Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

From Linear Logic to Differential Linear Logic

Paolo Tranquilli

Dipartimento di Matematica Università degli Studi Roma Tre

Preuves, Programmes et Systèmes Université Denis-Diderot Paris 7

AILA – XXIII Incontro di Logica – 20/02/2008

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

Linear? Differential LL does it better

- Why Linear Logic is linear?
- Differential Linear Logic

Proof Nets and Lambda-Calculus

- A running example
- The translation

3 Differential Nets and Resource Calculus

- Linearization of boxes
- Resource Calculus and its translation

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

Linear? Differential LL does it better

- Why Linear Logic is linear?
- Differential Linear Logic

Proof Nets and Lambda-Calculus

- A running example
- The translation

3 Differential Nets and Resource Calculus

- Linearization of boxes
- Resource Calculus and its translation

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Why Linear Logic is linear?

Vector spaces and LL: is there a link?

 Following Pagani and Maieli's talk, you may have noted an extensive use of jargon borrowed from vector spaces and analysis:

Linear, dual (A^{\perp}), exponential, tensor (\otimes), direct sum (\oplus) What is the catch?

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Why Linear Logic is linear?

Vector spaces and LL: is there a link?

Following Maieli's talk, you may have noted an extensive use of jargon borrowed from vector spaces and analysis:
 Linear, dual (A[⊥]), exponential, tensor (⊗), direct sum (⊕)
 What is the catch?

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Why Linear Logic is linear?

Vector spaces and LL: is there a link?

 Following Maieli's talk and hopefully Pagani's one this Friday, you may note an extensive use of jargon borrowed from vector spaces and analysis:

Linear, dual (A^{\perp}), exponential, tensor (\otimes), direct sum (\oplus) What is the catch?

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Why Linear Logic is linear?

The link is there, though somewhat vague

- The ground for LL (Girard, 1987) was the study by Girard of System F (in fact, second order intuitionistic sequent calculus or natural deduction)
- Girard imagined formulas A as spaces (coherent spaces) given by atomic bits of information |A|
- Moreover, he imagined this bits to be a sort of basis for a vector space
- ..."sort of"?

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Why Linear Logic is linear?

The link is there, though somewhat vague

- The ground for LL (Girard, 1987) was the study by Girard of System F (in fact, second order intuitionistic sequent calculus or natural deduction)
- Girard imagined formulas A as spaces (coherent spaces) given by atomic bits of information |A|
- Moreover, he imagined this bits to be a sort of basis for a vector space
- ..."sort of"?

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

Why Linear Logic is linear?

Linearity in Linear Logic

Factorization of the intuitionistic arrow

- More on the exponential modality later, now let us consider the linear arrow
- Linearity in *R*-modules... when *R* = {0, 1} (practically, sets):

$$F(U + V) = F(U) + F(V)$$
$$F(aU) = aF(U)$$

- A linear map F is completely determined by singletons (if also continous wrt directed union)
- In fact for a linear continuus function *F* : *A* → *B* atomic bits in the input *A* contribute each exactly once to the output *B*

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

Why Linear Logic is linear?

Linearity in Linear Logic

Factorization of the intuitionistic arrow

- More on the exponential modality later, now let us consider the linear arrow
- Linearity in *R*-modules... when *R* = {0, 1} (practically, sets):

$$F(U \cup V) = F(U) \cup F(V)$$
$$F(\emptyset) = \emptyset$$

- A linear map F is completely determined by singletons (if also continous wrt directed union)
- In fact for a linear continous function *F* : *A* → *B* atomic bits in the input *A* contribute each exactly once to the output *B*

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

Why Linear Logic is linear?

Linearity in Linear Logic

Factorization of the intuitionistic arrow

- More on the exponential modality later, now let us consider the linear arrow
- Linearity in *R*-modules... when *R* = {0, 1} (practically, sets):

$$F(U \cup V) = F(U) \cup F(V)$$
$$F(\emptyset) = \emptyset$$

- A linear map F is completely determined by singletons (if also continous wrt directed union)
- In fact for a linear continous function *F* : *A* → *B* atomic bits in the input *A* contribute each exactly once to the output *B*

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

Why Linear Logic is linear?

