B^{\bullet}))$ .

$$(\lambda x.M)^{\bullet} = \underbrace{\begin{array}{c} x \\ M^{\bullet} \end{array}}_{\Gamma} \underbrace{\begin{array}{c} |(A^{\bullet} - B^{\bullet})| \\ M^{\bullet} \end{array}}_{\Gamma}$$

Usual call-by-value translation extended by encapsulating the effects.

Types: 
$$e^{\bullet} = \bigotimes_{r \in e} !X_r$$
,  $(A \xrightarrow{e} B)^{\bullet} = !(A^{\bullet} \multimap e^{\bullet} \multimap (e^{\bullet} \otimes B^{\bullet}))$ .

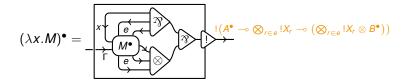
$$(\lambda x.M)^{\bullet} = \underbrace{\begin{array}{c} x \\ \theta \\ M^{\bullet} \\ \end{array}}_{\Gamma} \underbrace{\begin{array}{c} y \\ 0 \\ \end{array}}_{\Gamma} \underbrace{\begin{array}{c} y \\ 0 \\ \end{array}}_{\Gamma}$$

Usual call-by-value translation extended by encapsulating the effects.

Types: 
$$e^{\bullet} = \bigotimes_{r \in e} !X_r$$
,  $(A \xrightarrow{e} B)^{\bullet} = !(A^{\bullet} \multimap e^{\bullet} \multimap (e^{\bullet} \otimes B^{\bullet}))$ .

Usual call-by-value translation extended by encapsulating the effects.

Types: 
$$e^{\bullet} = \bigotimes_{r \in e} !X_r$$
,  $(A \xrightarrow{e} B)^{\bullet} = !(A^{\bullet} \multimap e^{\bullet} \multimap (e^{\bullet} \otimes B^{\bullet}))$ .



Usual call-by-value translation extended by encapsulating the effects.

Types: 
$$e^{\bullet} = \bigotimes_{r \in e} !X_r$$
,  $(A \xrightarrow{e} B)^{\bullet} = !(A^{\bullet} \multimap e^{\bullet} \multimap (e^{\bullet} \otimes B^{\bullet}))$ .

# The translation: application

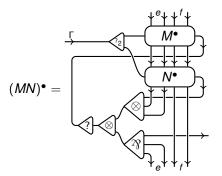
Suppose  $M: A \rightarrow B, \emptyset$  and  $N: A, \emptyset$ .

$$(MN)^{\bullet} = \begin{array}{|c|c|} \hline & M^{\bullet} \\ \hline & N^{\bullet} \\ \hline & \vdots \\ \\ \hline & \vdots \\ \hline & \vdots$$

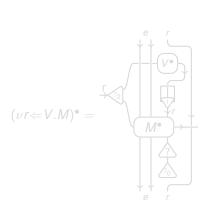
**Usual translation** extended by extracting effects and linking in evaluation order.

## The translation: application

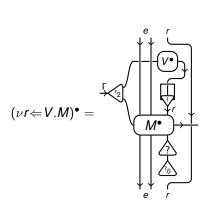
Suppose  $M: A \xrightarrow{e} B, e+f$  and N: A, e+f.



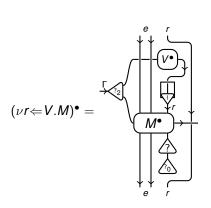
Usual translation extended by extracting effects and linking in evaluation order.



$$(\operatorname{set}(r,V))^{\bullet} = (\operatorname{get}(r))^{\bullet} = (\operatorname{get}($$

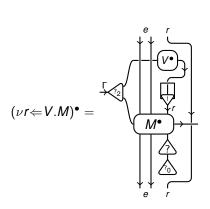


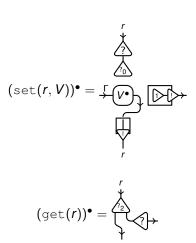
$$(\operatorname{get}(r))^{\bullet} = (\operatorname{get}(r))^{\bullet} = (\operatorname{get}(r)$$



$$(\operatorname{set}(r,V))^{\bullet} = \underbrace{\begin{array}{c} r \\ V^{\bullet} \\ r \end{array}}$$

$$(\operatorname{get}(r))^{\circ} = \underbrace{\begin{array}{c} r \\ 12 \\ 12 \end{array}}$$





