Università degli studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM1 - A.A. 2007/2008 Tutore: Nazareno Maroni

Soluzioni del tutorato n.4 del 19/10/2007

Esercizio 1.

Mostro la risoluzione solo per il numero 1), gli altri si risolvono in maniera analoga.

- Dimostriamo che la relazione è vera per la base d'induzione n=1 (non è detto che la base sia sempre questa, per esempio nell'esercizio 5) si usa, come base, n=6): $\sum_{k=1}^{1} k^3 = 1 = \left(\frac{1\cdot 2}{2}\right)^2$.
- Assumiamola vera per n e dimostriamola per n + 1:

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3 \stackrel{\text{vale per } n}{=} \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3 = (n+1)^2 \left(\frac{n^2}{4} + n + 1\right) = (n+1)^2 \left(\frac{n+2}{2}\right)^2 = \left(\frac{(n+1)(n+2)}{2}\right)^2.$$

Esercizio 2.

Lo dimostriamo per induzione:

- base n = 1: se $\sharp A = 1$ $A = \{x\} \Rightarrow \mathcal{P}(A) = \{\emptyset, x\}$ e $\sharp \mathcal{P}(A) = 2 = 2^1$;
- vera per n = N: sia A un insieme con N+1 elementi e sia \bar{x} uno qualsiasi di essi, sia $B = A \setminus \{\bar{x}\}$, sappiamo che $\sharp \mathcal{P}(B) = 2^N$, gli elementi di $\mathcal{P}(A)$ sono quelli di $\mathcal{P}(B)$ (che ha cardinalità 2^N) insieme a tutti i possibili sottoinsiemi di B a cui si aggiunge \bar{x} (la cardinalità di questi sottoinsiemi è quindi 2^N), quindi $\sharp \mathcal{P}(A) = 2 \cdot 2^N = 2^{N+1}$.

Esercizio 3.

A) Notiamo che per n=0 si ha $x=-\frac{3}{2}$, possiamo notare invece che per $n\geqslant 1$ $\frac{2n+3}{3n-2}>0$, questo implica che $-\frac{3}{2}\leqslant x\ \forall x\in A$ e quindi poiché $-\frac{3}{2}\in A$ è inf $A=\min\{x\in A\}=-\frac{3}{2}$. Possiamo vedere che $\forall n\geqslant 1$ $x_n\geqslant x_{n+1}$, infatti: $\frac{2n+3}{3n-2}\geqslant \frac{2(n+1)+3}{3(n+1)-2}\ \forall n\geqslant 1\Leftrightarrow 1$

Possiamo vedere che $\forall n \geqslant 1$ $x_n \geqslant x_{n+1}$, infatti: $\frac{2n+3}{3n-2} \geqslant \frac{2(n+1)+3}{3(n+1)-2} \ \forall n \geqslant 1 \Leftrightarrow \cdots \Leftrightarrow 13 \geqslant 0 \ \forall n \geqslant 1$, questo ci dice che per n=1 x=5 è tale che $5 \geqslant x \ \forall x \in A$ ed è quindi sup $A=\max\{x\in A\}=5$.

B) Consideriamo separatamente gli elementi positivi e quelli negativi e cerchiamo l'estremo superiore tra i positivi, l'estremo inferiore tra i negativi. inf $C = \min\{x \in C\} = -2$, sup $C = \max\{x \in C\} = 1$.

1

- C) $\sup E = \max\{x \in E\} = \frac{1}{4}$, $\inf E = \min\{x \in E\} = -\frac{1}{7}$.
- D) $\inf F = \min\{x \in F\} = 0$, $\sup F = \max\{x \in F\} = \frac{3\log 3}{10}$.

- E) sup $I = +\infty$, inf $I = \min\{x \in I\} = -1$.
- F) Si vede che per m=1 e $n=1, \frac{m}{2^n}=\frac{1}{2}$, quindi è inf $D=\min\{x\in D\}=\frac{1}{2}$; diversamente, per quanto riguarda l'estremo superiore $\nexists m,n:\frac{m}{2^n}=\frac{2}{3}$, però se l'estremo superiore fosse $x<\frac{2}{3}$, allora considerando i punti $\frac{k}{2^n}$ con $k=1,2,\ldots,2^n, \exists m\in\mathbb{N}$ tale che $\frac{m}{2^n}<\frac{2}{3}<\frac{m+1}{2^n}$, risulta, quindi, che $0<\frac{2}{3}-\frac{m}{2^n}<\frac{1}{2^n}$ e se $\frac{1}{2^n}<\frac{2}{3}-x\Leftrightarrow n>-\log_2\left(\frac{2}{3}-x\right)$ si ha $\frac{2}{3}-\frac{m}{2^n}<\frac{2}{3}-x\Leftrightarrow x<\frac{m}{2^n}$ ed è $x<\frac{m}{2^n}<\frac{2}{3}$, quindi x non può essere un maggiorante e di conseguenza nessun $x<\frac{2}{3}$ lo è, questo implica che sup $D=\frac{2}{3}$.