Linearity in Linear Logic

Factorization of the intuitionistic arrow

- More on the exponential modality later, now let us consider the linear arrow
- Linearity in *R*-modules... when *R* = {0, 1} (practically, sets):

$$F(U \cup V) = F(U) \cup F(V)$$
$$F(\emptyset) = \emptyset$$

- A linear map F is completely determined by singletons (if also continous wrt directed union)
- In fact for a linear proof π : A → B atomic bits in the hypothesis A contribute each exactly once to the thesis B

Why Linear Logic is linear?

Linearity at last

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

in Logic

using a hypothesis exacly once

in Computer Science

using an input/resource exacly once

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

...though the link with the third is not really convincing for now...

Why Linear Logic is linear?

Linearity at last

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

in Logic

using a hypothesis exacly once

in Computer Science

using an input/resource exacly once

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

...though the link with the third is not really convincing for now...

A note about duals		
Differential Linear Logic		
Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus

- A^{\perp} in *R*-modules is the space of linear functions $A \multimap R$
- This models negation: in case of bidual spaces (A ≅ A^{⊥⊥}), there is an isomorphism between A → B and B[⊥] → A[⊥]
- Moreover, at the core of the cut rule is the interaction between A and A[⊥]

$$U \in A, V \in A^{\perp}$$
: $\langle U, V \rangle = \sum_{x \in |A|} U_x V_x$

 The condition defining coherent spaces is that the support of ⟨U, V⟩ is at most 1, i.e. #U ∩ V ≤ 1

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Differential Linear Logic		
Let us do it better than	LL	

 We relax the condition and just ask (U, V) to be finite sums:

$$\#U\cap V<\omega$$

(finiteness spaces, Ehrhard 2003)

- R (A), a submodule of R^{|A|} (with a condition on supports), for any unitary semiring R yields spaces for which the all the connectives really correspond to the vector space constructs
- For example: R ⟨A → B⟩ is isomorphic to R ⟨A⟩ → R ⟨B⟩,
 i.e. the linear morphisms continuous in the linear topologies of R ⟨A⟩ and R ⟨B⟩ (defined independently of the structure of finiteness spaces)

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Differential Linear Logic		
Formal sums – 1		

- Condition #U ∩ V ≤ 1 in coherent spaces can be seen as preventing proofs to be spread in sets of proofs during reduction
- Here the support of an interaction does not need to be a singleton, i.e. the result of an interaction is a generic (though finite) sum with coefficients in *R*: a proof can reduce to a sum!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

What does it mean?

• The easiest way to regard this is non-deterministic choice. The sum keeps track of the various possible choices (exspecially if $R = \mathbb{N}$):

 Other interpretations are possible, for example by taking *R* = ℝ⁺ and interpreting probabilistic choice:

$$\sigma \underbrace{\stackrel{p}{\underset{1-p}{\longrightarrow}} \pi_1}_{n_2} \rightsquigarrow \sigma \rightarrow p\pi_1 + (1-p)\pi_2$$

Linear? Differential LL does it better ○○○○○○○○●○	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Differential Linear Logic		
The exponential		

- A linear world would be boring... the exponential modality !A brings back contraction and weakening of hypotheses
- In finiteness spaces, the modality operates a shift from *linear* formal sums to formal power series.

$A \multimap B$ are linear functions

 In fact a power xⁿ is a multilinear use of multiple (possibly none) occurrences of x

(日) (日) (日) (日) (日) (日) (日)

Linear? Differential LL does it better ○○○○○○○○●○	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Differential Linear Logic		
The exponential		

- A linear world would be boring... the exponential modality !*A* brings back duplication and erasing of inputs
- In finiteness spaces, the modality operates a shift from *linear* formal sums to formal power series.