## The translation: summing up

- Sets of regions:  $e^{\bullet} = \bigotimes_{r \in e} !X_r$ .
- Types:  $1^{\bullet} = !1$   $(A \xrightarrow{e} B)^{\bullet} = !(A^{\bullet} \multimap e^{\bullet} \multimap (e^{\bullet} \otimes B^{\bullet}))$  (we consider  $(A \xrightarrow{\emptyset} B)^{\bullet} = !(A^{\bullet} \multimap B^{\bullet}))$
- Region contexts:  $(r_1:A_1,\ldots,r_k:A_k)^{\bullet}=(X_{r_1}\dot{=}A_1^{\bullet},\ldots,X_{r_k}\dot{=}A_k^{\bullet}).$

#### **Theorem**

If  $M \to N$  then  $M^{\bullet} \xrightarrow{e} \xrightarrow{m*} \xrightarrow{s*} N^{\bullet}$ .

#### **Theorem**

 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\to} V$ .

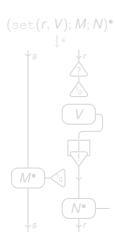
#### **Theorem**

R is stratified iff R<sup>o</sup> is solvable (i.e. M<sup>o</sup> simply typed!).

- Proof nets instantiate as connections the dependencies described by effects.
- E.g.  $M: A, \{s\}, N: B, \{r\}$ , and set(r, V); M; N. After unfolding the seq composition. . .
- N can be safely evaluated before or at the same time of M.
- The third result

#### Theorem

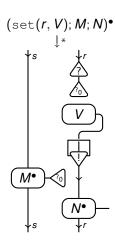
 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\to} V$ .



- Proof nets instantiate as connections the dependencies described by effects.
- E.g. M: A, {s}, N: B, {r}, and set(r, V); M; N. After unfolding the seq. composition...
- N can be safely evaluated before or at the same time of M.
- The third result

#### Theorem

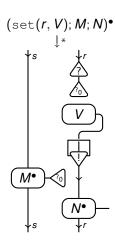
 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\to} V$ .



- Proof nets instantiate as connections the dependencies described by effects.
- E.g. M: A, {s}, N: B, {r}, and set(r, V); M; N. After unfolding the seq. composition...
- N can be safely evaluated before or at the same time of M.
- The third result

#### Theorem

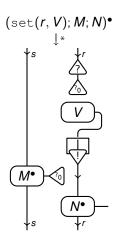
 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\to} V$ .



- Proof nets instantiate as connections the dependencies described by effects.
- E.g. M: A, {s}, N: B, {r}, and set(r, V); M; N. After unfolding the seq. composition...
- N can be safely evaluated before or at the same time of M.
- The third result

#### **Theorem**

 $M^{\bullet}$  normalizes by surface reduction to  $\pi$  iff  $\pi = V^{\bullet}$  and  $M \stackrel{*}{\rightarrow} V$ .



### **Outline**

- Types and Effects
  - The syntax
  - Typing and stratification
- Translating into Proof Nets
  - The target
  - The translation
- Multithreading and Differential Nets
  - First go: communication by differential operator
  - Second go: infinitary nondeterminism (slides only)

### **Outline**

- Types and Effects
  - The syntax
  - Typing and stratification
- Translating into Proof Nets
  - The target
  - The translation
- Multithreading and Differential Nets
  - First go: communication by differential operation
  - Second go: infinitary nondeterminism (slides only)

Work in progress...



# Multithreading

- Parallel threads cooperating via references.
- Terms: ... | (*M*|*N*).
- Evaluation contexts: ... | (E|M) | (M|E).
- Maximal evaluation context not unique anymore 

  concurrency:

$$\nu r \Leftarrow \text{true.}(\text{get}(r)|\text{set}(r, \text{not get}(r)))$$

$$\text{true}|\langle\rangle \qquad \text{false}|\langle\rangle$$

 Thread control operations possible but left aside (e.g. joining, or "worker" threads).

# Multithreading

- Parallel threads cooperating via references.
- Terms: ... | (M|N).
- Evaluation contexts: ... | (E|M) | (M|E).
- Maximal evaluation context not unique anymore → concurrency:

$$\nu r \Leftarrow \text{true.}(\text{get}(r)|\text{set}(r,\text{not get}(r)))$$

$$\text{true}|\langle\rangle \qquad \text{false}|\langle\rangle$$

 Thread control operations possible but left aside (e.g. joining, or "worker" threads).