$A \multimap B$ are linear functions

 In fact a power xⁿ is a multilinear use of multiple (possibly none) occurrences of x

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Linear? Differential LL does it better ○○○○○○○○●○	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Differential Linear Logic		
The exponential		

- A linear world would be boring... the exponential modality !A brings back contraction and weakening of hypotheses
- In finiteness spaces, the modality operates a shift from *linear* formal sums to formal power series.

$A \multimap B$ are linear functions

 In fact a power xⁿ is a multilinear use of multiple (possibly none) occurrences of x

(日) (日) (日) (日) (日) (日) (日)

Linear? Differential LL does it better ○○○○○○○○●○	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Differential Linear Logic		
The exponential		

- A linear world would be boring... the exponential modality !A brings back contraction and weakening of hypotheses
- In finiteness spaces, the modality operates a shift from *linear* formal sums to formal power series.

 $!A \rightarrow B$ are analytical functions

 In fact a power xⁿ is a multilinear use of multiple (possibly none) occurrences of x

(日) (日) (日) (日) (日) (日) (日)

Differential Linear Logic

Linearity revisited

in Logic

Linear hypotheses, to be used exacly once

in Computer Science

Linear inputs, to be used exactly once

in Analysis

Linear arguments occurring in linear position

Proof Nets and Lambda-Calculus

We will see some of the consequences that this approach brings in the top areas

Differential Nets and Resource Calculus

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Differential Linear Logic

Linearity revisited

in Logic

Non-linear hypotheses, that can be contracted or weakened

in Computer Science

Differential Nets and Resource Calculus

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Non-linear inputs, that can be duplicated or erased

in Analysis

Non-linear arguments occurring as powers

Proof Nets and Lambda-Calculus

We will see some of the consequences that this approach brings in the top areas

Linear? Differential LL does it better ○○○○○○○○●	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Differential Linear Logic		
Linearity revisited		

in Analysis

Analytical functions

We will see some of the consequences that this approach brings in the top areas

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

1 Linear? Differential LL does it better

- Why Linear Logic is linear?
- Differential Linear Logic

Proof Nets and Lambda-Calculus

- A running example
- The translation

3 Differential Nets and Resource Calculus

- Linearization of boxes
- Resource Calculus and its translation

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●○○○	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $\boldsymbol{M} ::= \boldsymbol{x} \mid \lambda \boldsymbol{x}.\boldsymbol{M} \mid (\boldsymbol{M})\boldsymbol{N}$

... with types:

x: A $x: A, M: B \implies \lambda x.M: A \Rightarrow B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●○○○	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $\boldsymbol{M} ::= \boldsymbol{x} \mid \lambda \boldsymbol{x}.\boldsymbol{M} \mid (\boldsymbol{M})\boldsymbol{N}$

... with types:

x : A $x : A, M : B \implies \lambda x.M : A \Rightarrow B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●○○○	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.\mathbf{M} \mid (\mathbf{M}) \mathbf{N}$

... with types:

x : A $x : A, M : B \implies \lambda x.M : A \Rightarrow B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●○○○	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.M \mid (M)N$

... with types:

x : A $x : A, M : B \implies \lambda x.M : A \Rightarrow B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●000	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.M \mid (M)N$

... with types:

x : A $x : A, M : B \implies \lambda x.M : A \Rightarrow B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●000	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.M \mid (M)N$

... with types:

 $\mathbf{x} : \mathbf{A}$ $\mathbf{x} : \mathbf{A}, \mathbf{M} : \mathbf{B} \implies \lambda \mathbf{x} . \mathbf{M} : \mathbf{A} \Rightarrow \mathbf{B},$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●000	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.M \mid (M)N$

... with types:

x: A $x: A, M: B \implies \lambda x.M: A \Rightarrow B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●000	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.M \mid (M)N$

... with types:

x : A $x : A, M : B \implies \lambda x.M : A \Rightarrow B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ●000	Differential Nets and Resource Calculus
A running example		
Lambda-Calculus		

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.M \mid (M)N$

... with types:

x : A $x : A, M : B \implies \lambda x.M : A \implies B,$

 $M: A \Rightarrow B, N: A \implies (M)N: B$

(日) (日) (日) (日) (日) (日) (日)

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

A running example

An example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ
Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

A running example

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

A running example

An example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof Nets and Lambda-Calculus $\circ \bullet \circ \circ$

Differential Nets and Resource Calculus

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A running example

Proof Nets and Lambda-Calculus $\circ \bullet \circ \circ$

Differential Nets and Resource Calculus

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A running example

Proof Nets and Lambda-Calculus $\circ \bullet \circ \circ$

Differential Nets and Resource Calculus

A running example

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

A running example

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

A running example

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

A running example

Proof Nets and Lambda-Calculus $\circ \bullet \circ \circ$

Differential Nets and Resource Calculus

A running example

An example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

A running example

Linear?	Differential	LL	does	better	

Proof Nets and Lambda-Calculus $\circ \bullet \circ \circ$

Differential Nets and Resource Calculus

A running example

inear?	Differential	LL does	it better	P
				0

Differential Nets and Resource Calculus

A running example

An example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
The translation		
The results		

What we have is a translation M° from terms to proof nets.

Theorem (Girard, Danos-Regnier)

 each redex (\u03c0xx.S)T in M corresponds bijectively to multiplicative cuts in M°

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

•
$$M \xrightarrow{\beta} N \iff M^{\circ} \xrightarrow{m e_{*}} N^{\circ}$$

•
$$M \xrightarrow{\beta^*} N \iff M^\circ \xrightarrow{*} N^\circ$$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ○○○●	Differential Nets and Resource Calculus
The translation		
Inputs are packages		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- duplicable
- erasable
- openable

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ○○○●	Differential Nets and Resource Calculus
The translation		
Inputs are packages		

- duplicable
- erasable
- openable

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ○○○●	Differential Nets and Resource Calculus
The translation		
Inputs are packages		

- duplicable
- erasable
- openable

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus ○○○●	Differential Nets and Resource Calculus
The translation		
Inputs are packages		

- duplicable
- erasable
- openable

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

Linear? Differential LL does it better Why Linear Logic is linear? Differential Linear Logic Proof Nets and Lambda-Calculus

- A running example
- The translation

3 Differential Nets and Resource Calculus

- Linearization of boxes
- Resource Calculus and its translation

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Linearization of boxes

Single-use hypotheses/inputs

- There is a situation not covered by the properties of boxes
- What if a hypothesis/input is available just once (after which it "expires"), but is asked for more than once?
- We can imagine that it can be assigned non-deterministically (formal sums involved)
- We are able to see this in differential nets, the geometrical representation of Differential Linear Logic (Ehrhard and Regnier, 2004)

Differential Nets and Resource Calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linearization of boxes

Single-use hypotheses/inputs

- There is a situation not covered by the properties of boxes
- What if a hypothesis/input is available just once (after which it "expires"), but is asked for more than once?
- We can imagine that it can be assigned non-deterministically (formal sums involved)
- We are able to see this in differential nets, the geometrical representation of Differential Linear Logic (Ehrhard and Regnier, 2004)

Linear?	Differential	LL	does	better

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

 $|\alpha \multimap \alpha$

(ロ)、

Linear?	Differential	LL	does	better

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

 $|\alpha \multimap \alpha|$

(ロ)、

Linear?	Differential	LL does	better

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

Linear?	Differential	LL does	better

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Linear?	Differential	LL does	better	

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

Linear?	Differential	LL	does	better	

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

Linear?	Differential	LL does	better

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus ○●○○○○○
Linearization of boxes		
Back to an example		

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

0

+

Linear?	Differential	LL	does	better

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

Linear?	Differential	LL	does	better

Differential Nets and Resource Calculus

Linearization of boxes

Back to an example

Back to an example		
Linearization of boxes	0000	000000
Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus 0000000

Linearization of boxes

Yet another example

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus 0000000

Linearization of boxes

Yet another example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Linear?	Differential	LL	does	better