# Multithreading

- Parallel threads cooperating via references.
- Terms: ... | (M|N).
- Evaluation contexts: ... | (E|M) | (M|E).
- Maximal evaluation context not unique anymore → concurrency:

$$\nu r \Leftarrow \text{true.}(\text{get}(r)|\text{set}(r,\text{not get}(r)))$$

$$\text{true}|\langle\rangle \qquad \text{false}|\langle\rangle$$

 Thread control operations possible but left aside (e.g. joining, or "worker" threads).

# Types for multithreading

- In types, one introduces a "thread behaviour":
  - Types: ...  $|A \xrightarrow{e} \mathbb{B};$
  - $\bullet$   $\mathbb{B}$  is the behaviour of parallel threads, of any type.
- Example:

$$(\operatorname{Nat}_A = (A \to A) \to A \to A)$$

$$\mathrm{npar} := \lambda n, p. \, n\left(\lambda f, d. \, f\langle\rangle|p\langle\rangle\right) p\left\langle\rangle\right. : \mathrm{Nat}_{1 \overset{\theta}{\longrightarrow} \mathbb{B}} \to \left(1 \overset{\theta}{\longrightarrow} \mathbb{B}\right) \overset{\theta}{\longrightarrow} \mathbb{B}$$

$$\operatorname{npar}\underline{n}(\lambda d.M) \xrightarrow{*} \underline{M|\cdots|N}$$

# Types for multithreading

- In types, one introduces a "thread behaviour":
  - Types: ...  $|A \xrightarrow{e} \mathbb{B};$
  - $\mathbb{B}$  is the behaviour of parallel threads, of any type.
- Example:

$$(\operatorname{Nat}_{A} = (A \to A) \to A \to A)$$

$$\mathrm{npar} := \lambda \textit{n}, \textit{p}.\,\textit{n}\left(\lambda\textit{f},\textit{d}.\,\textit{f}\langle\rangle|\textit{p}\langle\rangle\right)\textit{p}\left\langle\rangle\right: \mathrm{Nat}_{1\overset{e}{\longrightarrow}\mathbb{R}} \to \left(1\overset{e}{\longrightarrow}\mathbb{B}\right) \overset{e}{\longrightarrow} \mathbb{B}$$

$$\operatorname{npar}\underline{n}(\lambda d.M) \xrightarrow{*} \underline{M|\cdots|N}$$

# Types for multithreading

- In types, one introduces a "thread behaviour":
  - Types: ...  $|A \xrightarrow{e} \mathbb{B};$
  - $\mathbb{B}$  is the behaviour of parallel threads, of any type.
- Example:

$$(\operatorname{Nat}_{A} = (A \to A) \to A \to A)$$

$$\mathrm{npar} := \lambda \textit{n}, \textit{p}.\,\textit{n}\left(\lambda \textit{f}, \textit{d}.\,\textit{f}\langle\rangle|\textit{p}\langle\rangle\right)\textit{p}\left\langle\rangle: \mathrm{Nat}_{1\overset{e}{\longrightarrow}\mathbb{B}} \to \left(1\overset{e}{\to}\mathbb{B}\right)\overset{e}{\to}\mathbb{B}$$

$$\operatorname{npar}\underline{n}(\lambda d.M) \xrightarrow{*} \underbrace{M|\cdots|M}_{n+1}$$

### The base idea

- Parallel threads live in a "communication soup".
- The sequentiality of each thread is similar to prefixing.
- Proof nets are parallel but deterministic, i.e. not suitable for concurrency...
- ... but nowadays we have differential nets!



Thomas Ehrhard and Laurent Regnier.

Differential interaction nets.

Theor. Comput. Sci., 364(2):166-195, 2006

### The base idea

- Parallel threads live in a "communication soup".
- The sequentiality of each thread is similar to prefixing.
- Proof nets are parallel but deterministic, i.e. not suitable for concurrency...
- ... but nowadays we have differential nets



Thomas Ehrhard and Laurent Regnier.

Differential interaction nets.

Theor. Comput. Sci., 364(2):166-195, 2006

### The base idea

- Parallel threads live in a "communication soup".
- The sequentiality of each thread is similar to prefixing.
- Proof nets are parallel but deterministic, i.e. not suitable for concurrency...
- ... but nowadays we have differential nets!



Thomas Ehrhard and Laurent Regnier.

Differential interaction nets.

Theor. Comput. Sci., 364(2):166-195, 2006.

 Extension of proofnets with one-use resources/differential operator.

New cells:







codereliction cocontraction coweakening

 We will use two specific instances of second order: ∀X.(X → X) (for "transistors") and ∃X.X (for B).

Extension of proofnets with one-use resources/differential operator.