Differential Nets and Resource Calculus $_{\odot \odot \odot \odot \odot \odot \odot}$

Linearization of boxes

Yet another example

Linear?	Differential	LL	does	better

Differential Nets and Resource Calculus $_{\odot \odot \odot \odot \odot \odot \odot}$

Linearization of boxes

Yet another example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus $_{\odot \odot \odot \odot \odot \odot \odot}$

Linearization of boxes

Yet another example

(ロ)、
Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Linearization of boxes		
Yet another example		

0

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus 0000000

Linearization of boxes

Yet another example

(ロ)、

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus 0000000

Linearization of boxes

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus 0000000

Linearization of boxes

Yet another example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus 0000000

Linearization of boxes

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

Linearization of boxes

Linear?	Differential	LL	does	better

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

Linearization of boxes

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		

Resource Calculus

Does this behaviour correspond to a calculus like Proof Nets do for λ -calculus?

Yes, λ -calculus with multiplicities (Boudol, 1993), exactly presents this behaviour.

Terms of the resource λ -calculus

 $M ::= X \mid \lambda X.M \mid \langle M \rangle A$

 $A ::= M_1^{\alpha_1} \cdots M_n^{\alpha_n}$ with $a_n \le a_n$

Resource Calculus and its translation	
Linear? Differential LL does it better Proof Nets and Lambda-Calculus Differ	rential Nets and Resource Calculus

presents this behaviour.

Terms of the resource λ -calculus

 $M ::= x \mid \lambda x.M \mid \langle M \rangle A$

 $A ::= M_1^{e_1} \cdots M_k^{e_k} \quad \text{with } e_i \le \infty$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		
Resource Calculus		

presents this behaviour.

Terms of the resource λ -calculus

 $M ::= \mathbf{x} \mid \lambda \mathbf{x} . M \mid \langle M \rangle A$

 $A ::= M_1^{e_1} \cdots M_k^{e_k} \quad \text{with } e_i \le \infty$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		
Resource Calculus		

presents this behaviour.

Terms of the resource λ -calculus

 $M ::= \mathbf{x} \mid \lambda \mathbf{x}.M \mid \langle M \rangle A$

 $A ::= M_1^{e_1} \cdots M_k^{e_k}$ with $e_i \le \infty$

Posourco Calculus		
Resource Calculus and its translation		
Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus

presents this behaviour.

Terms of the resource λ -calculus

 $M ::= x \mid \lambda x.M \mid \langle M \rangle A$

 $\boldsymbol{A} ::= M_1^{e_1} \cdots M_k^{e_k} \quad \text{with } e_i \leq \infty$

Posourco Calculus		
Resource Calculus and its translation		
Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus

presents this behaviour.

Terms of the resource λ -calculus

$$M ::= \mathbf{x} \mid \lambda \mathbf{x} . M \mid \langle M \rangle A$$

$$A ::= M_1^{e_1} \cdots M_k^{e_k}$$
 with $e_i \leq \infty$

Bacauraa Calaulua		
Resource Calculus and its translation		
Linear? Differential LL does it better F	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus

presents this behaviour.

Terms of the resource λ -calculus

$$M ::= x \mid \lambda x.M \mid \langle M \rangle A$$

$$A ::= M_1^{e_1} \cdots M_k^{e_k} \quad \text{with } e_i \leq \infty$$

Linear?	Differential	LL does	it better	

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

・ロト ・ 日 ・ ・ 回 ・ ・

Resource Calculus and its translation

Back to the examples

$\langle \lambda f, \mathbf{x}. \langle f \rangle (\langle f \rangle \mathbf{x}^{\infty})^{\infty} \rangle \lambda \mathbf{y}. \mathbf{y} \rightsquigarrow$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

・ロト ・ 日 ・ ・ 回 ・ ・

Resource Calculus and its translation

Back to the examples

$\langle \lambda f, \mathbf{x}. \langle f \rangle (\langle f \rangle \mathbf{x}^{\infty})^{\infty} \rangle \lambda \mathbf{y}. \mathbf{y} \rightsquigarrow$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		
Back to the examples		