New cells:



!A !2 !A

!0 !A

codereliction cod

raction coweakening

We will transist One-use resource, asked many times, used excalty once. Differential operator  $\frac{\partial f}{\partial x}|_{x=0}$ .

New cells:

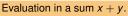




codereliction cocontraction

Joining of resources.  $\forall X.(X \multimap X)$  (for

$$X.(X \multimap X)$$
 (for



Extension of proofnets with one-use resources/differential operator.

New cells:



!A !A



codereliction cocontraction coweakening

 Extension of proofnets with one-use resources/differential operator.

New cells:

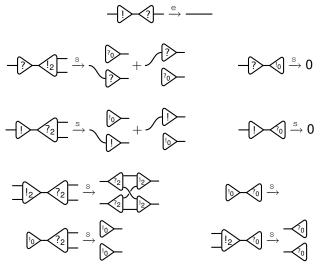






codereliction cocontraction coweakening

 We will use two specific instances of second order: ∀X.(X → X) (for "transistors") and ∃X.X (for B).





#### A query meets a one-use resource and is answered

$$-?> -!_0 \xrightarrow{s} 0$$

$$-\boxed{1} \xrightarrow{?_2} \xrightarrow{s} + \boxed{1}$$

$$-\underbrace{[]}{\uparrow_0} \xrightarrow{s} 0$$

$$\begin{array}{c|c}
\hline
 & & \\
\hline$$

$$-\underbrace{[]-\stackrel{\ominus}{\longrightarrow}--$$

$$- \boxed{?} - \boxed{?}$$



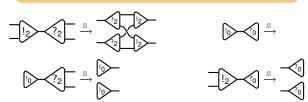
A query chooses between two sets of resources...

... or fails facing no resource (starvation)

A one-use resource is asked by more queries and goes to either one...

... or is not asked and gives a failure (linearity!)

### Nondeterministic routing (bialgebraic structure)



### Sums and boxes

- So reduction introduces sums, representing different nondeterministic internal choices.
- In the nets we will consider:
  - no sum will appear inside boxes;
  - no cocontraction, coweakening or codereliction on auxiliary port will appear (a relief!).

### Differential nets and $\pi$ -calculus

- Thomas Ehrhard and Olivier Laurent.

  Interpreting a finitary pi-calculus in differential interaction nets.

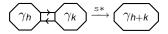
  In CONCUR, volume 4703 of LNCS, pages 333–348. Springer, 2007.
- Translation of a finitary fragment of  $\pi$ -calculus in differential nets.
- One of the basic structures: communication zones



• E.g.: 
$$\gamma_1$$
 =  $\gamma_2$   $\gamma_2$   $\gamma_2$ 

### Properties of communication zones

They fuse:

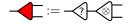


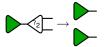
They allow queries and resources to communicate:

# Signals, transistors, broadcast

Signal:

Transistor:





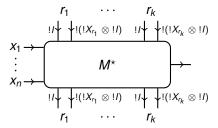


Broadcast and reception:

$$-\sqrt[3]{\phantom{a}}:=-\sqrt[3]{\phantom{a}}$$

### General form of the translation

• Let  $I = \forall \alpha (\alpha \multimap \alpha)$ :



- There are two channels for each region:
- One transports the actual data, on a "first come first served" basis; data travels with a signal, to be released when hold on data is achieved;
- The other passes the signal enforcing sequentiality of each thread, on a per region basis.

# **Dummy effects**

In adding dummy effects signal passes through, data is cut off:

# **Dummy effects**

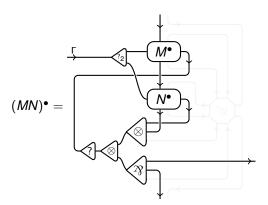
In adding dummy effects signal passes through, data is cut off:

### On to the new translation: variable, unit, abstraction

- Variable (axiom) and unit (boxed 1) remain the same.
- Abstraction too, signal is encapsulated along data:

# The new translation: application

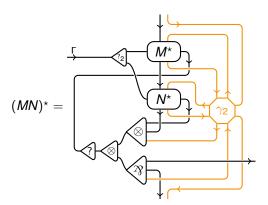
For simplicity, suppose  $M: A \xrightarrow{\{r\}} B, \{r\}$  and  $N: A, \{r\}$ . We adapt the previous translation...



... by passing signal only and leaving data to communication zones.

# The new translation: application

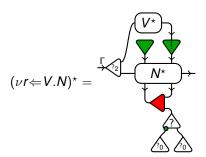
For simplicity, suppose  $M: A \xrightarrow{\{r\}} B, \{r\}$  and  $N: A, \{r\}$ . We adapt the previous translation...



... by passing signal only and leaving data to communication zones.

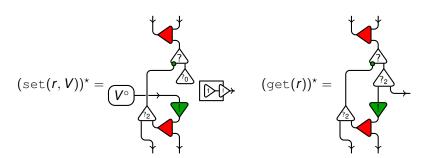
### The new translation: $\nu r$

- $\bigcirc$   $\nu r \leftarrow V.N$  broadcasts V to N and sends it a signal;
- waits for N to give signal back which activates the garbage collection.



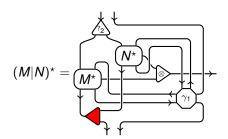
# The new translation: set and get

- Memory ops wait for signal to unlock,
- then wait for exclusive access to data,
- then release a signal and broadcast data back.



### The translation of parallel composition

- A received signal is sent to both terms at the same time, while data is handled by a communication zone;
- will send the signal when both terms have (implementation not completely symmetric).



### A bit of discussion

#### **Theorem**

$$M \rightarrow N \implies M^* \xrightarrow{+} N^* + \cdots$$

- The bisimulation result is yet to be precised and proved: probably based on some notion of observable reduction.
- Unlike  $\pi$ -calculus and its translation, the prefixing here is selective: only operations on the same region are blocked!
- Parallel evaluation with preservation of semantics relies on the fact that there is never absence of signal, similarities with session type systems.

### A bit of discussion

#### **Theorem**

$$M \rightarrow N \implies M^* \xrightarrow{+} N^* + \cdots$$

- The bisimulation result is yet to be precised and proved: probably based on some notion of observable reduction.
- Unlike  $\pi$ -calculus and its translation, the prefixing here is selective: only operations on the same region are blocked!
- Parallel evaluation with preservation of semantics relies on the fact that there is never absence of signal, similarities with session type systems.

### A bit of discussion

#### **Theorem**

$$M \to N \implies M^* \xrightarrow{+} N^* + \cdots$$

- The bisimulation result is yet to be precised and proved: probably based on some notion of observable reduction.
- Unlike  $\pi$ -calculus and its translation, the prefixing here is selective: only operations on the same region are blocked!
- Parallel evaluation with preservation of semantics relies on the fact that there is never absence of signal, similarities with session type systems.

### Cycles

• Like  $\pi$ -calculus' translation, switching cycles (i.e. incorrect nets) appear very easily.

- arrows indicate switching paths (dependecies) through r's data wires
- backward arrow is wrong, can be avoided using directed communication zones:

$$\vec{\gamma}_1 = \vec{\gamma}_2$$

• With them single threads are correct.

### Cycles

• Like  $\pi$ -calculus' translation, switching cycles (i.e. incorrect nets) appear very easily.

- arrows indicate switching paths (dependecies) through r's data wires.
- backward arrow is wrong, can be avoided using directed communication zones:

$$\vec{\gamma}_1 = \vec{\gamma}_2$$

• With them single threads are correct.

### Cycles

• Like  $\pi$ -calculus' translation, switching cycles (i.e. incorrect nets) appear very easily.

- arrows indicate switching paths (dependecies) through r's data wires.
- backward arrow is wrong, can be avoided using directed communication zones:

$$\vec{\gamma_1} = \vec{\gamma_2} \vec{\gamma_2}$$

With them single threads are correct.

• However, no such workaround for parallel composition:

- Here switching paths shows actual potential dependecies
- The dashed ones however are mutually exclusive! But this cannot be detected by switching acyclicity (reduction preserves switching paths).
- This happens with any threads updating the same region.
- The same thing happens in  $\pi$ -calculus, e.g.

$$c(x).\overline{c}\langle x\rangle | c(x).\overline{c}\langle x\rangle$$

• However, no such workaround for parallel composition:

- Here switching paths shows actual potential dependecies.
- The dashed ones however are mutually exclusive! But this cannot be detected by switching acyclicity (reduction preserves switching paths).
- This happens with any threads updating the same region.
- The same thing happens in  $\pi$ -calculus, e.g

$$c(x).\overline{c}\langle x\rangle | c(x).\overline{c}\langle x\rangle$$

• However, no such workaround for parallel composition:

- Here switching paths shows actual potential dependecies.
- The dashed ones however are mutually exclusive! But this cannot be detected by switching acyclicity (reduction preserves switching paths).
- This happens with any threads updating the same region
- The same thing happens in  $\pi$ -calculus, e.g.