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		
Back to the examples		

inear? Differential I	L does it better	Proof Nets

Proof Nets and Lambda-Calculus

Differential Nets and Resource Calculus

Resource Calculus and its translation

Back to the examples

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		
Back to the examples		

$\langle \lambda f, \mathbf{x}. \langle f \rangle (\langle f \rangle \mathbf{x}^{\infty})^{\infty} \rangle (\lambda y. y)^2 \rightsquigarrow$

inear? Differential LL does it better	Proof

Nets and Lambda-Calculus

Differential Nets and Resource Calculus 0000000

Resource Calculus and its translation

Back to the examples

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		

Back to the examples

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus
Resource Calculus and its translation		
The results		

What we have is a translation M° from terms to proof nets.

Theorem (Girard, Danos-Regnier)

 each redex (λx.S)T in M corresponds bijectively to multiplicative cuts in M°

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

•
$$M \xrightarrow{\beta} N \iff M^{\circ} \xrightarrow{m e_{\ast}} N^{\circ}$$

•
$$M \xrightarrow{\beta^*} N \iff M^\circ \xrightarrow{*} N^\circ$$

Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus ○○○○○●○
Resource Calculus and its translation		
The results		

What we have is a translation M° from resource terms to differential nets.

Theorem

 each redex (λx.S)A in M corresponds bijectively to multiplicative cuts in M°

▲□▶▲□▶▲□▶▲□▶ □ のQで

•
$$M \xrightarrow{\beta} N \iff M^{\circ} \xrightarrow{m} \overset{m}{\to} N^{\circ}$$

•
$$M \xrightarrow{\beta^*} N \iff M^\circ \xrightarrow{*} N^\circ$$

Conclusion	0000	000000
Concluding remarks		

$$\frac{\partial x^2 y}{\partial x} \cdot a = \frac{\partial x \cdot x \cdot y}{\partial x} \cdot a = a \cdot x \cdot y + x \cdot a \cdot y = 2xy \cdot a$$

idea at the basis of Differential λ -Calculus (Ehrhard and Regnier, 2003)

- In fact analytical functions are smooth: Differential Nets are the lifting to syntax of these properties
- Differential Nets are strongly normalizing: ongoing work with Michele Pagani

Conclusion	
Concluding remarks	

$$\frac{\partial x^2 y}{\partial x} \cdot a = \frac{\partial x \cdot x \cdot y}{\partial x} \cdot a = a \cdot x \cdot y + x \cdot a \cdot y = 2xy \cdot a$$

idea at the basis of Differential $\lambda\text{-Calculus}$ (Ehrhard and Regnier, 2003)

- In fact analytical functions are smooth: Differential Nets are the lifting to syntax of these properties
- Differential Nets are strongly normalizing: ongoing work with Michele Pagani

С	oncluding remarks		
Co	onclusion		
Lin	near? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus

$$\frac{\partial x^2 y}{\partial x} \cdot a = \frac{\partial x \cdot x \cdot y}{\partial x} \cdot a = a \cdot x \cdot y + x \cdot a \cdot y = 2xy \cdot a$$

idea at the basis of Differential λ -Calculus (Ehrhard and Regnier, 2003)

- In fact analytical functions are smooth: Differential Nets are the lifting to syntax of these properties
- Differential Nets are strongly normalizing: ongoing work with Michele Pagani

Concluding remarks		
Conclusion		
Linear? Differential LL does it better	Proof Nets and Lambda-Calculus	Differential Nets and Resource Calculus

$$\frac{\partial x^2 y}{\partial x} \cdot a = \frac{\partial x \cdot x \cdot y}{\partial x} \cdot a = a \cdot x \cdot y + x \cdot a \cdot y = 2xy \cdot a$$

idea at the basis of Differential λ -Calculus (Ehrhard and Regnier, 2003)

- In fact analytical functions are smooth: Differential Nets are the lifting to syntax of these properties
- Differential Nets are strongly normalizing: ongoing work with Michele Pagani