$$c(x).\overline{c}\langle x\rangle | c(x).\overline{c}\langle x\rangle$$

• However, no such workaround for parallel composition:

- Here switching paths shows actual potential dependecies.
- The dashed ones however are mutually exclusive! But this cannot be detected by switching acyclicity (reduction preserves switching paths).
- This happens with any threads updating the same region.
- The same thing happens in  $\pi$ -calculus, e.g.

$$c(x).\overline{c}\langle x\rangle |c(x).\overline{c}\langle x\rangle$$

### What can be done?

- Prove that these cycles do not disturb the observable reduction used for bisimulation? I.e. relax correctness criterion.
- Add structure to nets, e.g. syntactic mutual exclusion edges?
- Find subcalculi that fit in switching acyclicity? (but threads updating a same variable are hard to leave out)





- Let us concentrate on termination.
- Take two typed & stratified sequential programs M and N accessing region r.
- νr ← V.M terminates.
- vr ← V.N terminates too.
- What about  $\nu r \Leftarrow V.(M|N)$ ? Interleaved reduction...

$$\nu r \Leftarrow V.(M|N) \xrightarrow{+} \nu r \Leftarrow V_1.(M_1|N) \xrightarrow{+} \nu r \Leftarrow V_2.(M_1|N_1) \xrightarrow{+} \cdots \xrightarrow{+} r \Leftarrow V_{2k+1}.(M_{k+1}|N_k) \xrightarrow{+} r \Leftarrow V_{2k+2}.(M_{k+1}|N_{k+1}) \cdots$$

- What if we were able to prove that  $\nu r \leftarrow \{V_0, V_1, \dots, V_k, \dots\}.N$  terminates?
  - (i.e.  $\nu r \Leftarrow \mu$ . get  $(r) \rightarrow V$  nondeterministically for any  $V \in \mu$ .

- Let us concentrate on termination.
- Take two typed & stratified sequential programs M and N accessing region r.
- νr ← V.M terminates.
- $\nu r \Leftarrow V.N$  terminates too.
- What about  $\nu r \leftarrow V.(M|N)$ ? Interleaved reduction...

$$\nu r \Leftarrow V.(M|N) \xrightarrow{+} \nu r \Leftarrow V_1.(M_1|N) \xrightarrow{+} \nu r \Leftarrow V_2.(M_1|N_1) \xrightarrow{+} \cdots \xrightarrow{+} r \Leftarrow V_{2k+1}.(M_{k+1}|N_k) \xrightarrow{+} r \Leftarrow V_{2k+2}.(M_{k+1}|N_{k+1}) \cdots$$

- What if we were able to prove that  $\nu r \leftarrow \{V_0, V_1, \dots, V_k, \dots\}.M$  terminates?
- (i.e.  $\nu r \Leftarrow \mu$ . get $(r) \rightarrow V$  nondeterministically for any  $V \in \mu$ .

- Let us concentrate on termination.
- Take two typed & stratified sequential programs M and N accessing region r.
- νr ← V.M terminates.
- νr ← V.N terminates too.
- What about \(\nu r \leftleftleft V.(M|N)\)? Interleaved reduction.

$$\nu r \Leftarrow V.(M|N) \xrightarrow{+} \nu r \Leftarrow V_1.(M_1|N) \xrightarrow{+} \nu r \Leftarrow V_2.(M_1|N_1) \xrightarrow{+} \cdots \xrightarrow{+} r \Leftarrow V_{2k+1}.(M_{k+1}|N_k) \xrightarrow{+} r \Leftarrow V_{2k+2}.(M_{k+1}|N_{k+1}) \cdots$$

• What if we were able to prove that  $\nu r \leftarrow \{V_0, V_1, \dots, V_k, \dots\}.M$  terminates?

(i.e.  $\nu r \Leftarrow \mu$ . get  $(r) \rightarrow V$  nondeterministically for any  $V \in \mu$ .

- Let us concentrate on termination.
- Take two typed & stratified sequential programs M and N accessing region r.
- νr ← V.M terminates.
- $\nu r \Leftarrow V.N$  terminates too.
- What about  $\nu r \Leftarrow V.(M|N)$ ? Interleaved reduction...

$$\nu r \Leftarrow V.(M|N) \xrightarrow{+} \nu r \Leftarrow V_1.(M_1|N) \xrightarrow{+} \nu r \Leftarrow V_2.(M_1|N_1) \xrightarrow{+} \cdots \xrightarrow{+} r \Leftarrow V_{2k+1}.(M_{k+1}|N_k) \xrightarrow{+} r \Leftarrow V_{2k+2}.(M_{k+1}|N_{k+1}) \cdots$$

• What if we were able to prove that  $\nu r \leftarrow \{V_0, V_1, \dots, V_k, \dots\}.M$  terminates?

- Let us concentrate on termination.
- Take two typed & stratified sequential programs M and N accessing region r.
- νr ← V.M terminates.
- $\nu r \Leftarrow V.N$  terminates too.
- What about  $\nu r \Leftarrow V.(M|N)$ ? Interleaved reduction...

$$\nu r \Leftarrow V.(\textcolor{red}{M}|N) \xrightarrow{+} \nu r \Leftarrow V_1.(\textcolor{red}{M_1}|N) \xrightarrow{+} \nu r \Leftarrow V_2.(\textcolor{red}{M_1}|N_1) \xrightarrow{+} \\ \cdots \xrightarrow{+} r \Leftarrow V_{2k+1}.(\textcolor{red}{M_{k+1}}|N_k) \xrightarrow{+} r \Leftarrow V_{2k+2}.(\textcolor{red}{M_{k+1}}|N_{k+1}) \cdots$$

• What if we were able to prove that  $\nu r \leftarrow \{V_0, V_1, \dots, V_k, \dots\}.M$  terminates?

(i.e.  $\nu r \Leftarrow \mu$ . get $(r) \rightarrow V$  nondeterministically for any  $V \in \mu$ .

- Let us concentrate on termination.
- Take two typed & stratified sequential programs M and N accessing region r.
- νr ← V.M terminates.
- $\nu r \Leftarrow V.N$  terminates too.
- What about  $\nu r \Leftarrow V.(M|N)$ ? Interleaved reduction...

$$\nu r \Leftarrow V.(\textcolor{red}{M}|N) \xrightarrow{+} \nu r \Leftarrow V_1.(\textcolor{red}{M_1}|N) \xrightarrow{+} \nu r \Leftarrow V_2.(\textcolor{red}{M_1}|N_1) \xrightarrow{+} \\ \cdots \xrightarrow{+} r \Leftarrow V_{2k+1}.(\textcolor{red}{M_{k+1}}|N_k) \xrightarrow{+} r \Leftarrow V_{2k+2}.(\textcolor{red}{M_{k+1}}|N_{k+1}) \cdots$$

• What if we were able to prove that  $\nu r \Leftarrow \{V_0, V_1, \dots, V_k, \dots\}.M$  terminates?

(i.e.  $\nu r \Leftarrow \mu$ . get $(r) \rightarrow V$  nondeterministically for any  $V \in \mu$ .)

## Infinite memory cells

### Let $\Lambda_{\infty}$ be given by

- Terms:  $x \mid \langle \rangle \mid \lambda x.M \mid MN \mid get(r) \mid (M \mid N)$ . (memory is read-only)
- Programs: M, S.
- Stores: S functions from regions to sets of closed values.
   (possibly infinite)

$$E[(\lambda x.M)V], S \rightarrow E[M\{V/x\}], S$$
  
 $E[get(r)], S \rightarrow E[V], S$  with  $V \in S(r)$ .

## Proving termination with $\Lambda_{\infty}$

Take any region based calculus. All we need to prove its termination is

- a forgetful mapping  $M^{\downarrow}$  to  $\Lambda_{\infty}$  translating all memory ops except access into silent actions.
- a mapping  $\Phi^{\downarrow}$  from reduction chains to stores, with  $\Phi^{\downarrow}(r)$  containing all  $V^{\downarrow}$  for V assigned to an r-marked cell during  $\Phi$ .
- a discipline (e.g. stratification) preserved by ( . )  $\downarrow$  and ensuring termination in  $\Lambda_{\infty}$ .

Then  $M^{\downarrow}$ ,  $\Phi^{\downarrow}$  simulates R (among many nondeterministic branches!).

### For example

$$(\nu r \Leftarrow M.N)^{\downarrow} = M^{\downarrow}; IN^{\downarrow}, \quad (\nu r \Leftarrow V.N)^{\downarrow} = IN^{\downarrow}, \quad (\text{set}(r, M))^{\downarrow} = M^{\downarrow}; \langle \rangle$$
 
$$\Phi^{\downarrow}(r) = \left\{ V^{\downarrow} \mid \nu r \Leftarrow V.M \text{ is subterm of } N \in \Phi \right\}$$

## Proving termination with $\Lambda_{\infty}$

Take any region based calculus. All we need to prove its termination is

- a forgetful mapping  $M^{\downarrow}$  to  $\Lambda_{\infty}$  translating all memory ops except access into silent actions.
- a mapping  $\Phi^{\downarrow}$  from reduction chains to stores, with  $\Phi^{\downarrow}(r)$  containing all  $V^{\downarrow}$  for V assigned to an r-marked cell during  $\Phi$ .
- a discipline (e.g. stratification) preserved by ( . )  $\downarrow$  and ensuring termination in  $\Lambda_{\infty}$ .

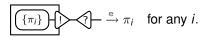
Then  $M^{\downarrow}$ ,  $\Phi^{\downarrow}$  simulates R (among many nondeterministic branches!).

### For example:

$$(\nu r \Leftarrow M.N)^{\downarrow} = M^{\downarrow}; IN^{\downarrow}, \quad (\nu r \Leftarrow V.N)^{\downarrow} = IN^{\downarrow}, \quad (\text{set}(r, M))^{\downarrow} = M^{\downarrow}; \langle \rangle$$
 
$$\Phi^{\downarrow}(r) = \left\{ V^{\downarrow} \mid \nu r \Leftarrow V.M \text{ is subterm of } N \in \Phi \right\}$$

### Infinite boxes

 LL<sub>∞</sub>: regular LL (no cocontraction, coweakening nor codereliction), where boxes contain sets of nets.



- Need care (deep structural red. → infinite red., so we revert to a form of the so-called quotienting "nouvelle syntaxe").
- For the purpose of  $\Lambda_{\infty}$ , we can be strict:
- infinite boxes at depth 0 only;
- no infinite box on auxiliary port cut (by typing).

#### **Theorem**

Surface reduction of simply typed  $LL_{\infty}$  terminates.

### Termination of stratified $\Lambda_{\infty}$

• Translation of  $\Lambda_\infty$  in  $LL_\infty$ : a matter of simple adaptation of the one of  $\Lambda_{req}$  in LL.

#### **Theorem**

M, S evaluates to V, S iff  $(M, S)^{\bullet}$  normalizes to  $(V, S)^{\bullet}$ .

- S typed under region context R if  $dom(S) \subseteq dom(R)$  and all  $V \in S(r)$  typed by R(r).
- M, S typed with stratified region R, then (M, S)• is simply typed.

#### **Theorem**

If M, S is simply typed, then all its reductions terminate

 Direct proof certainly possible, but for now I prefer playing with infinite boxes:)

### Termination of stratified $\Lambda_{\infty}$

• Translation of  $\Lambda_\infty$  in  $LL_\infty$ : a matter of simple adaptation of the one of  $\Lambda_{req}$  in LL.

#### **Theorem**

M, S evaluates to V, S iff  $(M, S)^{\bullet}$  normalizes to  $(V, S)^{\bullet}$ .

- S typed under region context R if  $dom(S) \subseteq dom(R)$  and all  $V \in S(r)$  typed by R(r).
- M, S typed with stratified region R, then (M, S)• is simply typed.

#### **Theorem**

If M, S is simply typed, then all its reductions terminate.

 Direct proof certainly possible, but for now I prefer playing with infinite boxes:)

### Termination of stratified $\Lambda_{\infty}$

• Translation of  $\Lambda_\infty$  in  $LL_\infty$ : a matter of simple adaptation of the one of  $\Lambda_{req}$  in LL.

#### **Theorem**

M, S evaluates to V, S iff  $(M, S)^{\bullet}$  normalizes to  $(V, S)^{\bullet}$ .

- S typed under region context R if  $dom(S) \subseteq dom(R)$  and all  $V \in S(r)$  typed by R(r).
- M, S typed with stratified region R, then (M, S)• is simply typed.

#### **Theorem**

If M, S is simply typed, then all its reductions terminate.

 Direct proof certainly possible, but for now I prefer playing with infinite boxes:)

### What's next

- Study  $LL_{\infty}$ .
- Carry over results to second order.
- Adapt to region polymorphism.
- Design a sensible stratification discipline for real world languages (ML and its dialects) ensuring termination.

# **Thanks**

Questions?



### **Outline**

- Types and Effects
  - The syntax
  - Typing and stratification
- Translating into Proof Nets
  - The target
  - The translation
- Multithreading and Differential Nets
  - First go: communication by differential operator
  - Second go: infinitary nondeterminism (slides only)